结核分枝杆菌抗原模拟肽纳米金生物传感器诊断结核病的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:纳米金生物传感器是一种基于局域表面等离子体共振(Localized surface plasmon resonance, LSPR)的非标记生物传感器。大量研究证实LSPR生物传感器能辅助疾病的诊断。本文应用噬菌体随机12肽库筛选结核分枝杆菌抗原模拟肽,构建基于结核分枝杆菌抗原模拟肽的纳米金生物传感器,评价其诊断结核病的能力,为结核病(Tuberculosis, TB)的诊断提供新的理论依据和技术支持。
     方法:①以结核患者血清IgG为靶分子,3轮淘选噬菌体随机12肽库,筛选与结核患者血清IgG具有亲和性的噬菌体克隆,经酶联免疫吸附试验(Enzyme linked immunosorbent assay, ELISA)鉴定得到阳性克隆;提取阳性噬菌体克隆ssDNA,进行测序分析,获得结核分枝杆菌抗原模拟肽序列;②选择高频出现的2种模拟短肽,进行人工合成,ELISA分析合成短肽及对应的阳性噬菌体克隆诊断结核病的灵敏度和特异性;③种子生长法制备金纳米棒,经十一巯基十一烷酸(MUA)、1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和N-羟基琥珀酰亚胺(NHS)的化学修饰,将合成短肽包被金纳米棒,构建纳米金生物传感器,评价其诊断结核病的能力。
     结果:(1)经3轮淘筛噬菌体得到有效富集,12个阳性噬菌体克隆经测序分析获得6种短肽序列,其中有8个克隆中的每4个各编码同一条肽段;蛋白质BLAST比对未发现有同源性一致的序列。(2)人工合成高频出现的2条12肽(T1和T2),经ELISA初步鉴定,其敏感性和特异性分别为66.1%,35.7%和100.0%,100.0%。(3)种子生长法制备得到分散度良好的金纳米棒,将T1包被到金纳米棒,对112份血清样品进行血清学检测,敏感性和特异性分别为57.1%和83.9%,成功构建了有诊断价值的纳米金生物传感器。
     结论:(1)结核患者血清IgG筛选噬菌体随机12肽库获得了对抗结核抗体高度亲和的噬菌体展示短肽;(2)种子生长法制备获得分散度良好的金纳米棒;(3)基于合成短肽的纳米金生物传感器对结核病有着较好的诊断价值。
Objective:Au NRs biosensor is a kind of biosensor based on Localized surface plasmon resonance (LSPR) technology of gold nanorods. It has been proved that the LSPR biosensor can be used to aid disease diagnosis without using any labels. The mimic peptides of Mycobacterium tuberculosis antigen were immunoscreened from phage displayed 12-mer peptide library, and the diagnostic potential of the Au NRs biosensor based on the mimic peptide of Mycobacterium tuberculosis antigen was explored. Study on the novel diagnosis methods will provide theoretical basis and technical support for diagnosis of TB.
     Methods:①Specific IgG was isolated from sera of patients with tuberculosis and used as the target to immunoscreen its short affinity peptide from a phage random peptide library of 12 amino-acid residues displayed as a fusion to proteinⅢof filamentous phage M13. The positive phage clones were obtained after three rounds of biopanning, their specificity were detected by enzyme linked immunosorbent assay (ELISA), followed by single stranded DNA extraction and sequence analysis.②The high frequent mimic peptides were synthesized based on their amino acid sequences. Sensitivity and specificity of the synthetic short peptides and corresponding positive phage clones were detected by ELISA.③The gold nanorods (Au NRs) were synthesized with seed- mediated method. After chemical modification with 11-mercaptoundecanoic acid (MUA), l-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS), these Au NRs were conjugated with the synthetic short peptides so as to develop a Au NRs biosensor, then the diagnostic potential of the biosensor for TB was detected by seroanalysis.
     Results:(1) After 3 rounds of immunoscreening, the radio of output to input increase to 5.18×10-4, which means that the enrichment was effective. Six kinds of animo acid sequence were obtained from twelve positive phage clones, there were not homologous sequence in NCBI when compared with protein BLAST. (2) The sensitivity and specificity of the synthetic short peptides (T1 and T2) were 66.1%,35.7%and 100.0%,100.0%respectively. (3) Au NRs with good dispersity were prepared with seed-mediated method. T1 was conjugated to Au NRs successfully to develop the biosensor. Seroanalysis of 112 sera tests showed that the sensitivity and specificity of the biosensor were 57.1% and 83.9%respectively.
     Conclusions:(1) The antigen-mimic peptide was successfully obtained from 12 random phage peptide library and the peptides can be recognized by tuberculosis patients'polyclonal antibodies. (2) Au NRs with good dispersity were prepared with seed-mediated method. (3) Au NRs biosensor based on the mimic peptide can be used in the diagnosis ofTB.
引文
[1]Dye C, Floyd K, Gunneberg C, et al. Global tuberculosis control report [M]. Geneva:World Health Organization,2007:12-15.
    [2]中华人民共和国卫生部.2000年全国结核病流行病学抽样调查资料汇编[G].北京:人民卫生出版社,2003:2-3.
    [3]Kashyap RS, Rajan AN, Ramteke SS,et al. Diagnosis of tuberculosis in an Indian population by an indirect ELISA protocol based on detection of Antigen 85 complex:a prospective cohort study [J]. BMC Infectious Diseases,2007,7:74-79.
    [4]Singh S, Gopinath K, Shahdad S, et al. Nontuberculous mycobacterial infections in Indian AIDS patients detected by a novel set of ESAT-6 polymerase chain reaction primers [J].Jpn J Infect Dis,2007,60(1):14-18.
    [5]Rao PV, Murthy MK, Basirudeen S, et al. Improved diagnosis of tuberculosis in HIV-positive patients using RD1-encoded antigen CFP-10 [J]. Int J Infect Dis,2008,9(22):1-10.
    [6]Geisbrecht BV, Nikonenko B,Samala R, et al. Design and optimization of a recombinant system for large-scale production of the MPT64 antigen from Mycobacterium tuberculosis [J]. Protein Expr Purif,2006,46(1):64-72.
    [7]Ramalingam B, Baulard AR, Locht C, et al. Cloning, expression, and purification of the 27kDa (MPT51, Rv3803c) protein of Mycobacterium tuberculosis [J]. Protein Expr Purif, 2004,36(1):53-60.
    [8]Barenholz A, Hovav AH, Fishman Y, et al. A peptide mimetic of the mycobacterial mannosylated lipoarabinomannan:characterization and potential applications[J]. Med Microbiol,2007,56(5):579-586.
    [9]崔林林,高美华,王冰.利用噬菌体肽库筛选HeLa细胞表面与人CD59结合的活性短肽[J].中国免疫学杂志,2007,23(4):349-351.
    [10]Newton J, Deutscher SL. Phage Peptide Display[J].Handb Exp Pharmacol,2008,185(2): 145-163.
    [11]Khurana S, Chearwae W, Castellino F, et al. Vaccines with MF59 adjuvant expand the antibody repertoire to target protective sites of pandemic avian H5N1 influenza virus[J]. Sci Transl Med,2010,2(15):15-20.
    [12]Kozbor D. Cancer vaccine with mimotopes of tumor-associated carbohydrate antigens[J]. Immunol Res,2010,46(1-3):23-31.
    [13]Cunto-Amesty G, Luo P, Monzavi-Karbassi B, et al. Peptide mimotopes as prototypic templates of broad-spectrum surrogates of carbohydrate antigens[J]. Cell Mol Biol, 2003,49(2):245-254.
    [14]张振辉,刘世明,吴文言,等.噬菌体随机肽库中B型钠尿肽结合肽的筛选及鉴定[J].南方医科大学学报,2009,29(9):1837-1839.
    [15]陈泽忠,王珂敏,羊小海,等.表面等离子体子共振生物传感器用于乙肝表面抗原的测定[J].化学学报,2003,61(1):137-140.
    [16]Li Y, Ren J, Nakajima H, et al. Surface Plasmon Resonance Immunosensor for IgE Analysis Using Two Types of Anti-IgE Antibodies with Different Active Recognition Sites[J]. Anal Sci, 2007,23(1):31-38.
    [17]Kelly K L. Coronado E. Zhao L L. et al. The Optical Properties of Metal Nanoparticles:The influence of size, shape, and dielectric environment[J]. Phys Chem B,2003,107(3):668-677.
    [18]Frederix F, Friedt JM., Choi KH. et al. Biosensing Based on Light Absorption of Nanoscaled Gold and Silver Particles[J]. Anal Chem,2003,75(24):6894-6900.
    [19]Fujiwara K. Watarai H, Itoh H, et al. Measurement of Antibody Binding to Protein Immobilized on Gold Nanoparticles by Localized Surface Plasmon Spectroscopy[J], Anal Bioanal Chem,2006,386(3):639-644.
    [20]Chen CD, Cheng SF, Chau LK, et al. Sensing Capability of the Localized Surface Plasmon Resonance of Gold Nanorods[J]. Biosens Bioelectron,2007,22(6):926-932.
    [21]杨霞,袁若,柴雅琴,等.基于纳米金/功能化壳聚糖生物复合膜修饰的癌胚抗原免疫传感器的研究[J].西南大学学报(自然科学版),2008,30(7):56-61.
    [22]Lin TJ, Huang KT, Liu CY. Determination of Organophosphorous Pesticides by a Novel Biosensor Based on Localized Surface Plasmon Resonance[J]. Biosens Bioelectron,2006, 22(4):513-518.
    [23]Wing-Cheung Law, Ken-Tye Yong, Alexander Baev, et al. Nanoparticle enhanced surface Plasmon resonance biosensing:Application of gold nanorods[J].Opt Express,2009,17(21): 19041-19046.
    [24]Fujiwara K, Kasaya H, Ogawa N. Gold Nanoparticle Monolayer Formation on a Chemically Modified Glass Surface[J]. Anal Sci,2009,25(2):241-248.
    [25]Driskell JD, Lipert RJ, Porter MD. Labeled gold nanoparticles immobilized at smooth metallic substrates:systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering[J].Phys Chem B,2006,110(35):17444-17451.
    [26]Li X, Tamada K, Baba A.et al. PH-controlled two dimensional gold nanoparticle aggregates for systematic study of local surface plasmon coupling[J].Nanosci Nanotechnol,2009,9(1): 408-416.
    [27]Kah JC, Kho KW, Lee CG, et al. Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles[J]. Int Nanomedicine,2007,2(4):785-798.
    [28]Sironi L, Freddi S, D'Alfonso L, et al. P53 detection by fluorescence lifetime on a hybrid fluorescein isothiocyanate gold nanosensor[J]. Biomed Nanotechnol.2009,5(6):683-691.
    [29]Lee JH, Kang DY, Lee T, et al. Signal enhancement of surface plasmon resonance based immunosensor using gold nanoparticle-antibody complex for beta-amyloid (1-40) detection[J]. Nanosci Nanotechnol,2009,9(12):7155-7160.
    [30]王敏,李先平,周勇,等.用强直性脊柱炎患者血清筛选噬菌体随机肽库[J].中国免疫学杂志,2009,25(9):844-847.
    [31]吴敬,吴梧桐.B细胞蛋白质抗原表位的研究方法进展[J].药物生物技术,2000,7(4):239-242.
    [32]Gevorkian G, Segura E, Acero G, et al. Peptide mimotopes of Mycobacterium tuberculosis carbohydrate immunodeterminants[J]. Biochem.2005,387(2):411-417.
    [33]Sharma A, Saha A, Bhattacharjee S, et al. Specific and Randomly Derived Immunoactive Peptide Mimotopes of Mycobacterial Antigens[J].Clin Vaccine Immunol,2006, 13(10):1143-1154.
    [34]周新刚,杨华,段开红,等.结核分枝杆菌CFP-10/ESAT-6融合蛋白模拟抗原表位的筛选 [J].中国医药生物技术,2008,3(1):30-35.
    [35]万瑛,吴玉章,唐艳,等.人源多克隆抗血清识别的HBsAg模拟表位筛选[J].第三军医大学学报,2000.,22(10):924-926.
    [36]Demangel C, Lafaye P, Mazie JC. Reproducing the immune response against the Plasmodium vivax merozoite surface protein 1 with mimotopes selected from a phage-displayed peptide library[J]. Mol Immunol,199633(11/12):909-916.
    [37]韩香,顾军.多肽的固相合成[J].天津药学,2002,12(2):7-9.
    [38]Pileni MP, Ninham BW. Krzywicki TG, Tanori J, Lisiecki I, Filankembo A. Direct relationship between shape and size of template and synthesis of copper metal particles [J]. Adv Mater.1999,11(6):1358-1362.
    [39]van der Zande BMI, Bohmer MR, Fokkink LGJ, et al. Colloidal dispersions of gold rods: synthesis and optical properties[J]. Langmuir,2000,16(2):451-458.
    [40]Zhou ZY, Tian N, Huang ZZ, Chen DJ, Sun SG. Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method [J].Faraday Discuss, 2008,140:81-92.
    [41]Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. Physical Chemistry B,2001,105(19):4065-4067.
    [42]Jana NR, Gearheart L, Murphy C. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template[J]. Advanced Materials,2001,13(18):1389-1393.
    [43]Nikoobakht B, El-Sayed MA. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method[J]. Chem Mater,2003,15(10):1957-1962.
    [44]Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution[J]. Am Chem Soc,2004,126(28):8648-8649.
    [45]Batzill M, Koel BE. Silver of Pt(100)-room temperature growth and high temperature alloying[J].SurfSci,2004.553:50-60.
    [46]Lu X, Tuan HY, Chen J, Li ZY, Korgel BA, Xia Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium[5]. Am Chem Soc,2007,129(6):1733-1742.
    [47]魏建红,官建国,袁润章.金属纳米粒子的制备与应用[J].武汉理工大学学报,2001,23(3):1-4.
    [48]Haes AJ, Zou S, Zhao J, et al. Localized surface plasmon resonance spectroscopy near molecular resonances[J] Am Chem Soc,2006,128(33):10905-10914.
    [49]Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing[J]. Annu Rev Phys Chem,2007,58:267-297.
    [50]Lal S, Link S, Halas NJ. Nano-optics from sensing to waveguiding[J]. Nat Photonics,2007, 1(11):641-648
    [51]Murray W, Barnes W. Plasmonic materials[J].Adv Mater,2007,19(22):3771-3782.
    [52]Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston A, Novo C, Mulvaney P, Liz-Marzan L. Modelling the Optical Response of Gold Nanoparticles[J].Chem Soc Rev,2008.37(9):1792-1805.
    [53]Haes AJ, Hall WP, Chang L, et al. A locallized surface plasmon resonance biosensor:first steps toward an assay for Alzheimer's disease[J].Nano Lett,2004,4(6):1029-1034.
    [54]Zheng S, Kim DK, Park TJ, et al. Label-free optical diagnosis of hepatitis B virus with genetically engineered fusion proteins[J].Talanta,2010.82(2):803-809.
    [1]Ho-Seong CHO, Nam-Yong PARK. Serodiagnostic Comparison between Two Methods, ELISA and Surface Plasmon Resonance for the Detection of Antibodies of Classical Swine Fever[J]. Vet Med Sci,2006,68(12):1327-1329.
    [2]Mazumdar SD, Barlen B, Kramer T, et al. A rapid serological assay for prediction of Salmonella infection status in slaughter pigs using surface plasmon resonance[J]. Microbiol Methods,2008,75(3):545-550.
    [3]Prabhakar N, Arora K, Arya SK, et al. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance[J]. Analyst,2008,133(11):1587-1592.
    [4]Guo HX, Wang F, Yu KQ, et al. Novel cyclophilin D inhibitors derived from quinoxaline exhibit highly inhibitory activity against rat mitochondrial swelling and Ca2+ uptake/release[J]. Acta Pharmacol Sin,2005,26(10):1201-1211.
    [5]Soelaiman S, Wei BQ, Bergson P, et al. Structure-based inhibitor discovery against adenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whooping cough[J]. Biol Chem,2003,278(28):25990-25997.
    [6]牟颖,张寒琦,金钦汉.表面等离子体共振技术及其在生命科学中的应用[J].现代科学仪器,2001,(2):27-32.
    [7]Englebienne P, Van H, Verhas M. Surface plasmon resonance:principles, methods and applications in biomedical sciences[J]. Spectroscopy,2003,17:255-273.
    [8]DeLano WL, Ultsch MH. de Vos AM. et al. Convergent solutions to binaing at a protein-protein interface[J]. Science,2000.287(5456):1279-1283.
    [9]Cooper MA, Hansson A, Lofas S. et al. A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors[J].Anal Biochem,2000.277(2):196-205.
    [10]Pei R, Yang X, Wang E. Enhanced surface plasmon resonance immunesensing using a streptavidin-biotinylated protein complex[J]. Analys,2001,126(1):4-6.
    [11]Se-Hui Jung, Jae-Wan Jung, In-Bum Suh, et al. Analysis of C-Reactive Protein on Amide-Linked N-Hydroxysuccinimide-Dextran Arrays with a Spectral Surface Plasmon Resonance Biosensor for Serodiagnosis[J]. Analytical Chemistry,2007.79(15):5703-5710.
    [12]Lee W, Oh BK, Kim YW, et al. Signal enhancement of surface plasmon resonance based on gold nanoparticle-antibody complex for immunoassay[J]. Nanosci Nanotechnol,2006.6(11): 3521-3525.
    [13]Anker JN, Hall WP, Lambert MP, et al. Detection and Identification of Bicanalytes with High Resolution LSPR Spectroscopy and MALDI Mass Spectrometry[J].Phys Chem C Nanomater Interfaces,2009.113(15):5891-5894.
    [14]Huang C, Bonroy K, Reekmans G. et al. Localized surface plasmon resonance biosensor integrated with microfluidic chip[J]. Biomed Microdevices,2009,11(4):893-901.
    [15]Chen KJ, Lu CJ. A vapor sensor array using multiple localized surface plasmon resonance bands in a single UV-vis spectrum[J]. Talanta,2010,81 (4-5):1670-1675.
    [16]Huang H, He C, Zeng Y, et al. A novel label-free multi-throughput optical biosensor based on localized surface plasmon resonance[J]. Biosens Bioelectron,2009.24(7):2255-2259.
    [17]宋大千,牟颖,赵晓君,等.基于表面等离子体子共振的B因子传感器[J].高等学校化学学报,2000.21(5):686-689.
    [18]Li Y, Ren J, Nakajima H, et al. Surface Plasmon Resonance Immunosen.sor for IgE Analysis Using Two Types of Anti-IgE Antibodies with Different Active Recognition Sites[J]. Anal Sci, 2007,23(1):31-38.
    [19]Hifumi E. Kubota N, Niimi Y, et al. Elimination of ingredients effect to improve the detection of anti HIV-1 p24 antibody in human serum using SPR apparatus[J].Anal Sci.2002,18(8): 863-867.
    [20]Oh BK, Kim YK. Lee W, et al. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance[J]. Biosens Bioelectron,2003.18(5-6):605-511.
    [21]Teramura Y, Iwata H. Label-free immunosensing for alpha-fetoprotein in human plasma using surface plasmon resonance[J]. Anal Biochem.2007365(2):201-207.
    [22]陈泽忠,王珂敏,羊小海,等.表面等离子体子共振生物传感器用于乙肝表面抗原的测定[J].化学学报,2003,61(1):137-140.
    [23]Sidobre S, Puzo G, Riviere M. Lipid-restricted recognition of mycobacterial lipoglycans by human pulmonary surfactant protein A:a surface-plasmon-resonance study[J]. Biochem, 2002,365(1):89-97.
    [24]Aoki K, Matsumoto S, Hirayama Y. et al. Extracellular mycobacterial DNA-binding protein 1 participates in mycobacterium-lung epithelial cell interaction through hyauronic acid[J]. Biol Chem.2004.279(38):39798-39806.
    [25]Saini AK, Maithal K, Chand P. et al. Nuclear Localization and in Situ DNA Damage by Mycobacterium tuberculosis Nucleoside-diphosphate Kinase[J]. Biol Chem,2004.279(48): 50142-50149.
    [26]Barenholz A, Hovav AH, Fishman Y, et al. A peptide mimetic of the mycobacterial mannosylated lipoarabinomannan:characterization and potential applications[J]. Med Microbiol,2007,56(5):579-586.