容积灌注CT成像(VPCT)与非小细胞肺癌血管构筑的关系及其临床转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究者发现厄洛替尼能引起裸鼠移植瘤血管构筑的变化,我们应用最新的容积灌注CT (volume perfusion computer tomography,VPCT)技术观察肺癌患者肿瘤全病灶血管灌注功能的变化,结果发现肺癌患者吉非替尼治疗前后VPCT灌注参数也会发生变化,这些证据表明直接作用于肺癌细胞的表皮生长因子受体酪氨酸激酶抑制剂(Epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKI)也可能同时影响肺癌的血管灌注水平。基于此,本课题分别在裸鼠肺癌移植瘤及肺癌患者中研究VPCT与血管构筑的关系,观察肺癌患者吉非替尼治疗前后VPCT灌注参数的变化,以此来判断EGFR-TKI的疗效,为寻求新的EGFR-TKI疗效评价指标提供技术支持与理论依据。
     方法:
     1)建立荷A549裸鼠移植瘤模型,随机分成贝伐单抗组和空白对照组,每组于d0,2,4,6,10随机选取6-8只小鼠,获得VPCT灌注参数[包括最高强化值(peak enhancement image, PEI)和血流量(blood flow,BF)]后立即处死,检测血管构筑指标,来评价移植瘤“血管正常化”和“血管稳态”水平的变化。评价“血管正常化”的指标包括周细胞覆盖率(microvessel pericyte coverage index,MPI)评价血管结构、电镜评价血管功能、乏氧标志物Pimonidazole检测评价血管效应。评价“血管稳态”的指标包括血管成熟指数(vessel maturity index,VMI)、血管生成调控因子平衡性、肿瘤细胞稳定性、电镜观察肿瘤与血管的相互关系。采用影像-病理对照研究方法在裸鼠移植瘤中观察CT灌注参数与血管构筑指标的关系。
     2)48例肺癌患者分别行容积灌注CT (VPCT)和多层螺旋CT灌注成像(multi-slice spiral comuted tomography perfusion, MS-CTP)后获取病理标本,检测血管构筑相关指标(微血管MPI和VMI、肿瘤增殖和凋亡),采用影像-病理对照研究方法在肺癌患者中探讨CT灌注参数与血管构筑的关系。
     3)18例行VPCT的肺癌患者进行吉非替尼单药靶向治疗及随访观察,吉非替尼治疗前及每治疗2周期(6周)后再次行VPCT获得治疗前后的灌注参数,同时用实体瘤治疗反应评价标准1.1(Response Evaluation Criteria in Solid Tumors,RECIST)评价疗效,探讨靶向治疗6周后VPCT灌注参数变化与RECIST评分的关系来评价近期疗效,探讨靶向治疗前后VPCT灌注参数的变化与中期疗效评价指标无疾病进展时间(progress free survival,PFS)的关系来评价中期疗效。
     结果:
     1)裸鼠肺癌移植瘤VPCT与微血管密度(microvessel density,MVD)及血管成熟度的关系:贝伐单抗处理4天后肿瘤血流量BF明显增高(P<0.01),微血管成熟度(周细胞覆盖率MPI和血管成熟指数VMI)明显增高(P<0.01),处理10天后肿瘤BF与微血管成熟度均下降到处理前水平(P>0.05),贝伐单抗处理后肿瘤最高强化值PEI与MVD均下降(P<0.01)。
     2)裸鼠肺癌移植瘤VPCT与“血管正常化”观察指标的关系:“血管正常化窗口期”发生在贝伐单抗处理后2-6天,“窗口期“时MPI增高,内皮细胞与周细胞连接紧密,基底膜完整性修复,肿瘤微环境乏氧改善,血流量BF增高。
     3)裸鼠肺癌移植瘤VPCT与“血管稳态”观察指标的关系:贝伐单抗处理后2-6天,肿瘤血管生成调控因子平衡性和肿瘤细胞稳定性增加,血流量BF增高。
     4)肺癌患者CT灌注参数与血管构筑的关系:血流量BF与微血管成熟度呈明显正相关(r为0.68,P为0.000),BF与CD31-MVD呈正相关(r=0.365,P=0.013),最高强化值PEI与微血管成熟度无明显相关(P均>0.05),PEI与CD31-MVD呈正相关(P<0.05)。CT灌注参数与肺癌增殖与凋亡均无明显关系(P均>0.05)。
     5) VPCT评价吉非替尼治疗EGFR突变的晚期肺腺癌患者近期疗效的作用:吉非替尼治疗6周后BF值上升的病例近期疗效欠佳。将高分化、中分化和低分化肺癌分别赋值1、2、3,治疗前BF与分化程度呈负相关(r=-0.904,P=-0.000),治疗6周后BF下降率与分化程度呈负相关(r=-0.525,P=0.025),BF下降的患者疗效更好(r=-0.636,P=0.005)。BF变化趋势与分化程度无相关(r=-0.353,P=0.151)。VPCT预测RECIST评价达部分缓解(partial response, PR)的敏感性、特异性、准确性、阳性预测值及阴性预测值分别为77.8%、66.7%、72.2%、70.0%及75.0%。
     6) VPCT评价吉非替尼治疗EGFR突变的晚期肺腺癌患者吉非替尼中期疗效的作用:按RECIST标准测量病灶体积变化获得的PFS(RECIST-PFS)与使用VPCT测量病灶血管灌注功能变化获得的PFS(VPCT-PFS)呈明显正相关(r=0.761,P=0.004)。VPCT-PFS短于RECIST-PFS (中位PFS12周VS30周),中位领先时间为12周。治疗前BF与中期疗效评价指标无明显关系,治疗2周期(6周)BF下降率与VPCT测得的PFS呈正相关(r=0.584,P=0.046),VPCT预测RECIST评价达疾病进展(progressive disease, PD)的敏感性、特异性、准确性、阳性预测值及阴性预测值分别为92.3%、60.0%、83.3%、85.7%及75.0%。
     结论:
     1) VPCT可以动态观察裸鼠肺癌移植瘤血管构筑的变化,并以此来观察裸鼠肺癌移植瘤的“血管正常化”现象和评价“血管稳态”水平;
     2)在裸鼠肺癌移植瘤及肺癌患者的影像病理对照试验中分别证实VPCT可以有效评价肺癌的血管构筑状态,灌注参数BF与PEI具有不同的病理基础;
     3)肺癌患者吉非替尼治疗后靶病灶血管灌注功能的变化早于体积的变化,VPCT灌注参数的变化是评价EGFR-TKI疗效的理想指标。
Objective
     The researcher found that erlotinib change the vasculature in nude mice transplanted tumor. We also found the volume perfusion CT (VPCT) parameters will be changed before and after the Gefitinib therapy in patients with lung cancer. These evidences suggest EGFR-TKI not only act directly on the tumor cell, may also has an effect on the vascular perfusion in lung cancer. Based on these, this paper discussed the relationships between the VPCT and the vascular architecture in nude mice transplantation tumors and patients with lung cancer respectively. Then the changes of VPCT parameters in lung cancer patients before and after treatment of Gefitinib were observed to determine the response of EGFR-TKI therapy. This paper tried to seek a new index to evaluate the effect of EGFR-TKI therapy, and aimed to provide technical support and theoretical basis of this new index.
     Methods
     (1) Nude mice transplanted tumors were randomly divided into bevacizumab group and blank control group.6-8mice were randomly selected in the day0,2,4,6and10in each group. After VPCT perfusion parameters (PEI and BF) were acquired, the mice were sacrificed immediately, then the indexes of vascular architecture were detected to evaluate the level of "vascular normalization" and "vascular homeostasis". The indexex of "vascular normalization" include vascular structure (MPI), vascular function (electron microscopic) and vascular effects (Pimonidazole expression). The indexes of "vascular homeostasis" include vascular maturation index (VMI), the balance of angiogenesis regulation factor, the stability of tumor cell and the relationship between tumor and vascular. Then we observed the relationships between CT perfusion parameters and pathological indexes by using image-pathologic correlation method in mice.
     (2)48patients with lung cancer received CT perfusion scan (including VPCT and MS-CTP) and pathological biopsy, the indexes of vascular architecture (MPI, VMI, tumor proliferation and apoptosis) were detected. The CT perfusion parameters were compared with pathological indexes by using image-pathologic correlation method in lung cancer patient.
     (3)18patients received VPCT scan, then followed by Gefitinib therapy and follow-up observation. VPCT was repeated and the therapy effect was evaluated with RECIST criteria. The VPCT parameters of18patients were compared with their short term effect and middle term effect.
     Resluts:
     (1) The relationship between VPCT and micro vessel density/maturation in nude mice:Tumor blood flow (BF) and tumor microvascular maturity (MPI and VMI) were increased significantly in day4(P<0.01), and down to the preoperative level in day10(P>0.05), however, PEI and microvessel density were decreased(P<0.01).
     (2) The relationship between VPCT and the indexes of "vascular normalization" in nude mice:The "vascular normalization window" occurred in2-6days after bevacizumab treatment. In the window, tumor MPI were increased, Endothelial cells and pericytes were closely connected, the integrity of basement membranes were repaired, hypoxia in tumor microenvironment was improved, tumor blood flow(BF) were increased.
     (3) The relationship between VPCT and the indexes of "vascular homeostasis" in nude mice:the balance of angiogenesis regulation factor and the stability of tumor cell were improved in2-6days after bevacizumab treatment, tumor blood flow(BF) were increased.
     (4) The relationship between CT perfusion parameters and vascular architecture in patients with lung cancer:There was a positive correlation between BF and microvascular maturity (r=0.680, P=0.000), and there was a weakly positive correlation between BF and CD31-MVD(r=0.365, P=0.013). There was no correlation between PEI and microvascular maturity (P>0.05), and there was a weakly positive correlation between PEI and CD31-MVD (P<0.05). There was no correlation between CT perfusion parameters and the stability of tumor cell (P>0.05)
     (5) Evaluating the short term effect of Gefitinib in patients with advanced lung adenocarcinoma by VPCT:Short term effect was poor in the case which the BF increase after6weeks of targeted therapy. BF before therapy was a negative correlated with differentiation grade (r=-0.904, P=0.000).There was a negative correlation between rate of BF decline and the differentiation grade (r=-0.525, P=0.025); There was a negative correlation between the trend of BF and RECIST criteria (r=-0.636, P=0.005), but there was no significant correlation with the differentiation grade(P=0.151).The VPCT can predict the effect of RECIST criteria, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value of VPCT is77.8%、66.7%、72.2%、70.0%and75.0%.
     (6) Evaluating the middle term effect of Gefitinib in advanced lung adenocarcinoma by VPCT:There was a positive correlation between RECIST-PFS and VPCT-PFS (r=0.761, P=0.004); The VPCT-PFS was shorter than RECIST-PFS(the median PFS12weeks vs30weeks), the median lead time was12weeks. There was no relationship between BF before therapy and the middle term effect. There was a positive correlation between rate of BF decline after6weeks of targeted therapy and VPCT-PFS (r=0.584, P=0.046).The VPCT can predict the progress of RECIST criteria, the sensitivity, specificity, accuracy, positive predictive value and negative predictive value of VPCT is92.3%、60.0%、83.3%、85.7%and75.0%.
     Conclusion:
     (1) VPCT can be used to evaluate dynamically the changes of vascular architecture, then to evulate the "vascular normalization" and "vascular homeostasis" in nude mice.
     (2) VPCT is a good technology to evaluate dynamically the changes of vascular architecture by using image-pathologic correlation method in nude-mice transplanted tumor model and patients with lung cancer. VPCT parameters, such as BF and PEI, have different pathological basis.
     (3) The changes of VPCT parameters is earlier than the change of tumor volume, and the changes of VPCT parameters are ideal indexes to evaluate the effect of EGFR-TKI therapy in lung cancer.
引文
[1]熊曾,胡成平,刘进康,等.双源容积灌注CT对吉非替尼治疗EGFR突变的晚期肺腺癌近期效果的评价[J].中华医学杂志,2011,91(40):2824-2827.
    [2]熊曾,刘进康,胡成平,等.非小细胞肺癌CT灌注成像诊断价值综合评估[J].中国肿瘤临床,2009,36(22):1261-1265.
    [3]Xiong Z, Liu JK, Hu CP, et al. Role of immature microvessels in assessing the relationship between CT perfusion characteristics and differentiation grade in lung cancer[J]. Arch Med Res,2010,41 (8):611-617.
    [4]熊曾,刘进康,周漠玲,等.非小细胞肺癌组织中EphB4和ephrinB2的表达与CT肺灌注成像的关系[J].中华肿瘤杂志,2011,33(3):192-196.
    [5]Ergun S, Tilki D, Oliveira-Ferrer L, et al. Significance of vascular stabilization for tumor growth and metastasis[J].Cancer Lett,2006,238(2):180-187.
    [6]Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors [J]. Cancer Res, 2004,64(11):3731-3736.
    [7]Ansiaux R, Baudelet C, Jordan BF, et al. Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy[J]. Cancer Res,2006,66(19):9698-9704.
    [8]Dings RP, Loren M, Heun H, et al. Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization[J]. Clin Cancer Res,2007,13(11):3395-3402.
    [9]Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGFspecific antibody bevacizumab has antivascular effects in human rectal cancer[J]. Nat Med,2004,10(2):145-147.
    [10]Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients[J]. Cancer Cell,2007,11(1):83-95.
    [11]Jain RK. Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy [J]. Science,2005,307 (5706):58-62.
    [12]Wildiers H, Guetens G, De Boeck G, et al. Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11[J]. Br J Cancer, 2003,88(12):1979-1986.
    [13]Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy:A new paradigm for combination therapy[J]. Nat Med,2001,7(9):987-989.
    [14]Fukumura D, Jain RK. Tumor microvasculature and microenvironment:targets for anti-angiogenesis and normalization[J]. Microvasc Res,2007,74(2-3): 72-84.
    [15]Sauter AW, Merkle A, Schulze M, et al. Intraobserver and interobserver agreement of volume perfusion CT (VPCT) measurements in patients with lung lesions.Eur J Radiol,2011 (Available online)
    [16]Spira D, Gerlach JD, Spira SM, et al. Effect of scan time on perfusion and flow extraction product (K-trans) measurements in lung cancer using low-dose volume perfusion CT (VPCT) [J]. Acad Radiol,2012,19(1):78-83.
    [17]Tholouli E, Sweeney E, Barrow E, et al. Quantum dots light up pathology[J]. J Pathol,2008,216(3):275-285.
    [18]Peng CW, Liu XL, Chen C, et al. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment[J]. Biomaterials,2011,32(11):2907-2917.
    [19]Savai R, Wolf JC, Greschus S, et al. Analysis of tumor vessel supply in Lewis lung carcinoma in mice by fluorescent microsphere distribution and imaging with micro- and flat-panel computed tomography [J]. Am J Pathol,2005, 167(4):937-946.
    [20]Greschus S, Savai R, Wolf JC, et al. Non-invasive screening of lung nodules in mice comparing a novel volumetric computed tomography with a clinical multislice CT[J]. Oncol Rep,2007,17(4):707-712.
    [21]Tognolini A, Schor-Bardach R, Pianykh OS, et al. Body tumor CT perfusion protocols:optimization of acquisition scan parameters in a rat tumor model[J].Radiology,2009,251(3):712-720.
    [22]Myers AL, Williams RF, Ng CY, et al. Bevacizumab- induced tumor vessel remodeling in rhabdomyosarcoma xenografts increases the effectiveness of adjuvant ionizing radiation[J]. J Pediatr Surg,2010,45(6):1080-1085.
    [23]Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in antiangio genic therapy in a rat model[J]. Radiology,2005, 237(1):151-158.
    [24]Eberhard A, Kahlert S, Goede V, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors:implications for antiangiogenic tumor therapies[J]. Cancer Res,2000,60(5):1388-1393.
    [25]Franco M, Man S, Chen L, et al. Targeted anti-vascular endothelial growth factor receptor-2 therapy leads to short-term and long-term impairment of vascular function and increase in tumor hypoxia[J].Cancer Res,2006,66 (7):3639-3648.
    [26]Wild R, Ramakrishnan S, Sedgewick J, et al. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis:effects of VEGF-toxin conjugate on tumor microvessel density[J]. Microvasc Res,2000,59(3):368-376.
    [27]刘进康,熊曾,周晖,等.多层螺旋CT肺灌注成像与VEGF、PCNA表达的关系[J].中南大学学报(医学版),2009,34(5):406-411.
    [28]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2008[J]. CA Cancer J Clin, 2008,58(2):71-96.
    [29]Jain RK. Taming vessels to treat cancer[J]. Sci Am,2008,298(1):56-63.
    [30]Petrelli NJ, Winer EP, Brahmer J, et al. Clinical Cancer Advances 2009:major research advances in cancer treatment, prevention, and screening--a report from the American Society of Clinical Oncology [J]. J Clin Oncol,2009, 27(35):6052-6069.
    [31]Cerniglia GJ, Pore N, Tsai JH, et al. Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy[J]. PLoS One,2009,4(8):e6539.
    [32]Lind JS, Meijerink MR, Dingemans AM, et al. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer:a new method of monitoring treatment? [J]. Eur Radiol,2010,20(12):2890-2898.
    [33]Dickson PV, Hamner JB, Sims TL, et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy [J]. Clin Cancer Res,2007,13(13):3942-3950.
    [34]Miles KA, Lee TY, Goh V, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol.2012 Feb 26. [Epub ahead of print, only read abstract].
    [35]卞修武.对肿瘤血管生成研究之肿瘤微血管构筑表型异质性的思考[J].中华病理学杂志,2006,35(3):129-130.
    [36]Ketelsen D, Horger M, Buchgeister M, et al. Estimation of radiation exposure of 128-slice 4D-perfusion CT for the assessment of tumor vascularity [J]. Korean J Radiol,2010,11(5):547-552.
    [37]Okada M, Kim T, Murakami T. Hepatocellular nodules in liver cirrhosis:state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc)[J]. Abdom Imaging,2011,36(3):273-281.
    [38]Ng QS, Goh V, Klotz E, et al. Quantitative assessment of lung cancer perfusion using MDCT:does measurement reproducibility improve with greater tumor volume coverage? [J]. AJR Am J Roentgenol,2006,187(4):1079-1084.
    [39]Miles KA, Charnsangavej C, Lee FT, et al. Application of CT in the investigation of angiogenesis in oncology[J]. Acad Radiol,2000,7(10):840-850.
    [40]Hakime A, Peddi H, Hines-Peralta AU, et al. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model[J]. Radiology,2007,243(3):712-719.
    [41]Yi CA, Lee KS, Kim EA, et al. Solitary pulmonary nodules:dynamic enhanced multi-detector row CT study and comparison with vascular endothelial growth factor and micro vessel density [J]. Radiology,2004,233(1):191-199.
    [42]Yamashita K, Matsunobe S, Takahashi R, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT:radiologic-pathologic correlation[J]. Radiology,1995,196 (2):401-408.
    [43]Bai RJ, Cheng XG, Qu H, et al. Solitary pulmonary nodules:comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density[J]. Chin Med J (Engl),2009, 122(5):541-547.
    [44]Tai JH, Tessier J, Ryan AJ, et al. Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast- enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat[J]. Neoplasia,2010,12(9):697-707.
    [45]Palmowski M, Huppert J, Hauff P, et al. Vessel fractions in tumor xenografts depicted by flow- or contrast-sensitive three-dimensional high-frequency Doppler ultrasound respond differently to antiangiogenic treatment[J]. Cancer Res,2008,68(17):7042-7049.
    [46]Ghaghada KB, Badea CT, Karumbaiah L, et al. Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging[J]. Acad Radiol.2011;18(1):20-30.
    [47]Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis:a new significant and independent prognostic indicator in early-stage breast carcinoma[J]. J Natl Cancer Inst,1992,84(24):1875-1887.
    [48]Folkman J. Role of angiogenesis in tumor growth and metastasis[J]. Semin Oncol,2002,29 (6 Suppl 16):15-18.
    [49]Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases[J]. Nature, 2000,407(6801):249-257.
    [50]Winkler F, Kozin SV, Tong RT, et al. Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation:role of oxygenation, angiopoietin-1, and matrix metalloproteinases[J]. Cancer Cell, 2004,6(6):553-563.
    [51]Ansiaux R, Baudelet C, Jordan BF, et al. Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment[J]. Clin Cancer Res, 2005,11 (2 Pt 1):743-750.
    [52]Huber PE, Bischof M, Jenne J, et al. Trimodal cancer treatment:beneficial effects of combined antiangiogenesis, radiation, and chemotherapy [J]. Cancer Res,2005(9),65:3643-3655.
    [53]Salnikov AV, Roswall P, Sundberg C, et al. Inhibition of TGF-h modulates macrophages and vessel maturation in parallel to a lowering of interstitial fluid pressure in experimental carcinoma[J]. Lab Invest,2005,85(4):512-521.
    [54]Vosseler S, Mirancea N, Bohlen P, et al. Angiogenesis inhibition by vascular endothelial growth factor receptor-2 blockade reduces stromal matrix metalloproteinase expression, normalizes stromal tissue, and reverts epithelial tumor phenotype in surface heterotransplants[J]. Cancer Res,2005, 65(4):1294-1305.
    [55]Segers J, Fazio VD, Ansiaux R, et al. Potentiation of cyclophosphamide chemotherapy using the anti-angiogenic drug thalidomide:Importance of optimal scheduling to exploit the "normalization" window of the tumor vasculature[J]. Cancer Lett,2006,244(1):129-135.
    [56]Savai R, Langheinrich AC, Schermuly RT, et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer[J]. Neoplasia,2009, 11(1):48-56.
    [57]Satoh N, Yamada Y, Kinugasa Y, et al. Angiopoietin-1 alters tumor growth by stabilizing blood vessels or by promoting angiogenesis[J]. Cancer Sci,2008, 99(12):2373-2379.
    [58]Falcon BL, Hashizume H, Koumoutsakos P, et al. Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels[J]. Am J Pathol.2009;175(5):2159-2170.
    [59]London NR, Whitehead KJ, Li DY. Endogenous endothelial cell signaling systems maintain vascular stability[J]. Angiogenesis,2009,12(2):149-158.
    [60]Gijtenbeek JM, Wesseling P, Maass C, et al. Three-dimensional reconstruction of tumor microvasculature:simultaneous visualization of multiple components in paraffin-embedded tissue[J]. Angiogenesis,2005,8(4):297-305.
    [61]Costanzo R, Piccirillo MC, Sandomenico C, et al. Gefitinib in non small cell lung cancer[J]. J Biomed Biotechnol,2011,2011:815-269.
    [62]朱智明,周漠玲,刘进康,等.多层螺旋CT肺灌注成像技术优化与标准化探讨[J].第三军医大学学报,2008,30(20):1893-1896.
    [63]Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imagingdetermined cerebral blood colume maps with histologic and angiographic determination of vascularity of gliomas[J].AJR,1998,171(3):1479-1486.
    [64]张敏鸣,孤立性肺结节影像学诊断原则与研究进展[J]。放射学实践,2007,22(3):225-229.
    [65]周华,张敏鸣,肖圣祥,等.动态增强CT功能成像评价肺癌肿瘤血管生成的研究[J].中华放射学杂志,2006,40(2):171-175。
    [66]Nishino M, Jagannathan JP, Ramaiya NH, et al. Revised RECIST guideline version 1.1:What oncologists want to know and what radiologists need to know[J]. AJR Am J Roentgenol,2010,195(2):281-289.
    [67]Carter CA, Giaccone G. Treatment of nonsmall cell lung cancer:overcoming the resistance to epidermal growth factor receptor inhibitors [J]. Curr Opin Oncol, 2012,24(2):123-129.
    [68]2011版《非小细胞肺癌(NSCLC)(?)临床实践指南》(英文版)
    [69]2011版《非小细胞肺癌(NSCLC)临床实践指南》(中文版)
    [70]Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor [J]. Clinical Cancer Research,2001,7(5):1459-1465.
    [71]Huang SM, Li J, Armstrong EA, et al. Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa) [J]. Cancer Res,2002,62(15):4300-4306.
    [72]Pore N, Jiang Z, Gupta A, et al. EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms [J]. Cancer Res,2006,66(6):3197-3204.
    [73]Solomon B, Binns D, Roselt P, et al. Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging [J]. Mol Cancer Ther,2005,4(9):1417-1422.
    [74]Warburton C, Dragowska WH, Gelmon K, et al. Treatment of HER-2/neu overexpressing breast cancer xenograft models with trastuzumab (Herceptin) and gefitinib (ZD1839):drug combination effects on tumor growth, HER-2/neu and epidermal growth factor receptor expression, and viable hypoxic cell fraction [J]. Clin Cancer Res,2004,10(7):2512-2524.
    [75]Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science,2004,304(5676): 1497-1500.
    [76]Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2004,350(21):2129-2139.
    [77]Harvey C, Dooher A, Morgan J, et al. Imaging of tumour therapy responses by dynamic CT[J]. Eur J Radiol,1999,30(3):221-226.
    [78]Ng QS, Goh V, Milner J, et al. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer:In vivo whole tumor assessment using volumetric perfusion computed tomography [J]. Int J Radiat Oncol Biol Phys,2007,67(2):417-424.
    [79]王建卫,吴宁,宋颖.肺癌治疗前后CT灌注参数变化在早期疗效及预后评价中的应用[J].中华肿瘤杂志,2009,31(1):54-57.
    [80]王建卫,吴宁,宋颖.CT灌注成像在早期非小细胞肺癌疗效评估及预后评价中的应用.中华肿瘤杂志,2010,44(1):12-16.
    [81]Wang J, Wu N, Cham MD, et al. Tumor response in patients with advanced non-small cell lung cancer:perfusion CT evaluation of chemotherapy and radiation therapy [J]. AJR Am J Roentgenol,2009,193(4):1090-1096.
    [82]Meijerink MR, van Cruijsen H, Hoekman K, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients[J]. Eur Radiol,2007,17(7):1700-1713.
    [83]Sabir A, Schor-Bardach R, Wilcox CJ, et al. Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy[J]. AJR Am J Roentgenol,2008,191(1):133-139.
    [84]Sahani DV, Kalva SP, Hamberg LM, et al. Assessing tumor perfusion and treatment response in rectal cancer with multisection CT:initial observations [J]. Radiology,2005,234(3):785-792.
    [85]Hayano K, Okazumi S, Shuto K, et al. Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma: initial clinical results[J]. Oncol Rep,2007,18(4):901-908.
    [86]Makari Y, Yasuda T, Doki Y, et al. Correlation between tumor blood flow assessed by perfusion CT and effect of neoadjuvant therapy in advanced esophageal cancers[J]. J Surg Oncol,2007,96(3):220-229.
    [87]Miles KA, Griffiths MR, Keith CJ. Blood flow-metabolic relationships are dependent on tumour size in non-small cell lung cancer:a study using quantitative contrast-enhanced computer tomography and positron emission tomography [J]. Eur J Nucl Med Mol Imaging,2006,33(1):22-28.
    [88]Serkova NJ. Translational imaging endpoints to predict treatment response to novel targeted anticancer agents[J]. Drug Resist Updat,2011,14(4-5):224-235.
    [89]Helfrich I, Scheffrahn I, Bartling S, et al. Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma[J]. J Exp Med,2010,207(3):491-503.
    [90]di Tomaso E, London N, Fuja D, et al. PDGF-C Induces Maturation of Blood Vessels in a Model of Glioblastoma and Attenuates the Response to Anti-VEGF Treatment[J]. PLoS One,2009,4(4):e5123.
    [91]Huang J, Soffer SZ, Kim ES, et al. Vascular Remodeling Marks Tumors That Recur During Chronic Suppression of Angiogenesis[J]. Mol Cancer Res,2004, 2(1):36-42
    [92]Reddy C, Chilla D, Boltax J.Lung cancer screening:a review of available data and current guidelines [J]. Hosp Pract (Minneap),2011,39(4):107-112.
    [93]Meng X, Loo BW, Ma L, et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study[J]. J Nucl Med,2011,52 (10):1573-1579.
    [1]Axel L. Cerebral blood flow determination by rapid-sequence computed tomography:theoretical analysis[J]. Radiology,1980,137(3):679-686.
    [2]Miles KA.Measurement of Tissue Perfusion by Dynamic Computed Tomography[J].Br J Radiol,1991,64(761):409-412.
    [3]Miles KA,Griffiths MR,Fuentes MA.Standardized perfusion value:universal CT contrast enhancement scale that correlates with FDG-PET in lung nodules[J]. Radiology,2001,220(2):548-553.
    [4]Klotz E, Konig M. Perfusion measurements of the brain:using dynamic CT for the quantitative assessment of cerebral ischemia in acute stroke[J]. Eur J Radiol, 1999,30(3):170-184.
    [5]Konig M, Klotz E, Luka B, et al. Perfusion CT of the brain:diagnostic approach for early detection of ischemic stroke[J]. Radiology,1998,209(1):85-93.
    [6]Cenic A. Nabavi DG. Craen RA. et al.Dynamic CT measurement of cerebral blood flow:a validation study[J]. AJNR,1999,20(l):63-73.
    [7]Eastwood JD,Provenzale JM, Hurwitz LM, et al. Practical injection-rate CT perfusion in a case of stroke[J]. Neuroradiology,2001,43(3):223-226.
    [8]Miles KA, Leggett DA, Bennett GA. CT derived Patlak images of the human kidney [J]. Br J Radiol,1999,72(854):153-159.
    [9]Miles KA. Perfusion CT for the assessment of tumour vascularity:which protocol?[J]. Br J Radiol,2003,76(1):S36-42.
    [10]Swensen SJ, Brown LR, Colby TV, et al. Lung nodule enhancement at CT: prospective findings[J]. Radiology,1996,201(2):447-455.
    [11]Li Y, Yang ZG, Chen TW, et al. Peripheral lung carcinoma:correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT[J]. Lung Cancer,2008,61(1):44-53.
    [12]Goh V, Halligan S, Bartram CI. Quantitative tumor perfusion assessment with multidetector CT:are measurements from two commercial software packages interchangeable?[J]. Radiology,2007,242(3):777-782.
    [13]Kiessling F, Boese J, Corvinus C, et al. Perfusion CT in patients with advanced bronchial carcinomas:a novel chance for characterization and treatment monitoring? [J]. Eur Radiol,2004,14(7):1226-1233.
    [14]Ma SH, Xu K, Xiao ZW, et al. Peripheral lung cancer:relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and cyclin D1 expression[J]. Clin Imaging,2007,31(3):165-177.
    [15]Meijerink MR, van Cruijsen H, Hoekman K, et al. The use of perfusion CT for the evaluation of therapy combining AZD2171 with gefitinib in cancer patients[J]. EurRadiol,2007,17(7):1700-1713.
    [16]Tognolini A, Schor-Bardach R, Pianykh OS, et al. Body tumor CT perfusion protocols:optimization of acquisition scan parameters in a rat tumor model [J].Radiology,2009,251(3):712-720.
    [17]Mori K, Niki N, Kondo T, et al. Development of a novel computer-aided diagnosis system for automatic discrimination of malignant from benign solitary pulmonary nodules on thin-section dynamic computed tomography [J]. J Comput Assist Tomogr,2005,29(2):215-222.
    [18]Miles KA, Charnsangave JC, Lee FT, et al. Application of CT in the investigation of angiogenesis in oncology[J]. Acad Radiol,2000,7(10):840-850.
    [19]Bader TR,Herneth AM,Blaicher W,et al.Hepatic perfusion after liver transplanta-tion:noninvasive measurement with dynamic single section CT[J]. Radiology,1998,209(1):129-134.
    [20]Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in antiangiogenic therapy in a rat model[J]. Radiology,2005, 237(1):151-158.
    [21]Lind JS, Meijerink MR, Dingemans AM, et al. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer:a new method of monitoring treatment? [J]. Eur Radiol,2010,20(12):2890-2898.
    [22]熊曾,胡成平,刘进康,等.双源容积灌注CT对吉非替尼治疗EGFR突变的晚期肺腺癌近期效果的评价[J].中华医学杂志,2011,91(40):2824-2827.
    [23]Ng QS, Goh V, Fichte H, et al. Lung cancer perfusion at multi-detector row CT:reproducibility of whole tumor quantitative measurements[J]. Radiology, 2006,239(2):547-553.
    [24]Bian XWJiang XF,Chen JH,et al. Increased angiogenic capabilities of endothelial cells from microvessels of malignant human gliomas[J]. Int Immunophamacol,2006,6(1):90-99
    [25]卞修武.对肿瘤血管生成研究之肿瘤微血管构筑表型异质性的思考[J].中华病理学杂志,2006,35(3):129-113
    [26]单飞,张志勇,曾蒙苏,等.进展期非小细胞肺癌的首过法CT灌注可重复性研究[J].中国肺癌杂志,2010,13(5):494-499.
    [27]Sauter AW, Merkle A, Schulze M, et al. Intraobserver and interobserver agreement of volume perfusion CT (VPCT) measurements in patients with lung lesions[J]. Eur J Radiol.2011.
    [28]张庆华,胡春洪,顾光官.肺部球性病变64层CT灌注成像后处理技术稳定性的研究[J].中国血液流变学杂志,2009,19(4):655-660.
    [29]Ng CS, Chandler AG, Wei W, et al. Reproducibility of perfusion parameters obtained from perfusion CT in lung tumors[J]. AJR Am J Roentgenol,2011, 197(1):113-121.
    [30]Li WW.Tumor angiogenesis:molecular pathology, therapeutic targeting, and imaging[J]. Acad Radiol,2000,7(10):800-811.
    [31]Hakime A, Peddi H, Hines-Peralta AU, et al. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model[J]. Radiology,2007,243(3):712-719.
    [32]朱智明,周漠玲,刘进康,等.多层螺旋CT肺灌注成像技术优化与标准化探讨[J].第三军医大学学报,2008,30(20):1893-1896.
    [33]Miles KA, Lee TY, Goh V, et al. Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol.2012 Feb 26. [Epub ahead of print]
    [1]Oxnard GR, Arcila ME, Chmielecki J, et al. New strategies in overcoming acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer[J]. Clin Cancer Res,2011,17(17):5530-5537.
    [2]Pirker R, Herth FJ, Kerr KM, et al. Consensus for EGFR mutation testing in non-small cell lung cancer:results from a European workshop[J]. J Thorac Oncol,2012,5(10):1706-1713.
    [3]Dahabreh IJ, Linardou H, Kosmidis P, et al. EGFR gene copy number as a predictive biomarker for patients receiving tyrosine kinase inhibitor treatment: a systematic review and meta-analysis in non-small-cell lung cancer[J]. Ann Oncol,2011,22(3):545-552.
    [4]Missbach-Guentner J, Hunia J, Alves F. Tumor blood vessel visualization[J]. Int J Dev Biol,2011,55(4-5):535-546.
    [5]Miles KA, Griffiths MR. Perfusion CT:a worthwhile enhancement? [J]. Br J Radiol,2003,76(904):220-231.
    [6]Hakime A, Peddi H, Hines-Peralta AU, et al. CT perfusion for determination of pharmacologically mediated blood flow changes in an animal tumor model [J]. Radiology,2007,243(3):712-719.
    [7]熊曾,刘进康,胡成平,等.非小细胞肺癌CT灌注成像诊断价值综合评估[J].中国肿瘤临床,2009,36(22):1261-1265.
    [8]Kan Z, Phongkitkarun S, Kobayashi S, et al. Functional CT for quantifying tumor perfusion in antiangio genic therapy in a rat model [J]. Radiology,2005, 237(1):151-158.
    [9]Lind JS, Meijerink MR, Dingemans AM, et al. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer:a new method of monitoring treatment? [J]. Eur Radiol,2010,20(12):2890-2898.
    [10]熊曾,胡成平,刘进康,等.双源容积灌注CT对吉非替尼治疗EGFR突变的晚期肺腺癌近期效果的评价[J].中华医学杂志,2011,91(40):2824-2827.
    [11]Tognolini A, Schor-Bardach R, Pianykh OS, et al. Body tumor CT perfusion protocols:optimization of acquisition scan parameters in a rat tumor model[J]. Radiology,2009,251(3):712-720.
    [12]Li WW. Tumor angiogenesis:molecular pathology, therapeutic targeting, and imaging[J]. Acad Radiol,2000,7(10):800-811.
    [13]Tognolini A, Schor-Bardach R, Pianykh OS, et al. Body tumor CT perfusion protocols:optimization of acquisition scan parameters in a rat tumor model[J].Radiology,2009,251(3):712-720.
    [14]Sauter AW, Merkle A, Schulze M, et al. Intraobserver and interobserver agreement of volume perfusion CT (VPCT) measurements in patients with lung lesions[J]. Eur J Radiol,2011.
    [15]Savai R, Langheinrich AC, Schermuly RT, et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer[J]. Neoplasia,2009, 11(1):48-56.
    [16]Eberhard A, Kahlert S, Goede V, et al. Heterogeneity of angiogenesis and blood vessel maturation in human tumors:implications for antiangiogenic tumor therapies[J]. Cancer Res,2000,60(5):1388-1393.
    [17]Vermeulen PB, Gasparini G, Fox SB, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours[J]. Eur J Cancer,2002,38(12):1564-1579.
    [18]Itoh J, Kawai K, Serizawa A, et al. A new approach to three-dimensional reconstructed imaging of hormone-secreting cells and their microvessel environments in rat pituitary glands by confocal laser scanning microscopy [J]. J Histochem Cytochem,2000,48(4):569-578.
    [19]Weidner N, Folkman J. Tumoral vascularity as a prognostic factor in cancer[J]. Important Adv Oncol,1996,167-190.
    [20]Cox G, Walker RA, Andi A, et al. Prognostic significance of platelet and microvessel counts in operable non-small cell lung cancer [J]. Lung Cancer, 2000,29(3):169-177.
    [21]Ushijima C, Tsukamoto S, Yamazaki K, et al. High vascularity in the peripheral region of non-small cell lung cancer tissue is associated with tumor progression[J]. Lung Cancer,2001,34(2):233-241.
    [22]Pastorino U, Andreola S, Tagliabue E, et al. Immunocytochemical markers in stage I lung cancer:relevance to prognosis[J]. J Clin Oncol,1997,15(8): 2858-2865.
    [23]Liao M, Wang H, Lin Z, et al. Vascular endothelial growth factor and other biological predictors related to the postoperative survival rate on non-small cell lung cancer[J]. Lung Cancer,2001,33(2-3):125-132.
    [24]Trivella M, Pezzella F, Pastorino U, et al. Microvessel density as a prognostic factor in non-small-cell lung carcinoma:a meta analysis of individual patient data[J]. Lancet Oncol,2007,8(6):488-499.
    [25]Yi CA, Lee KS, Kim EA, et al. Solitary pulmonary nodules:dynamic enhanced mufti-Detector Row CT study and comparison with vascular endothelial growth factor and microvessel density[J]. Radiology,2004,233(1):191-199.
    [26]Yamashita K, Matsunobe S, Takahashi R, et al. Small peripheral lung carcinoma evaluated with incremental dynamic CT:radiologic-pathologic correlation[J]. Radiology,1995,196(2):401-408.
    [27]Bai RJ, Cheng XG, Qu H, et al. Solitary pulmonary nodules:comparison of multi-slice computed tomography perfusion study with vascular endothelial growth factor and microvessel density[J]. Chin Med J (Engl),2009, 122(5):541-547.
    [28]Lee TY, Purdie TG, Stewart E. CT imaging of angiogenesis[J]. Q J Nucl Med, 2003,47(3):171-187.
    [29]Xiong Z, Liu JK, Hu CP, et al. Role of immature microvessels in assessing the relationship between CT perfusion characteristics and differentiation grade in lung cancer[J]. Arch Med Res,2010,41 (8):611-617.
    [30]Tai JH, Tessier J, Ryan AJ, et al. Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast- enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat[J]. Neoplasia,2010,12(9):697-707.
    [31]Phong KS, Kobayashi S, Kan Z, et al. Quantification of angiogenesis by functional computed tomography in a Matrigel model in rats[J]. Acad Radiol, 2004,1(5):573-582
    [32]Li ZP, Meng QF, Sun CH, et al. Tumor angiogenesis and dynamic CT in colorectal carcinoma:radiologic-pathologic correlation [J]. World J Gastroenterol,2005,11(9):1287-1291
    [33]刘进康,周漠玲,朱智明,等.多层螺旋CT灌注成像评价肺癌病理分级及组织类型的价值[J].中华结核和呼吸杂志,2008,31(4):303-304.
    [34]刘进康,熊曾,周漠玲,等.多层螺旋CT灌注成像评价非小细胞肺癌分化程度的价值及其机制[J].中华肿瘤杂志,2009,31(6):460-464.
    [35]刘进康,熊曾,胡成平等.肺癌C T灌注成像与微血管管腔化程度的相关性[J].中南大学学报(医学版),2009,35(12):1242-1247.
    [36]熊曾,刘进康,周漠玲,等.非小细胞肺癌组织中EphB4和ephrinB2的表达与CT肺灌注成像的关系[J].中华肿瘤杂志,2011,33(3):192-196.
    [37]刘进康,非小细胞肺癌微血管构筑立体表型异质性与MSCT肺灌注成像的关系:中南大学,[博士学位论文].长沙,2008
    [38]张金娥,梁长弘,赵振军,等.CT肺灌注在肺结节诊断中的应用研究[J].中华放射学杂志,2005,39(10):1041-1045.
    [39]徐健,宋伟,金征宇等.多层CT灌注成像多参数联合评估孤立性肺结节[J].中国医学科学院学报,2007,29(6):750-754.
    [40]Kiessling F, Boese J, Corvinus C, et al. Perfusion CT in patients with advanced bronchial carcinomas:a novel chance for characterization and treatment monitoring? [J] Eur Radiol,2004,14(7):1226-1233.
    [41]Li Y, Yang ZG, Chen TW, et al. Peripheral lung carcinoma:correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT[J]. Lung Cancer,2008,61(1):44-53.
    [42]Harvey C, Dooher A, Morgan J, et al. Imaging of tumour therapy responses by dynamic CT[J]. Eur J Radiol,1999,30(3):221-226.
    [43]Ng QS, Goh V, Milner J, et al. Acute tumor vascular effects following fractionated radiotherapy in human lung cancer:In vivo whole tumor assessment using volumetric perfusion computed tomography[J]. Int J Radiat Oncol Biol Phys,2007,67(2):417-424.
    [44]王建卫,吴宁,宋颖.肺癌治疗前后CT灌注参数变化在早期疗效及预后评价中的应用[J].中华肿瘤杂志,2009,31(1):54-57.
    [45]王建卫,吴宁,宋颖.CT灌注成像在早期非小细胞肺癌疗效评估及预后评价中的应用[J].中华肿瘤杂志,2010,44(1):12-16.
    [46]Wang J, Wu N, Cham MD, et al. Tumor response in patients with advanced non-small cell lung cancer:perfusion CT evaluation of chemotherapy and radiation therapy[J]. AJR Am J Roentgenol,2009,193(4):1090-1096.
    [47]Serkova NJ. Translational imaging endpoints to predict treatment response to novel targeted anticancer agents[J]. Drug Resist Updat,2011,14(4-5):224-235.
    [48]Reddy C, Chilla D, Boltax J.Lung cancer screening:a review of available data and current guidelines[J].Hosp Pract (Minneap),2011,39(4):107-112.
    [49]Meng X, Loo BW, Ma L, et al. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: a pilot study[J]. J Nucl Med,2011,52 (10):1573-1579.
    [50]Lind JS, Meijerink MR, Dingemans AM, et al. Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer:a new method of monitoring treatment? [J]. Eur Radiol,2010,20(12):2890-2898.
    [51]Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy:A new paradigm for combination therapy[J]. Nat Med,2001,7(9):987-989.
    [52]Willett CG, Boucher Y, di Tomaso E, et al. Direct evidence that the VEGF specific antibody bevacizumab has antivascular effects in human rectal cancer [J]. Nat Med,2004,10(2):145-147.
    [53]Tong RT, Boucher Y, Kozin SV, et al. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[J]. Cancer Res, 2004,64(11):3731-3736.
    [54]Batchelor TT, Sorensen AG, di Tomaso E, et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients[J]. Cancer Cell,2007,11(1):83-95.
    [55]Ansiaux R, Baudelet C, Jordan BF, et al. Mechanism of reoxygenation after antiangiogenic therapy using SU5416 and its importance for guiding combined antitumor therapy [J]. Cancer Res,2006,66(19):9698-9704.
    [56]Dings RP, Loren M, Heun H, et al. Scheduling of radiation with angiogenesis inhibitors anginex and avastin improves therapeutic outcome via vessel normalization[J]. Clin Cancer Res,2007,13(11):3395-3402.
    [57]Cerniglia GJ, Pore N, Tsai JH, et al. Epidermal Growth Factor Receptor Inhibition Modulates the Microenvironment by Vascular Normalization to Improve Chemotherapy and Radiotherapy Efficacy[J]. PLoS One,2009, 4(8):e6539.
    [58]Dickson PV, Hamner JB, Sims TL, et al. Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy [J]. Clin Cancer Res,2007,13(13):3942-3950.
    [59]Goel S, Duda DG, Xu L, et al. Normalization of the vasculature for treatment of cancer and other diseases[J]. Physiol Rev,2011,91 (3):1071-1121.
    [60]Ergun S, Tilki D, Oliveira-Ferrer L, et al. Significance of vascular stabilization for tumor growth and metastasis[J].Cancer Lett,2006,238(2):180-187.