铌(钛)酸盐类层状纳米复合材料的制备、表征及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机层状化合物由于其离子交换能力和可溶胀性,可以使不同的客体分子(包括有机、无机和有机金属化合物等)进入层空间,而层板的基本结构不会被破坏。通过插层组装方式设计层状纳米复合材料,主要是基于将客体分子的化学、光学、电学、磁学等功能性质与无机主体材料的结构、机械和热稳定性等结合,被认为是制备纳米复合材料的最有前途的方法之一。层状纳米复合材料为构筑光电纳米器件、化学或生物传感器提供了新材料体系,在分子识别和催化等领域都有广阔的应用前景。
     本文以阳离子型无机层状化合物(铌酸盐、钛酸盐、铌钛酸盐以及α-磷酸锆等)为主体,以水溶性金属卟啉衍生物、导电聚合物以及色素等为客体,制备了多种新型层状纳米复合材料,利用XRD、IR、元素分析、UV-vis等手段对制得的纳米复合材料进行结构、形貌和性质分析,并研究了这些复合材料在电催化、化学催化、发光、光催化等方面的应用。
     以半导体层状化合物K4Nb6O17、K2Ti4O9和KTiNbO5为主体材料,采用客体-客体交换法成功地将水溶性金属卟啉衍生物阳离子MtTMPyP(Mt=Mn、Fe、Co)引入层间。根据XRD结果分析,并结合金属卟啉衍生物的分子尺寸,可以推测客体分子在主体材料层间均以单层倾斜方式紧密堆积。通过简单的滴涂法,制得了插层复合材料薄膜修饰玻碳电极。循环伏安测试表明修饰电极具有良好的电化学活性,在中性缓冲溶液中能够催化氧气还原。
     以环烯烃环氧化为探针,考察了制得的系列金属卟啉衍生物插层纳米复合材料的催化性能。尽管与金属卟啉均相催化体系相比,非均相体系中底物的转化速度要慢一些,但选择性明显提高,这主要是由于主体层板提供的二维纳米反应器为底物的选择性氧化提供了理想的反应场。在九种层状复合材料中,MnTMPyP-Nb6O17和CoTMPyP-Nb6O17的催化活性最高,循环使用多次后催化活性未见降低。
     采用原位聚合的方法成功地制备了聚苯胺插层铌钛酸盐(PANI-TiNbO5)和聚吡咯插层铌酸盐(PPy-Nb6O17)纳米复合材料。基于XRD分析结果,对单体在层间的排列方式和原位聚合机理进行了推测。在HCl溶液中,PANI-TiNbO5薄膜修饰玻碳电极的循环伏安曲线呈现两对氧化还原峰,分别对应于PANI的还原态形式向半氧化半还原态盐形式的转化以及半氧化半还原态盐形式向氧化态形式的转化。在LiClO4水溶液中,PPy-Nb6O17修饰电极的循环伏安曲线呈现一对可逆的氧化还原峰,对应于[PPy+,Cl04-]/PPy电对。而在聚苯胺/α-磷酸锆复合材料的制备过程中,尽管单体进入到了层间,但苯胺聚合可能发生α-ZrP的外层空间。
     采用客体-客体交换法成功地制备了荧光染料罗丹明6G插层铌钛酸盐纳米复合材料。根据XRD结果,推测R6G在层间以单分子层方式排列,分子长轴垂直于层板。TG-DSC测试结果表明相比单一的客体分子,R6G在铌钛酸盐层间具有更高的热稳定性,这可能是由于纳米层板起到了一定的阻隔作用。荧光测试表明尽管插层复合材料中R6G的浓度很高(质量分率达到了约34.8%),复合材料薄膜依然展现出高的荧光效率。
     制备了Fe203柱撑钛酸盐纳米复合材料,考察了该复合材料对甲基橙的光催化降解性能,结果表明复合材料的光催化活性比单一的主、客体材料要高,这可能是由于插层组装方式有利于主体层板与客体分子之间的电子转移,延长了瞬态电子的寿命,还可能与主客体之间形成新的能量匹配有关。
Inorganic layered compounds can accommodate a great diversity of guest molecules (including organic, inorganic and organometallic compounds) due to their ionic exchange capacity and the expandability of their interlayer spaces while maintaining other structural features unalterable. The design of layered nanocomposites by the intercalation techniques is based on the interconnection and compatibility between the chemical, optical, electrical and magnetic properties of the guest molecule with the structural, mechanical and thermal stability of the host material, which has been considered as one of the most promising methods for the fabrication of nanocomposites. Layered nanocomposites offered novel material systems for the design of optoelectronic nanodevices, chemical sensors and biosensors, with potential applications in the fields of molecular recognition and catalysis.
     In this dissertation, the cationic inorganic layered compounds (niobate, titanate, titanoniobate and a-zirconium phosphate) were chosen as host materials. By using water-soluble metalloporphyrins, conducting polymers and pigments as guest molecules, several novel layered nanocomposites have been successfully prepared. The sturcture, morphology and properties of the obtained nanocomposites have been characterized by XRD, IR, elemental analysis, UV-vis, et al. Furthermore, the applications of these nanocomposites in the fields of electrocatalysis, chemical catalysis, luminescence and photocatalysis have been investigated.
     The water-soluble metalloporphyrins cations MtTMPyP (Mt=Mn, Fe, Co) have been successfully inserted into the interlayer spacing of layered semiconductor compounds (K4Nb6O17, K2TiO9and KTiNbO5). Based on XRD analysis and the molecular dimension of metalloporphyrins, it has been speculated that the guest molecules are closely packed with the monolayer tilted against the host nanosheets. By simple dip-coating, the layered nanocomposited modified glassy carbon electrodes were prepared. The cyclic voltammetry tests revealed that the modified electrodes exhibit good electrochemical activity and can effectively electrocatalyze oxygen reduction in neutral buffer solution.
     The catalytic performance of the as-prepared metalloporphyrins intercalated nanocomposites for the epoxidation of cyclohexene was studied. Although in heterogeneous systems the conversion rate of substrate was lower than that of homogeneous systems, the selectivity is obviously higher. The oxidation can proceed selectively by means of the unique two dimensional reaction field provided by the host layers. Among the nine layered nanocomposites, MnTMPyP-Nb6O17and CoTMPyP-Nb6O17exhibited the best catalytic performance. And both catalysts showed no appreciable decrease in activity after several reaction cycles.
     Polyaniline intercalated titanoniobate (PANI-TiNbO5) and polypyrrole intercalated niobate (PPy-Nb6O17) nanocomposite have been successfully prepared by in-situ polymerization method. Accordingly to the XRD results, the arrangement of monomers in the interlayer spacing as well as the polymerization mechanism has been proposed. In HCl solution, the cyclic voltammetry curves of PANI-TiNbO5modified electrode showed two pairs of redox peaks, corresponding to the conversion of Leucoemeraldine state to Emeraldine salt and Emeraldine salt to Pernigraniline state, respectively. In LiClO4aqueous solution, the CV curves of PANI-TiNbO5modified electrode showed one reversible redox wave, corresponding to [PPy+,ClO4-]/PPy couples. In the preparation process of polyaniline/α-zirconium phosphate composite, monomer was inserted between the nanosheets, while the polyerization occurred in the outer space.
     Rhodamine6G (R6G), a well-known fluorescent dye, has been intercalated into layered potassium titanoniobate through a guest-guest exchange method. It is postulated here that R6G forms monolayer coverage with its long molecular axis being oriented perpendicular with respect to titanoniobate nanosheets. TG-DSC analysis revealed that in comparison with pure dye, the intercalation of dye molecules in solid inorganic host material enhances thermostability of the dye. We are delight to find that R6G cations in thin film are highly fluorescent even at a high dye concentration (34.8wt%).
     Finally, Fe2O3pillared titanate nanocomposite was fabricated. The photocatalytic degradation performance of the nanocomposite toward methyl orange was studied. It was found that the photocatalytic activity of the nanocomposite was higher than the single host and guest material. The intercalation assembly structure may favor the electron transfer between the host and the guest and increase the lifetime of transient electrons. And the enhanced photocatalytic acvitiy may also be related to the new energy match formed between the host and guest.
引文
[1]Bruce D W, O'Hare D. Inorganic materials. New York:J. Wiley & sons,1992.
    [2]Gamble F R, DiSalvo F J, Klemm R A, et al. Superconductivity in layered structure organometallic crystals. Science,1970,168 (5):568-570.
    [3]张玉清,彭淑鸽.插层复合材料.北京:科学出版社,2008.
    [4]Mehrotra V, Giannelis E P, Ziolo R F, et al. Intercalation of ethylenediamine functionalized buckminsterfullerene in mica-type silicates. Chem Mater,1992,4 (1): 20-22.
    [5]Brunet E, Huelva M, Vazquez R, et al. Covalent bonding of crown ethers to γ-zirconium phosphate-new layered ion exchangers showing selective recognition. Chem Eur J,1996,2(12):1578-1584.
    [6]Brunet E, Huelva M, Rodriguez-Ubis J C. Covalent bonding of aza-18-crown-6 to y-zirconium phosphate. A new layered ion-exchanger with potential recognition capabilities. Tetrahedron Lett,1994,35 (46):8697-8700.
    [7]Alberti G, Boccali L, Dionigi C, et al. Preparation and first characterization of a layered y-zirconium phosphate derivative containing benzo 15-crown-5 groups covalently attached to inorganic layers. Supramol Chem,1996,7 (2):129-135.
    [8]Zhang B, Clearfield A. Crown ether pillared and functionalized layered zirconium phosphonates:A new strategy to synthesize novel Ion selective materials. J Am Chem Soc, 1997,119 (11):2751-2752.
    [9]Aisawa S, Takahashi S, Ogasawara W, et al. Direct intercalation of amino acids into layered double hydroxides by coprecipitation. J Solid State Chem,2001,162 (1):52-62.
    [10]Alexandre M, Beyer G, Henrist C, et al. "One-pot" preparation of polymer/clay nanocomposites starting from Na+ montmorillonite.1. Melt intercalation of ethylene-vinyl acetate copolymer. Chem Mater,2001,13(11):3830-3832.
    [11]Posudievsky O Y, Biskulova S A, Pokhodenko V D. New polyaniline-MoO3 nanocomposite as a result of direct polymer intercalation. J Mater Chem,2002,12 (5): 1446-1449.
    [12]Magalhaes Nunes L, Gouveia de Souza A, Fernandes de Farias R. Synthesis of new compounds involving layered titanates and niobates with copper(Ⅱ). J Alloy Compd,2001, 319 (1-2):94-99.
    [13]Bonnet S, Forano C, de Roy A, et al. Synthesis of hybrid organo-mineral materials: Anionic tetraphenylporphyrins in layered double hydroxides. Chem Mater,1996,8(8): 1962-1968.
    [14]Rebbah H, Borel M M, Raveau B. Intercalation of alkylammonium ions and oxide layers|TiNbO5|-. Mater Res Bull,1980,15 (3):317-321.
    [15]Tong Z W, Shichi T, Takagi K. Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B,2002,106 (51):13306-13310.
    [16]Tong Z W, Takagi S, Shimada T, et al. Photoresponsive multilayer spiral nanotubes: Intercalation of polyfluorinated cationic azobenzene surfactant into potassium niobate. J Am Chem Soc,2005,128(3):684-685.
    [17]Benavente E, Santa Ana M A, Mendizabal F, et al. Intercalation chemistry of molybdenum disulfide. Coordin Chem Rev,2002,224 (1-2):87-109.
    [18]Bissessur R, Heising J, Hirpo W. Toward pillared layered metal sulfides. Intercalation of the chalcogenide clusters Co6Qg(PR3)6 (Q=S, Se, and Te and R= Alkyl) into MoS2. Chem Mater,1996,8 (2):318-320.
    [19]Lin B Z, Zhang J F, Xu B H, et al. Layered nanocomposites based on molybdenum disulfide and hydroxy-Al, Cr and CrAl oligocations:Characterization and catalytic activity in benzene hydrogenation to cyclohexane Appl Catal A-gen,2007,331 (1):105-111.
    [20]Sasaki T, Watanabe M, Hashizume H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J Am Chem Soc,1996,118 (35):8329-8335.
    [21]Treacy M M J, Rice S B, Jacobson A J, et al. Electron microscopy study of delamination in dispersions of the perovskite-related layered phases K[Ca2Nan-3Nbn03n-1]: evidence for single-layer formation. Chem Mater,1990,2 (3):279-286.
    [22]Jacobson A J. Colloidal dispersions of compounds with layer and chain structures. Mater Sci Forum,1994,152-153:1-12.
    [23]Choy J H, Lee H C, Jung H, et al. Exfoliation and restacking route to anatase-layered titanate nanohybrid with enhanced photocatalytic activity. Chem Mater,2002,14 (6): 2486-2491.
    [24]Chen Z J, Lin B Z, Chen Y L, et al. Pillaring and photocatalytic properties of mesoporous α-Fe2O3/titanate nanocomposites via an exfoliation and restacking route. J Phys Chem Solids,2010,71 (5):841-847.
    [25]Zhou Q, Zhang C X, Liu Z H, et al. Preparation of lysine-intercalated manganese oxide nanocomposite by a delamination/reassembling process. Colloid Surface A,2007', 295:269-273.
    [26]Abe R, Shinohara K, Tanaka A, et al. Preparation of porous niobium oxide by the exfoliation of K4Nb6O17 and its photocatalytic activity. J Mater Res,1998,13 (4):861-865.
    [27]Saupe G B, Waraksa C C, Kim H-N, et al. Nanoscale tubules formed by exfoliation of potassium hexaniobate. Chem Mater,2000,12 (6):1556-1562.
    [28]Ma R Z, Bando Y, Sasaki T. Directly rolling nanosheets into nanotubes. J Phys Chem B,2004,108 (7):2115-2119.
    [29]Ma R Z, Sasaki T. Conversion of metal Oxide nanosheets into nanotubes Top Appl Phys,2010,117:135-146.
    [30]刘宗怀,乔山峰,袁佳琦,等.层层自组装技术在功能薄膜材料制备中的应用. 山西师范大学学报(自然科学版),2010,38(4):65-72.
    [31]Wang L Z, Omomo Y, Sakai N, et al. Fabrication and characterization of multilayer ultrathin films of exfoliated MnO2 nanosheets and polycations. Chem Mater,2003,15 (15): 2873-2878.
    [32]Wang, Sakai N, Ebina Y, et al. Inorganic multilayer films of manganese oxide nanosheets and aluminum polyoxocations:Fabrication, structure, and electrochemical behavior. Chem Mater,2005,17 (6):1352-1357.
    [33]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践.北京:化学工业出版社,2002.
    [34]Pomogailo A D, Kestelman V N. Metallopolymer nanocomposites, vol.81. New York: Springer Berlin Heidelberg,2005.
    [35]Kojima Y, Usuki A, Kawasumi M, et al. Mechanical properties of nylon 6-clay hybrid. J Mater Res,1993,8:1185-1189.
    [36]刘建军,于迎春,吴曲,等.高分散纳米银/蒙脱土复合材料的制备及表征.无机化学学报,2004,20(3):321-323.
    [37]Wu G, Wang L, Evans D G, et al. Layered double hydroxides containing intercalated zinc sulfide nanoparticles:Synthesis and characterization. Eur J Inorg Chem,2006,2006 (16):3185-3196.
    [38]Papp S, Dekany I. Stabilization of palladium nanoparticles by polymers and layer silicates. Colloid Polym Sci,2003,281 (8):727-737.
    [39]Wang J, Wei M, Rao G, et al. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide. J Solid State Chem,2004,177 (1):366-371.
    [40]Kuk W K, Huh Y D. Preferential intercalation of isomers of anthraquinone sulfonate ions into layered double hydroxides. J Mater Chem,1997,7 (9):1933-1936.
    [41]段雪,张法智.插层组装与功能材料.北京:化学工业出版社,2007.
    [42]Tong Z, Takagi S, Tachibana H, et al. Novel soft chemical method for optically transparent Ru(bpy)3-K4Nb6O17 thin film. J Phys Chem B,2005,109 (46):21612-21617.
    [43]Yang G, Hou W H, Feng X M, et al. Nanocomposites of polyaniline and a layered inorganic acid host:Polymerization of aniline in the layers, conformation, and electrochemical studies. Adv Funct Mater,2007,17 (3):401-412.
    [44]Jehng J M, Wachs I E. Structural chemistry and Raman spectra of niobium oxides. Chem Mater,1991,3 (1):100-107.
    [45]Kloprogge J T, Frost R L. Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites.J Solid State Chem,1999,146 (2): 506-515.
    [46]Maxwell R S, Kukkadapu R K, Amonette J E, et al.2H solid-state NMR investigation of terephthalate dynamics and orientation in mixed-anion hydrotalcite-like compounds. J Phys Chem B,1999,103 (25):5197-5203.
    [47]Yuan Q, Wei M, Evans D G, et al. Preparation and investigation of thermolysis of L-aspartic acid-intercalated layered double hydroxide.J Phys Chem B,2004,108 (33): 12381-12387.
    [48]Vieille L, Moujahid E M, Taviot-Gueho C, et al. In situ polymerization of interleaved monomers:A comparative study between hydrotalcite and hydrocalumite host structures: Keynote Lecture. J Phys Chem Solids,2004,65 (2-3):385-393.
    [49]Carlino S, Hudson M J, Husain S W, et al. The reaction of molten phenylphosphonic acid with a layered double hydroxide and its calcined oxide. Solid State Ionics,1996,84 (1-2):117-129.
    [50]Lee D, Char K. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites. Polym Degrad Stabil,2002,75 (3): 555-560.
    [51]Blumstein A. Polymerization of adsorbed monolayers. II. Thermal degradation of the inserted polymer. J Polym Sci A,1965,3 (7):2665-2672.
    [52]Yano K, Usuki A, Okada A, et al. Synthesis and properties of polyimide-clay hybrid. J Polym Sci Pol Chem,1993,31 (10):2493-2498.
    [53]Burnside S D, Giannelis E P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chem Mater,1995,7 (9):1597-1600.
    [54]Gao L, Gao Q, Wang Q, et al. Immobilization of hemoglobin at the galleries of layered niobate HCa2Nb3O10. Biomaterials,2005,26 (26):5267-5275.
    [55]Tichit D, Coq B. Catalysis by hydrotalcites and related materials. Cattech,2003,7 (6): 206-217.
    [56]Tichit D, Lutic D, Coq B, et al. The aldol condensation of acetaldehyde and heptanal on hydrotalcite-type catalysts. J Catal,2003,219 (1):167-175.
    [57]Unnikrishnan R, Narayanan S. Metal containing layered double hydroxides as efficient catalyst precursors for the selective conversion of acetone. J Mol Catal A-chem, 1999,144(1):173-179.
    [58]Roelofs J C A A, van Dillen A J, de Jong K P. Base-catalyzed condensation of citral and acetone at low temperature using modified hydrotalcite catalysts. Catal Today,2000, 60 (3-4):297-303.
    [59]Aramendia M a A, Borau V, Jimenez C, et al. Epoxidation of limonene over hydrotalcite-like compounds with hydrogen peroxide in the presence of nitriles. Appl Catal A-gen,2001,216 (1-2):257-265.
    [60]Bhattacharjee S, Dines T J, Anderson J A. Synthesis and application of layered double hydroxide-hosted catalysts for stereoselective epoxidation using molecular oxygen or air. J Catal,2004,225 (2):398-407.
    [61]Reichle W T. Catalytic reactions by thermally activated, synthetic, anionic clay minerals. J Catal,1985,94 (2):547-557.
    [62]Shimada H, Ogoshi T. Catalysis by calcined Zn2+/Al3+ layered double hydroxides in Friedel-Crafts alkylation of benzene with benzyl chloride. Bull Chem Soc Jpn,2005,78 (5): 937-939.
    [63]Liu P, Wang H, Feng Z, et al. Direct immobilization of self-assembled polyoxometalate catalyst in layered double hydroxide for heterogeneous epoxidation of olefins. J Catal,2008,256 (2):345-348.
    [64]Dixit P S, Srinivasan K. The effect of clay-support on the catalytic epoxidation activity of a manganese(Ⅲ)-Schiff base complex. Inorg Chem,1988,27 (24):4507-4509.
    [65]Barloy L, Lallier J, Battioni P. Manganese porphyrins adsorbed or intercalated in different mineral matrices-preparation and compared properties as catalysts for alkene and alkane oxidation. New J Chem,1992,16 (1-2):71-80.
    [66]Bedioui F. Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and SchifF-base complexes as models for biomimetic oxidation catalysts:An overview. Coordin Chem Rev,1995,144:39-68.
    [67]Bizaia N, de Faria E H, Ricci G P, et al. Porphyrin-Kaolinite as efficient catalyst for oxidation reactions. ACS Appl Mater Interfaces,2009,1(11):2667-2678.
    [68]Castro K A D d F, Bail A, Groszewicz P B, et al. New oxidation catalysts based on iron(III) porphyrins immobilized on Mg-Al layered double hydroxides modified with triethanolamine. Appl Catal A-gen,2010,386 (1-2):51-59.
    [69]Tong Z W, Shichi T, Takagi K. Oxidation catalysis of a manganese(Ⅲ)porphyrin intercalated in layered double hydroxide clays. Mater Lett,2003,57 (15):2258-2261.
    [70]Nakagaki S, Benedito F L, Wypych F. Anionic iron(Ⅲ) porphyrin immobilized on silanized kaolinite as catalyst for oxidation reactions. J Mol Catal A-chem,2004,217 (1-2): 121-131.
    [71]Nakagaki S, Halma M, Bail A, et al. First insight into catalytic activity of anionic iron porphyrins immobilized on exfoliated layered double hydroxides. J Colloid Interf Sci, 2005,281 (2):417-423.
    [72]Nakagaki S, Machado G S, Halma M, et al. Immobilization of iron porphyrins in tubular kaolinite obtained by an intercalation/delamination procedure. J Catal,2006,242 (1):110-117.
    [73]Wypych F, Bail A, Halma M, et al. Immobilization of iron(III) porphyrins on exfoliated Mg-Al layered double hydroxide, grafted with (3-aminopropyl)triethoxysilane. J Catal,2005,234 (2):431-437.
    [74]Wypych F, Bubniak G A, Halma M, et al. Exfoliation and immobilization of anionic iron porphyrin in layered double hydroxides. J Colloid Interf Sci,2003,264 (1):203-207.
    [75]Ferragina C, Massucci M A, Patrono P, et al. Pillar chemistry. Part 4. Palladium(II)-2,2'-bipyridyl,-1,10-phenanthroline, and-2,9-dimethyl-1,10-phenanthroline complex pillars in a-zirconium phosphate. J Chem Soc Dalton,1988, (4):851-857.
    [76]Domen K, Kudo A, Shibata M, et al. Novel photocatalysts, ion-exchanged K4Nb6O17, with a layer structure. J Chem Soc, Chem Commun,1986, (23):1706-1707.
    [77]Domen K, Kudo A, Shinozaki A, et al. Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts.J Chem Soc, Chem Commun,1986,4:356-357.
    [78]Kim Y I, Atherton S J, Brigham E S, et al. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. JPhys Chem,1993,97 (45):11802-11810.
    [79]Sato T, Masaki K, Sato K-i, et al. Photocatalytic properties of layered hydrous titanium oxide/CdS-ZnS nanocomposites incorporating CdS-ZnS into the interlayer. J Chem TechnolBiot,1996,67 (4):339-344.
    [80]Yamaguchi Y, Yui T, Takagi S, et al. Intercalation of metalloporphyrin-surfactant complex into layered niobate and the photochemical injection of electrons to niobate. Chem Lett,2001,30 (7):644-645.
    [81]Zou Z G, Ye J H, Sayama K, et al. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature,2001,414 (6864):625-627.
    [82]Xu Y M, Hu M Q, Chen Z X, et al. Mineralization of 4-chlorophenol under visible light irradiation in the presence of aluminum and zinc phthalocyaninesulfonates. Chinese J Chem,2003,21 (8):1092-1097.
    [83]Cheng M M, Song W J, Ma W H, et al. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation Appl Catal B-Environ, 2008,77 (3-4):355-363.
    [84]Wu J, Cheng Y, Lin J, et al. Fabrication and photocatalytic properties of HLaNb2O7/(Pt, Fe2O3) pillared nanomaterial. J Phys Chem C,2007,111 (9):3624-3628.
    [85]Wang L L, Wu J H, Huang M L, et al. Synthesis and photocatalytic properties of layered intercalated materials HTaWO6/(Pt, Cd0.8Zn0.2S). Scripta Mater,2004,50 (4): 465-469.
    [86]Wu J H, Uchida S, Fujishiro Y, et al. Synthesis and photocatalytic properties of HTaWO6/(Pt, TiO2) and HTaWO6/(Pt, Fe2O3) nanocomposites. Int J Inorg Mater,1999,1 (3-4):253-258.
    [87]Wu J, Uchida S, Fujishiro Y, et al. Synthesis and photocatalytic properties of HNbWO6/TiO2 and HNbWO6/Fe2O3 nanocomposites. J Photoch Photobio A,1999,128 (1-3):129-133.
    [88]Itaya K, Chang H C, Uchida I. Anion-exchanged clay (hydrotalcite-like compounds) modified electrodes. Inorg Chem,1987,26 (4):624-626.
    [89]Labuda J, Hudakova M. Hexacyanoferrate-anion exchanger-modified carbon paste electrodes. Electroanal,1997,9 (3):239-242.
    [90]Oyama N, Anson F C. Catalysis of the electroreduction of hydrogen peroxide by montmorillonite clay coatings on graphite electrodes. J Electroanal Chem Interfac Electrochem,1986,199 (2):467-470.
    [91]Zen J M, Jeng S H, Chen H J. Catalysis of the electroreduction of hydrogen peroxide by nontronite clay coatings on glassy carbon electrodes. J Electroanal Chem,1996,408 (1-2):157-163.
    [92]Hu S. Electrocatalytic reduction of molecular oxygen on a sodium montmorillonite-methyl viologen carbon paste chemically modified electrode. J Electroanal Chem,1999,463 (2):253-257.
    [93]Hu S, Xu C, Luo J, et al. Biosensor for detection of hypoxanthine based on xanthine oxidase immobilized on chemically modified carbon paste electrode. Anal Chim Acta, 2000,412 (1-2):55-61.
    [94]Han J B, Xu X Y, Rao X Y, et al. Layer-by-layer assembly of layered double hydroxide/cobalt phthalocyanine ultrathin film and its application for sensors. J Mater Chem,2011,21 (7):2126-2130.
    [95]Alberti G, Casciola M, Palombari R. Acid zirconium phosphates and phosphonates as proton conductors and their use for solid state gas sensors. Russ J Electrochem,1993,29 (12):1257-1264.
    [96]Wu L, Feng L Y, Ren J S, et al. Electrochemical detection of dopamine using porphyrin-functionalized graphene. Biosens Bioelectron,2012,34 (1):57-62.
    [97]Rong D, Kim Y, Ⅱ, Mallouk T E. Electrochemistry and photoelectrochemistry of pillared-clay-modified electrodes. Inorg Chem,1990,29 (8):1531-1535.
    [98]Hotta Y, Inukai K, Taniguchi M, et al. Electrochemical behavior of hexa-ammineruthenium(III) cations in clay-modified electrodes prepared by the Langmuir-Blodgett method. JElectroanal Chem,1997,429 (1-2):107-114.
    [99]Okamoto K, Tamura K, Takahashi M, et al. Preparation of a clay-metal complex hybrid film by the Langmuir-Blodgett method and its application as an electrode modifier. Colloid Surface A,2000,169 (1-3):241-249.
    [100]He J X, Kobayashi K, Chen M Y, et al. Electrocatalytic response of GMP on an ITO electrode modified with a hybrid film of Ni(Ⅱ)-Al(Ⅲ) layered double hydroxide and amphiphilic Ru(II) cyanide complex. Electrochem Commun,2001,3 (9):473-477.
    [101]He J X, Kobayashi K, Takahashi M, et al. Preparation of hybrid films of an anionic Ru(II) cyanide polypyridyl complex with layered double hydroxides by the Langmuir-Blodgett method and their use as electrode modifiers. Thin Solid Films,2001, 397 (1-2):255-265.
    [102]He J X, Sato H, Yang P, et al. Creation of a stereoselective solid surface by self-assembly of a chiral metal complex onto a nano-thick clay film. Electrochem Commun, 2003,5 (5):388-391.
    [103]He J X, Sato H, Yang P, et al. Preparation of a novel clay/metal complex hybrid film and its catalytic oxidation to chiral 1,1'-binaphthol. J Electroanal Chem,2003,560 (2): 169-174.
    [104]Kumar C V, Chaudhari A. Probing the donor and acceptor dye assemblies at the galleries of a-zirconium phosphate. Micropor Mesopor Mat,2000,41 (1-3):307-318.
    [105]刘兰香,黄玉安,黄润生,等.纳米镍-铁合金/膨胀石墨复合材料的制备、表征及其电磁屏蔽性能.无机化学学报,2007,23(9):1667-1670.
    [106]童国秀,袁进好,马吉,等.Fe/膨胀石墨插层复合物的简易制备与电磁特性研究.中国科学:化学,2011,41(7):1121-1126.
    [107]Soto-Oviedo M A, Araujo O A, Faez R, et al. Antistatic coating and electromagnetic shielding properties of a hybrid material based on polyaniline/organoclay nanocomposite and EPDM rubber. Synthetic Met,2006,156 (18-20):1249-1255.
    [108]Ratner M A, Shriver D F. Ion transport in solvent-free polymers. Chem Rev,1988,88 (1):109-124.
    [109]Di Noto V. Electrical spectroscopy studies of lithium and magnesium polymer electrolytes based on PEG400. JPhys Chem B,2002,106 (43):11139-11154.
    [110]Di Noto V, Vittadello M, Lavina S, et al. Mechanism of ionic conductivity in poly(ethyleneglycol 400)/(LiCl)x electrolytic complexes:Studies based on electrical spectroscopy. J Phys Chem B,2001,105 (20):4584-4595.
    [111]Wong S, Vasudevan S, Vaia R A, et al. Dynamics in a confined polymer electrolyte: A 7Li and 2H NMR study. J Am Chem Soc,1995,117 (28):7568-7569.
    [112]Moreno M, Quijada R, Santa Ana M A, et al. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte. Electrochim Acta,2011,58 (1): 112-118.
    [113]Choy J H, Park N G, Kim Y I, et al. Molecular layer-by-layer engineering of superconducting and superionic materials in the (AgI)Bi2Sr2CaCu2Oy system. J Phys Chem, 1995,99 (20):7845-7848.
    [114]Zielke R C, Pinnavaia T J. Modified clays for the adsorption of environmental toxicants; binding of chlorophenols to pillared, delaminated, and hydroxy-interlayered smectites Clay Clay Miner,1988,36 (5):403-408.
    [115]Bone J S, Evans D G, Perriam J J, et al. Synthesis of new hybrid materials by intercalation of a bifunctional aminophosphane and its tungsten pentacarbonyl complex in a-zirconium phosphate. Angew Chem Int Ed Engl,1996,35(16):1850-1852.
    [116]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and applications. Catal Today,1991,11 (2):173-301.
    [117]Khan A I, Lei L, Norquist A J, et al. Intercalation and controlled release of pharmaceutically active compounds from a layered double hydroxide. Chem Commun, 2001, (22):2342-2343.
    [118]孙辉,张慧,Evans D G,等.磁性药物-无机纳米复合材料的结构设计与表征科学通报,2004,49(24):2525-2530.
    [1]Zhou X T, Tang Q H, Ji H B. Remarkable enhancement of aerobic epoxidation reactivity for olefins catalyzed by μ-oxo-bisiron(III) porphyrins under ambient conditions. Tetrahedron Lett,2009,50 (47):6601-6605.
    [2]Zhou X T, Ji H B. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chem Eng J,2010,156 (2):411-417.
    [1]Domen K, Kudo A, Shibata M, et al. Novel photocatalysts, ion-exchanged K4Nb6O17 with a layer structure. J Chem Soc, Chem Commun,1986, (23):1706-1707.
    [2]Unal U, Matsumoto Y, Tamoto N, et al. Visible light photoelectrochemical activity of K4Nb6O17 intercalated with photoactive complexes by electrostatic self-assembly deposition. J Solid State Chem,2006,179 (1):33-40.
    [3]Tong Z W, Shichi T, Kasuga Y, et al. The synthesis of two types of layered niobate hybrid materials by the selective intercalation of ionic porphyrin. Chem Lett,2002,31 (12): 1206-1207.
    [4]Tong Z W, Shichi T, Takagi K. Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B,2002,106 (51):13306-13310.
    [5]Yamaguchi Y, Yui T, Takagi S, et al. Intercalation of metalloporphyrin-surfactant complex into layered niobate and the photochemical injection of electrons to niobate. Chem Lett,2001,30 (7):644-645.
    [6]Hambright P, Fleisher E B. Acid-base equilibriums, kinetics of copper ion incorporation, and acid-catalyzed zinc ion displacement from the water-soluble porphyrin α, β,γ, 8-tetrakis(1-methy1-4-pyridinio)porphine tetraiodide. Inorg Chem,1970,9 (7):1757-1761.
    [7]Nassau K, Shiever J W, Bernstein J L. Crystal growth and properties of mica-like potassium niobates. J Electrochem Soc,1969,116 (3):348-353.
    [8]Nakato T, Kusunoki K, Yoshizawa K, et al. Photoluminescence of tris(2,2'-bipyridine)ruthenium(Ⅱ) ions intercalated in layered niobates and titanates:Effect of interlayer structure on host-guest and guest-guest interactions. J Phys Chem,1995,99 (51):17896-17905.
    [9]Jehng J M, Wachs I E. Structural chemistry and Raman spectra of niobium oxides. Chem Mater,1991,3 (1):100-107.
    [10]Machado A M, Wypych F, Drechsel S M, et al. Study of the catalytic behavior of montmorillonite/iron(III) and Mn(Ⅲ) cationic porphyrins. J Colloid Interface Sci,2002, 254(1):158-164.
    [11]Fethi B. Zeolite-encapsulated and clay-intercalated metal porphyrin, phthalocyanine and Schiff-base complexes as models for biomimetic oxidation catalysts:An overview. Coordin Chem Rev,1995,144:39-68.
    [12]Cady S S, Pinnavaia T J. Porphyrin intercalation in mica-type silicates. Inorg Chem, 1978,17(6):1501-1507.
    [13]王海燕,韩大雄,相明辉,等.水溶性阳离子型卟啉对层状磷酸锆插层行为的研究.化学学报,2005,63(14):1361-1364.
    [14]Chen S M. The photocatalytic autoxidation of sulfur oxoanions by water-soluble porphyrin complexes. J Mol Catal A-chem,1999,138(1):1-13.
    [15]Song E, Shi C, Anson F C. Comparison of the behavior of several cobalt porphyrins as electrocatalysts for the reduction of O2 at graphite electrodes. Langmuir,1998,14 (15): 4315-4321.
    [16]Jiang L, Lu F, Li H, et al. Third-order nonlinear optical properties of an ultrathin film containing a porphyrin derivative. JPhys Chem B,2005,109 (13):6311-6315.
    [17]Tanaka H, Aramata A. Aminopyridyl cation radical method for bridging between metal complex and glassy carbon:cobalt(II) tetraphenylporphyrin bonded on glassy carbon for enhancement of CO2 electroreduction. JElectroanal Chem,1997,437 (1-2):29-35.
    [18]Lucero M, Ramirez G, Riquelme A, et al. Electrocatalytic oxidation of sulfite at polymeric iron tetra (4-aminophenyl) porphyrin-modified electrode. J Mol Catal A-chem, 2004,221 (1-2):71-76.
    [19]Armijo F, Isaacs M, Ramirez G, et al. Electrocatalytic reduction of nitrate ion on Cu and Ni poly-tetraaminophenylporphyrin-modified electrodes. J Electroanal Chem,2004, 566 (2):315-322.
    [20]Buttry D A, Anson F C. New strategies for electrocatalysis at polymer-coated electrodes. Reduction of dioxygen by cobalt porphyrins immobilized in Nation coatings on graphite electrodes. J Am Chem Soc,1984,106 (1):59-64.
    [21]吕董,周德璧,胡建文.应用于氧还原电极的新型Co-PAn-C复合催化材料.化学学报,2008,66(4):403-407.
    [22]Zhang J, Mo Y, Vukmirovic M B, et al. Platinum monolayer electrocatalysts for O2 eeduction:Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B,2004,108 (30):10955-10964.
    [23]Cheng W, Dong S, Wang E. Two-and three-dimensional Au nanoparticle/CoTMPyP self-assembled nanotructured materials:Film structure, tunable electrocatalytic activity, and plasmonic properties. J Phys Chem B,2004,108 (50):19146-19154.
    [24]Zuo G, Yuan H, Yang J, et al. Study of orientation mode of cobalt-porphyrin on the surface of gold electrode by electrocatalytic dioxygen reduction. J Mol Catal A-chem,2007, 269 (1-2):46-52.
    [25]Beck F. The redox mechanism of the chelate-catalysed oxygen cathode. J Appl Electrochem,1977,7 (3):239-245.
    [26]Yamazaki S-i, Yamada Y, Ioroi T, et al. Estimation of specific interaction between several Co porphyrins and carbon black:Its influence on the electrocatalytic O2 reduction by the porphyrins. J Electroanal Chem,2005,576 (2):253-259.
    [27]张慧东,孙迎辉,张萍,等.基于meso-四(4-N,N,N-三甲基氨基苯基)卟啉/介孔分子筛MCM-41组装形成的金属离子传感材料.科学通报,2005,50(12):22-25.
    [28]Qu J, Shen Y, Qu X, et al. Electrocatalytic reduction of oxygen at multi-walled carbon nanotubes and cobalt porphyrin modified glassy carbon electrode. Electroanal,2004,16 (17):1444-1450.
    [29]张蓉,唐丽华,范彬彬,等.分子氧在金属配合物担载磷铝分r筛修饰玻碳电极上的电催化还原反应.化学研究,2010,21(1):71-79.
    [30]Lu Y J, Lalancette R, Beer R H. Deoxygenation of polynuclear metal-oxo anions: Synthesis, structure, and reactivity of the condensed polyoxoanion [(G4H9)4N]4 (NbW5O18)2O. Inorg Chem,1996,35 (9):2524-2529.
    [31]Saruwatari K, Sato H, Idei T, et al. Photoconductive properties of organic-inorganic hybrid films of layered perovskite-type niobate. J Phys Chem B,2005,109 (25): 12410-12416.
    [32]Dussauze M, Kamitsos E I, Fargin E, et al. Structural rearrangements and second-order optical response in the space charge layer of thermally poled sodium-niobium borophosphate glasses. J Phys Chem C,2007,111 (39):14560-14566.
    [33]Chen S M, Chiu S W. The catalytic and photocatalytic autoxidation of Sx2- to SO42-by water-soluble cobalt porphyrin. JMol Catal A-chem,2001,166 (2):243-253.
    [34]Ceklovsky A, Czimerova A, Pentrak M, et al. Spectral properties of TMPyP intercalated in thin films of layered silicates. J Colloid Interface Sci,2008,324 (1-2): 240-245.
    [35]Ceklovsky A, Czimerova A, Lang K, et al. Effect of the layer charge on the interaction of porphyrin dyes in layered silicates dispersions. J Lumin,2009,129 (9):912-918.
    [36]Wang H Y, Han D X, Li N, et al. Study on the intercalation and interlayer state of poiphyrins into α-zirconium phosphate. J Incl Phenom Macro,2005,52 (3):247-252.
    [37]Anaissi F J, Engelmann F M, Araki K, et al. Porphyrin doped vanadium pentoxide xerogel as electrode material. Solid State Sci,2003,5 (4):621-628.
    [38]Forshey P A, Kuwana T. Electrochemical and spectral speciation of iron tetrakis(N-methyl-4-pyridyl)porphyrin in aqueous media. Inorg Chem,1981,20 (3): 693-700.
    [39]查全性.电极过程动力学导论.北京:科学出版社,2002.
    [1]Izawa H, Kikkawa S, Koizumi M. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti307 and K2Ti4O9. J Phys Chem,1982,86 (25):5023-5026.
    [2]Nakato T, Kusunoki K, Yoshizawa K, et al. Photoluminescence of tris(2,2'-bipyridine)ruthenium(II) ions intercalated in layered niobates and titanates:Effect of interlayer structure on host-guest and guest-guest interactions. J Phys Chem,1995,99 (51):17896-17905.
    [3]Sasaki T, Ebina Y, Watanabe M, et al. Multilayer ultrathin films of molecular titania nanosheets showing highly efficient UV-light absorption. Chem Commun,2000, (21): 2163-2164.
    [4]Akatsuka K, Ebina Y, Muramatsu M, et al. Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir, 2007,23 (12):6730-6736.
    [5]Sasaki T, Watanabe M, Hashizume H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. Pairwise association of nanosheets and dynamic reassembling process initiated from it. J Am Chem Soc,1996,118 (35):8329-8335.
    [6]徐莉,林建明,吴季怀,等.有机胺柱撑层状结构镧铌酸的制备与性能研究.化工生产与技术,2006,13(2):17-19.
    [7]Allen M R, Thibert A, Sabio E M, et al. Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A=K, H) and in nanosheets derived by chemical exfoliation. Chem Mater,2009,22 (3):1220-1228.
    [8]Chen S M, Chiu S W. The catalytic and photocatalytic autoxidation of Sx2- to SO42- by water-soluble cobalt porphyrin. J Mol Cat al A-chem,2001,166(2):243-253.
    [9]董绍俊,车光礼,谢远武.化学修饰电极.北京:科学出版社,2003.
    [1]Wadsley A D. Alkali titanoniobates:the crystal structure of KTiNbO5 and Acta Cryst,1964,17 (6):623-628.
    [2]Rebbah H, Desgardin G, Raveau B. Les oxydes ATiMO5:Echangeurs cationiques. Mater Res Bull,1979,14(9):1125-1131.
    [3]Kikkawa S, Koizumi M. Organic intercalation on layered compound KTiNbO5. Mater Res Bull,1980,15 (4):533-539.
    [4]Lambert J F, Deng Z, d'Espinose J B, et al. The intercalation process of N-alkyl amines or ammoniums within the structure of KTiNbO5. J Colloid Interf Sci,1989,132 (2): 337-351.
    [5]Rebbah H, Borel M M, Raveau B. Intercalation of alkylammonium ions and oxide layers|TiNbO5|-. Mater Res Bull,1980,15 (3):317-321.
    [6]Grandin A, Borel M M, Raveau B. Intercalation of primary diamines and amino acid in the layer structure oxide HTiNbO5. J Solid State Chem,1985,60 (3):366-375.
    [7]Nakato T, Kuroda K, Kato C. Photochemical behavior of intercalation compounds of layered niobates with methylvilologen. Catal Today,1993,16 (3-4):471-478.
    [8]Kim Y I, Atherton S J, Brigham E S, et al. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors.J Phys Chem,1993,97 (45):11802-11810.
    [9]Tong Z W, Shichi T, Oshika K, et al. A nanostructured hybrid material synthesized by the intercalation of porphyrin into layered titanoniobate. Chem Lett,2002,31 (9):876-877.
    [10]Tong Z W, Shichi T, Takagi K. Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B,2002,106(51):13306-13310.
    [11]徐莉,林建明,吴季怀,等.有机胺柱撑层状结构镧铌酸的制备与性能研究.化工生产与技术,2006,13(2):17-19.
    [12]Nakato T, Kusunoki K, Yoshizawa K, et al. Photoluminescence of tris(2,2'-bipyridine)ruthenium(Ⅱ) ions intercalated in layered niobates and titanates:Effect of interlayer structure on host-guest and guest-guest interactions. J Phys Chem,1995,99 (51):17896-17905.
    [13]Ceklovsky A, Czimerova A, Pentrak M, et al. Spectral properties of TMPyP intercalated in thin films of layered silicates. J Colloid Interface Sci,2008,324 (1-2): 240-245.
    [14]Chen S M, Chiu S W. The catalytic and photocatalytic autoxidation of Sx2- to SO42-by water-soluble cobalt porphyrin. J Mol Catal A-chem,2001,166(2):243-253.
    [1]Lane B S, Burgess K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem Rev,2003,103 (7):2457-2474.
    [2]Groves J T, Kruper W J, Nemo T E, et al. Hydroxylation and expoxidation reactions catalyzed by synthetic metalloporphyrinates. Models related to the active oxygen species of cytochrome P-450. J Mol Catal,1980,7(2):169-177.
    [3]Zakavi S, Ebrahimi L. Substitution effects on the catalytic activity of Mn(III)-porphyrins in epoxidation of alkenes with iodosylbenzene:A comparison between the electron-rich and electron-deficient porphyrins. Polyhedron,2011,30 (10):1732-1738.
    [4]Paula R D, Simoes M M Q, Neves M G P M S, et al. Homogeneous olefin epoxidation catalysed by an imidazolium-based manganese porphyrin. Catal Commun,2008,10 (1): 57-60.
    [5]郭志武,靳海波,佟泽民.环己酮、环己醇制备技术进展.化工进展,2006,25(8):852-859.
    [6]Nam W, Kim I, Kim Y, et al. Biomimetic alkane hydroxylation by cobalt(Ⅲ) porphyrin complex and-chloroperbenzoic acid. Chem Commun,2001, (14):1262-1263.
    [7]Li X F, Liu J Y, Guo Z X, et al. Water-soluble metalloporphyrins as mimics of heme-containing enzymes. Chinese Chem Lett,2001,12(11):979-982.
    [8]Baciocchi E, Gerini M F, Lapi A. Synthesis of sulfoxides by the hydrogen peroxide induced oxidation of sulfides catalyzed by iron tetrakis(pentafluorophenyl)porphyrin: Scope and chemoselectivity. J Org Chem,2004,69 (10):3586-3589.
    [9]Keseru G M, Balogh G T, Karancsi T. Metalloporphyrin catalyzed oxidation of n-hydroxyguanidines:a biomimetic model for the H2O2-dependent activity of nitric oxide synthase. Bioorg Med Chem Lett,2000,10 (15):1775-1777.
    [10]Bartoli J F, Battioni P, De Foor W R, et al. Synthesis and remarkable properties of iron β-polynitroporphyrins as catalysts for monooxygenation reactions. J Chem Soc, Chem Commun,1994, (1):23-24.
    [11]Battioni P, Renaud J P, Bartoli J F, et al. Monooxygenase-like oxidation of hydrocarbons by hydrogen peroxide catalyzed by manganese porphyrins and imidazole: selection of the best catalytic system and nature of the active oxygen species. J Am Chem Soc,1988,110 (25):8462-8470.
    [12]Dolphin D, Traylor T G, Xie L Y. Polyhaloporphyrins:Unusual ligands for metals and metal-catalyzed oxidations. Accounts Chem Res,1997,30 (6):251-259.
    [13]Nakagaki S, Benedito F L, Wypych F. Anionic iron(III) porphyrin immobilized on silanized kaolinite as catalyst for oxidation reactions. JMol Catal A-chem,2004,217 (1-2): 121-131.
    [14]Halma M, Castro K, Prevot V, et al. Immobilization of anionic iron(Ⅲ) porphyrins into ordered macroporous layered double hydroxides and investigation of catalytic activity in oxidation reactions. J Mol Catal A-chem,2009,310 (1-2):42-50.
    [15]任红霞,卢小泉,王云普.高分子键联金属卟啉的合成及催化性能.应用化学,2005,22(3):259-263.
    [16]Yu X Q, Huang J S, Yu W Y, et al. Polymer-supported Ruthenium porphyrins: Versatile and robust epoxidation catalysts with unusual selectivity. J Am Chem Soc,2000, 122 (22):5337-5342.
    [17]Du C P, Li Z K, Wen X M, et al. Highly diastereoselective epoxidation of cholest-5-ene derivatives catalyzed by polymer-supported manganese(Ⅲ) porphyrins. J Mol Catal A-chem,2004,216 (1):7-12.
    [18]Zhou X T, Ji H B, Xu J C, et al. Enzymatic-like mediated olefins epoxidation by molecular oxygen under mild conditions. Tetrahedron Lett,2007,48 (15):2691-2695.
    [19]Guo C C, Chu M F, Liu Q, et al. Effective catalysis of simple metalloporphyrins for cyclohexane oxidation with air in the absence of additives and solvents. Appl Catal A-gen, 2003,246 (2):303-309.
    [20]Nam W, Kim H J, Kim S H, et al. Metal complex catalyzed epoxidation of olefins by dioxygen with co-oxidation of aldehyde. Inorg Chem,1996,35:1045-1049.
    [21]Ravikumar K S, Barbier F, Begue J-P, et al. Manganese (Ⅲ) acetate dihydrate catalyzed aerobic epoxidation of unfunctionalized olefins in fluorous solvents. Tetrahedron, 1998,54 (26):7457-7464.
    [22]Kaneda K, Haruna S, Imanaka T, et al. A convenient synthesis of epoxides from olefins using molecular oxygen in the absence of metal catalysts. Tetrahedron Lett,1992, 33 (45):6827-6830.
    [23]张轩.蒙脱土负载金属卟啉催化剂的制备、表征及催化性能的研究.广州:华南理工大学,2010.
    [1]Kojima Y, Usuki A, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with E-caprolactam. J Polym Sci Pol Chem,1993,31 (4): 983-986.
    [2]Hasegawa N, Kawasumi M, Kato M, et al. Preparation and mechanical properties of polypropylene-clay hybrids using a maleic anhydride-modified polypropylene oligomer. J Appl Polym Sci,1998,67 (1):87-92.
    [3]Lan T, Kaviratna P D, Pinnavaia T J. Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chem Mater,1995,7 (11):2144-2150.
    [4]Yang Y, Zhu Z-k, Yin J, et al. Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer,1999,40 (15):4407-4414.
    [5]Tsai T Y, Li C H, Chang C H, et al. Preparation of exfoliated polyester/clay nanocomposites. Adv Mater,2005,17 (14):1769-1777.
    [6]Misra A, Raney J R, De Nardo L, et al. Synthesis and characterization of carbon nanotube-polymer multilayer structures. ACS Nano,2011,5 (10):7713-7721.
    [7]Phadtare S, Kumar A, Vinod V P, et al. Direct assembly of gold nanoparticle "'shells" on polyurethane microsphere "cores" and their application as enzyme immobilization templates. Chem Mater,2003,15 (10):1944-1949.
    [8]Rovers S A, Dietz C H J T, v. d. Poel L A M, et al. Influence of distribution on the heating of superparamagnetic iron oxide nanoparticles in poly(methyl methacrylate) in an alternating magnetic field. J Phys Chem C,2010,114 (18):8144-8149.
    [9]Bissessur R, Liu P K Y. Direct insertion of polypyrrole into molybdenum disulfide. Solid State Ionics,2006,177 (1-2):191-196.
    [10]Bissessur R, Liu P K Y, Scully S F. Intercalation of polypyrrole into graphite oxide. Synth Met,2006,156 (16-17):1023-1027.
    [11]Bissessur R, Liu P K Y, White W, et al. Encapsulation of polyanilines into graphite oxide. Langmuir,2006,22 (4):1729-1734.
    [12]Boukerma K, Piquemal J Y, Chehimi M M, et al. Synthesis and interfacial properties of montmorillonite/polypyrrole nanocomposites. Polymer,2006,47 (2):569-576.
    [13]Jia W, Segal E, Kornemandel D, et al. Polyaniline-DBSA/organophilic clay nanocomposites:Synthesis and characterization. Synthetic Met,2002,128 (1):115-120.
    [14]Moujahid E M, Dubois M, Besse J P, et al. In situ polymerization of aniline sulfonic acid derivatives into LDH interlamellar space probed by ESR and electrochemical studies. Chem Mater,2005,17 (2):373-382.
    [15]Inui Y, Yui T, Itoh T, et al. Reversible redox processes of poly(anilines) in layered semiconductor niobate films under alternate UV-Vis light illumination. J Phys Chem B, 2007,111 (42):12162-12169.
    [16]Posudievsky O Y, Biskulova S A, Pokhodenko V D. New polyaniline-MoO3 nanocomposite as a result of direct polymer intercalation. J Mater Chem,2002,12 (5): 1446-1449.
    [17]Wu C G, Degroot D C, Marcy H O, et al. Reaction of aniline with FeOCl-formation and ordering of conducting polyaniline in a crystalline layered host. J Am Chem Soc,1995, 117 (36):9229-9242.
    [18]Wu C G, DeGroot D C, Marcy H O, et al. Redox intercalative polymerization of aniline in V2O5 xerogel. The postintercalative intralamellar polymer growth in polyaniline/metal oxide nanocomposites is facilitated by molecular oxygen. Chem Mater, 1996,8(8):1992-2004.
    [19]Pouget J P, Jozefowicz M E, Epstein A J, et al. X-ray structure of polyaniline. Macromolecules,1991,24 (3):779-789.
    [20]Yoshimoto S, Ohashi F, Kameyama T. Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci Pol Phys,2005,43 (19):2705-2714.
    [21]Prasad G K, Takei T, Yonesaki Y, et al. Hybrid nanocomposite based on NbWO6 nanosheets and polyaniline. Mater Lett,2006,60 (29-30):3727-3730.
    [22]Lee D, Char K. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite nanocomposites [J]. Polym Degrad Stabil,2002,75 (3): 555-560.
    [23]Prasad K R, Munichandraiah N. Electrocatalytic efficiency of polyaniline by cyclic voltammetry and electrochemical impedance spectroscopy studies. Synth. Met.,2002,126 (1):61-68.
    [24]Tian S J, Baba A, Liu J Y, et al. Electroactivity of polyaniline multilayer films in neutral solution and their electrocatalyzed oxidation of beta-nicotinamidc adenine dinucleotide. Adv Funct Mater,2003,13 (6):473-479.
    [25]Tian S J, Liu J Y, Zhu T, et al. Polyaniline/gold nanoparticle multilayer films: Assembly, properties, and biological applications. Chem Mater,2004,16 (21):4103-4108.
    [26]Liu J Y, Tian S J, Knoll W. In neutral solution and their application for stable low-potential detection of reduced beta-nicotinamide adenine dinucleotide. Langmuir, 2005,21 (12):5596-5599.
    [27]Clearfield A, Stynes J A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. J Inorg Nucl Chem,1964,26 (1):117-129.
    [28]Izawa H, Kikkawa S, Koizumi M. Formation and properties of n-alkylammonium complexes with layered tri-and tetra-titanates. Polyhedron,1983,2 (8):741-744.
    [29]De S, De A, Das A, et al. Transport and dielectric properties of a-zirconium phosphate-polyaniline composite. Mater Chem Phys,2005,91 (2-3):477-483.
    [30]Kang E T, Neoh K G, Tan K L. Polyaniline:A polymer with many interesting intrinsic redox states. Prog Polym Sci,1998,23 (2):277-324.
    [31]Abd-Elwahed A, Holze R. Ion size and size memory effects with electropolymerized polyaniline. Synth Met,2002,131 (1-3):61-70.
    [32]Huang W S, Humphrey B D, MacDiarmid A G. Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. JChem Soc, Faraday Trans 1,1986,82 (8):2385-2400.
    [33]Mravcakova M, Omastova M, Olejnikova K, et al. The preparation and properties of sodium and organomodified-montmorillonite/polypyrrole composites:A comparative study. Synth Met,2007,157 (8-9):347-357.
    [34]Yang G, Hou W H, Feng X M, et al. Nanocomposites of polyaniline and a layered inorganic acid host:Polymerization of aniline in the layers, conformation, and electrochemical studies. Adv Funct Mater,2007,17(3):401-412.
    [35]Liu J, Wan M. Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method. J Mater Chem,2001,11 (2):404-407.
    [36]Wang T M, Liu W M, Tian J, et al. Structure characterization and conductive performance of polypyrrol-molybdenum disulfide intercalation materials. Polym Compos, 2004,25(1):111-117.
    [37]Jehng J M, Wachs I E. Structral chemistry and Raman-spectra of niobium oxides. Chem Mater,1991,3 (1):100-107.
    [38]Malinauskas A. Chemical deposition of conducting polymers. Polymer,2001,42 (9): 3957-3972.
    [39]Singh R N, Malviya M, Anindita, et al. Polypyrrole and La1-xSrxMnO3 (0≤x≤0.4) composite electrodes for electroreduction of oxygen in alkaline medium. Electrochim Acta, 2007,52 (12):4264-4271.
    [40]Ding K Q, Cheng F M. Cyclic voltammetrically prepared MnO2-PPy composite material and its electrocatalysis towards oxygen reduction reaction (ORR). Synth Met, 2009,159(19-20):2122-2127.
    [1]Ganesan V, Ramaraj R. Spectral properties of pro flavin in zeolite-L and zeolite-Y. J Lumin,2001,92(3):167-173.
    [2]Carrado K A, Forman J E, Botto R E, et al. Incorporation of phthalocyanines by cationic and anionic clays via ion exchange and direct synthesis. Chem Mater,1993,5 (4): 472-478.
    [3]Schulz-Ekloff G, Wohrle D, van Duffel B, et al. Chromophores in porous silicas and minerals:preparation and optical properties. Micropor Mesopor Mat,2002,51 (2):91-138.
    [4]Jian K, Xianyu H, Eakin J, et al. Orientationally ordered and patterned discotic films and carbon films from liquid crystal precursors. Carbon,2005,43 (2):407-415.
    [5]Wang W L, Zhai J, Jiang L, et al. Novel photoactive self-assembled rigid monolayer of a perylene derivative:Fabrication and characterization. Colloid Surface A,2005,257-258 (5):489-495.
    [6]Ghanadzadeh A, Zakerhamidi M S, Tajalli H. Electric linear dichroism study of some Sudan dyes using electro-optic and spectroscopic methods. J Mol Liq,2004,109 (3): 143-148.
    [7]Gilani A G, Sariri R, Bahrpaima K. Aggregate formation of Rhodamine 6G in anisotropic solvents. Spectrochim Acta A,2001,57 (1):155-161.
    [8]Martinez V M, Arbeloa F L, Prieto J B, et al. Orientation of adsorbed dyes in the interlayer space of clays.1. Anisotropy of rhodamine 6G in Laponite films by vis-absorption with polarized light. Chem Mater,2005,17 (16):4134-4141.
    [9]Shinozaki R, Nakato T. Humidity-dependent reversible aggregation of rhodamine 6G dye immobilized within layered niobate K4Nb6O17. Langmuir,2004,20 (18):7583-7588.
    [10]Grandi S, Tomasi C, Mustarelli P, et al. Characterisation of a new sol-gel precursor for a SiO2-rhodamine 6G hybrid class Ⅱ material. J Sol-gel Sci Techn,2007,41 (1):57-63.
    [11]Malfatti L, Kidchob T, Aiello D, et al. Aggregation States of Rhodamine 6G in Mesostructured Silica Films. J Phys Chem C,2008,112 (42):16225-16230.
    [12]Martinez V M, Arbeloa F U, Prieto J B, et al. Characterization of supported solid thin films of laponite clay. Intercalation of rhodamine 6G laser dye. Langmuir,2004,20 (14): 5709-5717.
    [13]Iyi N, Sasai R, Fujita T, et al. Orientation and aggregation of cationic laser dyes in a fluoromica:polarized spectrometry studies. Appl Clay Sci,2002,22 (3):125-136.
    [14]Fujita T, Iyi N, Kosugi T, et al. Intercalation characteristics of rhodamine 6G in fluor-taeniolite:Orientation in the gallery. Clay Clay Miner,1997,45 (1):77-84.
    [15]Carbonaro C M, Anedda A, Grandi S, et al. Hybrid materials for solid-state dye laser applications. J Phys Chem B,2006,110 (26):12932-12937.
    [16]Yao Y F, Zhang M S, Yang Y S, et al. A transparent thin film with hexagonal mesostructure containing rhodamine 6G. Chinese Chem Lett,2002,13 (5):464-467.
    [17]Ara K, Tagaya H, Ogata T, et al. Electrochemical intercalation of organic molecules into layered oxides, MoO3. Mater Res Bull,1996,31 (3):283-294.
    [18]Matsuo Y, Yamada N, Fukutsuka T, et al. Dispersion of organic dyes in n-hexadecylamine-intercalated vanadium xerogel thin films. Mol Cryst Liq Cryst,2006, 452:137-158.
    [19]Hamad S, Sanchez-Valencia J R, Barranco A, et al. Molecular dynamics simulation of the effect of pH on the adsorption of rhodamine laser dyes on TiO2 hydroxylated surfaces. Mol Simulat,2009,35 (12-13):1140-1151.
    [20]Perez-Bueno J J, Vasquez-Garcia S R, Garcia-Gonzalez L, et al. Optical processes in PMMA, SiO2, and hybrid organic-inorganic sol-gel films colored with rhodamine 6GDN. J Phys Chem B,2002,106 (7):1550-1556.
    [21]Pantelie N, Seliskar C J. Dynamics of rhodamine 6G sorption into a porous tri-block copolymer thin film. J Phys Chem C,2007,111 (50):18595-18604.
    [22]Grauer Z, Avnir D, Yariv S. Adsorption characteristics of rhodamine 6G on montmorillonite and laponite, elucidated from electronic absorption and emission spectra. Can J Chem,1984,62(10):1889-1894.
    [23]Fujii T, Nishikiori H, Tamura T. Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol-gel method. Chem Phys Lett,1995,233 (4): 424-429.
    [24]del Monte F, Mackenzie J D, Levy D. Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels. Langmuir,2000,16 (19):7377-7382.
    [25]del Monte F, Levy D. Formation of fluorescent rhodamine B J-dimers in sol-gel glasses induced by the adsorption geometry on the silica surface. J Phys Chem B,1998, 102 (41):8036-8041.
    [26]Tani T, Namikawa H, Arai K, et al. Photochemical hole-burning study of 1,4-dihydroxyanthraquinone doped in amorphous silica prepared by alcoholate method. J Appl Phys,1985,58 (9):3559-3565.
    [27]Yamanaka S, Doi T, Sako S, et al. High surface area solids obtained by intercalation of iron oxide pillars in montmorillonite. Mater Res Bull,1984,19 (2):161-168.
    [28]Zhang H, Yang W M, Fang L, et al. Synthesis and characterization of a new Fe2O3 pillared triple-layered perovskite KSr2Nb3O10.J Wuhan University of Tech- Mater Sci Ed, 2003,18 (4):35-37.
    [29]Jiang J Z, Lin R, Lin W, et al. Gas-sensitive properties and structure of nanostructured (α-Fe203)x-(SnO2)1-x materials prepared by machanical alloying. J Phys D:Appl Phys, 1997,30(10):1459-1467.
    [30]Dengxin L, Guolong G, Fanling M, et al. Preparation of nano-iron oxide red pigment powders by use of cyanided tailings. J Hazard Mater,2008,155 (1-2):369-377.
    [31]Chen J, Xu L, Li W, et al. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv Mater,2005,17 (5):582-586.
    [32]Cesar I, Kay A, Gonzalez Martinez J A, et al. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:nanostructure-directing effect of Si-doping. J Am Chem Soc,2006,128 (14):4582-4583.
    [33]Kim T W, Ha H W, Paek M J, et al. Mesoporous iron oxide-layered titanate nanohybrids:soft-chemical synthesis, characterization, and photocatalyst application. J Phys Chem C,2008,112 (38):14853-14862.