基于Keggin多金属氧酸盐和仲钨酸盐-B的桥连化合物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用多金属氧酸盐为基本建筑单元,运用分子设计和分子工程思想,通过金属与含氮螯合或线型配体形成的配合物桥连多金属氧酸盐或通过金属直接桥连多金属氧酸盐,构筑了结构可塑、性能优异的新型化合物。研究这些化合物的合成条件及规律,探讨了不同金属阳离子、不同类型的有机配体等对整个结构的影响,并推测新结构的形成、以及新物质结构和性能间的关系。
     利用水热技术,通过分子间自组装合成了7种新型的以多金属氧酸盐为建筑单元的过渡金属配合物桥连的杂化化合物;利用常规水溶液合成方法,得到了6种新型的金属阳离子桥连的化合物。通过元素分析、IR、XRPD、TG和X-射线单晶衍射对晶体结构进行了表征,对一些化合物的磁学特性、电化学和荧光性质进行了初步研究。
     1.以[AlW_(12)O_(40)]~(5-)多阴离子簇为基本建筑单元,通过过渡金属配合物的修饰或连接,构筑了4个新颖的过渡金属配合物桥连的杂化化合物: {Ag_3(2,2'-bipy)_2(4,4'-bipy)_2}{Ag(2,2'-bipy)_2}{Ag(2,2'-bipy)}[AlW_(12)O_(40)]·H_2O (1) [Ag(phen)_2]_3[Ag(phen)_3][AlW_(12)O_(40)]·H_5O_2 (2) {Co(2,2'-bipy)_3}_3{Co(H_2O)(2,2'-bipy)_2[AlW_(12)O_(40)]}2·H_2O (3) (H_2bpe){Cu(bpe)}{{Cu(bpe)}_2[AlW_(12)O_(40)]}·3H_2O (4)
     在水热条件下,我们得到了在常规水溶液中难以合成的{AlW_(12)}这一很少见报道的物种,并可多次重复。这一成果为{AlW_(12)}的合成开辟了一条简单而有效的途径。在探索过程中,我们发现不同的过渡金属,不同几何构型的有机配体,对所得化合物的结构影响巨大。化合物1是拥有银帽的Keggin簇结构,五个银原子具有四种类型的配位几何构型,这种现象在多酸化学中是不常见的。在化合物2中,由三聚银簇扩展形成的三维超分子在多酸体系中也是少有的。Hill等人的最近研究结果表明,将Ag~+和多酸结合得到的物种比多酸母体的催化性能更好。因此化合物1和化合物2的成功制备可望在催化领域有重要应用。化合物3的结构特征是三个水分子在邻近的单支撑的{Co(H_2O)(2,2'-bipy)_2[AlW_(12)O_(40)]}3-阴离子间线型排列,通过弱的氢键的相互作用形成三维超分子网络。化合物4的结构特征是形成了含有矩形遂道的三维超分子网络。
     2.将混合联吡啶有机配体引入到多钨酸盐中,我们得到了三种新型的过渡金属铜配合物桥连的杂化化合物: {Cu_4~IICl(2,2'-bipy)_4(4,4'-bipy)_3(4,4'-Hbipy)_2[PMo_(12)O_(40)]}[PMo_(12)O_(40)]2·2H_2O (5) {Cu_2~I(2,2'-bipy)_2(4,4'-bipy)}{Cu_(1.5)~I(2,2'-bipy)(4,4'-bipy)}_2[BW_(12)O_(40)] (6) [Cu_2~I(2,2'-bipy)_2(4,4'-bipy)][Cu_(1.5)~I(2,2'-bipy)(4,4'-bipy)]_2[H_3W_(12)O_(40)] (7)
     因为混合配体能够在反应中形成不同的过渡金属配合物片段,这些配合物片段与多酸单元的键连能力不同,有利于在不同的方向与多酸表面的氧原子配位形成结构独特的化合物。同时也再次证明了水热合成方法是合成新奇结构材料的有效途径。
     在化合物5中,通过Cu–Cl键形成了双核铜簇,这种情况在多酸体系中首次被发现,而且化合物5展示了一个独特的多酸作为悬垂体的二维结构,这样的化合物可以展示有效的具有重要应用价值的光致电子转移特性。化合物6拥有一维遂道的三维网络结构。值得一提的是化合物7,根据文献调研,化合物7是首例报道的以同多钨酸盐[H_2W_(12)O_(40)]6-为建筑单元和含有混合配体的过渡金属配合物形成的一维链状结构的化合物。
     3.以同多钨酸盐为基本建筑单元,利用碱金属、碱土金属、不同的过渡金属、稀土金属,通过常规水溶液的合成方法,得到了6种基于同多钨酸盐的修饰或扩展结构的新型化合物。考察了产物的形成条件,配位能力,特别是成功实现了[W_(10)O_(32)]~(4+)→[H_2W_(12)O_(42)]~(10-)转化,证实了Pope以前的设想,为同多钨酸盐的某些转化提供了有价值的证据。另外化合物12、13的成功合成为基于仲钨酸盐化合物的合成又提供了一条新的合成路线。[Na_8(H_2O)_(28))][Mn(H_2O)_2(H_2W_(12)O_(42))]·4H_2O (8) [Zn_5(H_2O)_(20)(H_2W_(12)O_(42))]·16H_2O (9) K[Na_5(H_2O)_6][Sr_2(H_2O)_6(H_2W_(12)O_(42))]·18H_2O (10) (NH_4)_3[Na_5(H_2O)_(17)Cl]{[Na(H_2O)_4]_2[CeW_(10)O_(36)]}·6H_2O (11) (H_3O)_3[{K(H_2O)}_2{Na_2(H_2O)_8}_2(Na_(0.5)H_2O)_2(H_2W_(12)O_(42))]·6H_2O (12) (H_3O)_2[{K(H_2O)_4}_2{Na_3(H_2O)_9}_2(H_2W_(12)O_(42))]·2H_2O (13)
     化合物8是由一维的[Mn(H_2O)_2(H_2W_(12)O_(42)]_n~(8-)链和钠链[Na_8(H_2O)_(28)]_n~(8+)相互键连形成的二维层状结构。化合物9是由仲钨酸盐阴离子经[Zn_4(H_2O)_(14)]~(8+)单元的连接形成的含有菱形遂道的二维层结构。在化合物10中,仲钨酸盐扮演着六齿配体和六个Sr离子通过钾和钠离子强烈的相互作用,产生了包含两种类型遂道的三维网络结构。化合物11是首例报道的以[Ce(W_5O_(18))_2]~(9-)为建筑单元构筑的扩展结构的化合物。该化合物首先由夹心型的[CeW_(10)O_(36)]~(9–)簇连接双核[Na_2(H_2O)_8]~(2+)单元形成一条直链,然后又通过新型的五核[Na_5(H_2O)_(17)Cl]~(4+)间氢键的强烈相互作用而形成的二维超分子网络结构。化合物12和化合物13是在不同的反应温度条件下,从十钨酸盐的醋酸钠缓冲溶液中分离出来的仲钨酸盐化合物,它们展示了由不同连接方式的钠和钾作为抗衡阳离子的三维结构。
In this paper, the aim of this thesis is the synthesis of new framework compounds on the basis of polyoxometalates. The study on synthetic conditions and rules for these new compounds by utilizing metal ions and its organic chelating or linetype N-donor ligands complexes, and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Seven new transation metal coordination hybrid compounds and six new metal cations bridging compounds have been synthesized on the basis of hydrothermal technique /or regular synthesis methods and structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffractions. The thermal stabilities, magnetic properties, Luminescence properties and electrochemical activities of these compounds have been studied.
     1. Four novel transation metal coordination hybrid compounds have been synthesized through the decoration or connection of transition metal ions based on the [AlW_(12)O_(40)]~(5-) polyanions. {Ag_3(2,2'-bipy)_2(4,4'-bipy)_2}{Ag(2,2'-bipy)_2}{Ag(2,2'-bipy)}[AlW_(12)O_(40)]·H_2O (1) [Ag(phen)_2]_3[Ag(phen)_3][AlW_(12)O_(40)]·H_5O_2 (2) {Co(2,2'-bipy)_3}_3{Co(H_2O)(2,2'-bipy)_2[AlW_(12)O_(40)]}2·H_2O (3) (H_2bpe){Cu(bpe)}{{Cu(bpe)}_2[AlW_(12)O_(40)]}·3H_2O (4)
     Under the hydrothermal condition, We have obtainded the infrequent {AlW12} species which is difficult to be obtained using the bench method. The results open up a door for the sample and availability synthesis method of the {AlW12} species.
     In research process, we found that the different transition metal ions and ligands with different configurations would impact the structure of the product as synthesised. The structure of compound 1 possess of silver-capped character. Five crystallographically independent Ag ions have four types of coordination geometry, this is infrequent in polyoxometalates chemistry. The trimeric {[Ag(phen)_2]_3}~(3+) cluster in compound 2 are rarely to extend into a three-dimensional supramolecular network. Recently, Hill’s study result shows that the catalysis activity of the extend polyoxometalates decorated and connected by Ag+ ions is better than their matrix polyoxometalates. The successful synthesized of compounds 1 and 2 have shown that they will be significantly useful in catalysis. The structure feature of compound 3 is that three water molecules linearly arrange between the adjacent monosupporting {Co(H_2O)(2,2'-bipy)_2[AlW_(12)O_(40)]}~(3-) anions, leading to form the resulting three-dimensional supramolecular network by weak interactions. The structure feature of compound 4 is that a 3-D supramolecular network featuring 1-D rectangular channels formed.
     2. Introducing the mixed bpy ligands into polyoxotungstates, we have obtained three kinds of novel transation metal copper coordination hybrids compounds: {Cu_4~IICl(2,2'-bipy)_4(4,4'-bipy)_3(4,4'-Hbipy)_2[PMo_(12)O_(40)]}[PMo_(12)O_(40)]2·2H_2O (5) {Cu_2~I(2,2'-bipy)_2(4,4'-bipy)}{Cu_(1.5)~I(2,2'-bipy)(4,4'-bipy)}_2[BW_(12)O_(40)] (6) [Cu_2~I(2,2'-bipy)_2(4,4'-bipy)][Cu_(1.5)~I(2,2'-bipy)(4,4'-bipy)]_2[H_3W_(12)O_(40)] (7)
     Because mixed organic ligands can form the different transition metal subunit, which have different coordinate ability for different polyoxometals unit, which will result in the novel structure with different coordination enviroment between polyoxometals and transition metal complexes, and demonstrating that the hydrothermal method is the effective for the construction of novel structures.
     In compound 5, the dinuclear copper unit is formed by means of a Cu–Cl bond. This case is first observed in the POM system and shows a unique 2D architecture with dangling polyoxoanion clusters, such compounds may exhibit efficient photoinduced electron transfer. compound 6 is that the complex containing mixed organoamine ligands exhibits an unusual three-dimensional network. It is noteworthy the compound 2 represents the first 1D structure formed by ispolyoxotungstate building blocks [H_2W_(12)O_(40)]~(6–) and transition metal complex frameworks with mixed ligands.
     3. Six new inorganic compounds with extend structure have been synthesized on the basis of the various metals in the presence of ispolyoxotungstates. The structural transformation [W_(10)O_(32)]~(4-)→[H_2W_(12)O_(42)]~(10-) confirmed the previous prediction of Pope and offered a route for the preparation of paratungstate-based compounds. [Na_8(H_2O)_(28))][Mn(H_2O)_2(H_2W_(12)O_(42))]·4H_2O (8) [Zn_5(H_2O)_(20)(H_2W_(12)O_(42))]·16H_2O (9) K[Na_5(H_2O)_6][Sr_2(H_2O)_6(H_2W_(12)O_(42))]·18H_2O (10) (NH_4)_3[Na_5(H_2O)_(17)Cl]{[Na(H_2O)_4]_2[CeW_(10)O_(36)]}·6H_2O (11) (H_3O)_3[{K(H_2O)}_2{Na_2(H_2O)_8}_2(Na_(0.5)H_2O)_2(H_2W_(12)O_(42))]·6H_2O (12) (H_3O)_2[{K(H_2O)_4}_2{Na_3(H_2O)_9}_2(H_2W_(12)O_(42))]·2H_2O (13)
     The 2D layered structure of the compound 8 is formed by the interconnection of 1D [Mn(H_2O)_2(H_2W_(12)O_(42))]_n~(8-) and [Na_8(H_2O)_(28)]_n~(8+)chains. In the compound 9, theparatungstate ions are linked by [Zn_4(H_2O)_(14)]~(8+) units, leading to the formation of a 2D layer containing rhombic channels. Compound 10, paratungstate-B units act as six-dentate ligands coordinating to six Sr~(2+) ions. Interestingly, the strong involvement of the potassium and sodium counteractions leads the neighboring layers to tie together generating a 3D network containing two types of channels. Compound 11 represents the first extended structure based on the [Ce(W_5O_(18))_2]~(9-) polyoxoanion. Compounds 12 and 13 were isolated from the acetate buffer solution containing decatungstate [W_(10)O_(32)]~(4-) at different reaction temperatures and exhibit different three-dimensional architectures with bridging sodium and potassium as countercations.
引文
[1] Pope M T. Heteropoly and IsopolyOxometalates [M]. Springer-Verlag: Berlin, 1983, 1-10.
    [2] Pope M T, Müller A. Polyoxometalate Chemistry [M]. Kluwer, Dordrecht, 2001, 1-10.
    [3] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry [M]. Beijing: Chemical Industrial Publishing Company,1998, 4.
    [4] Berzelius [J]. J Pogg. Ann, 1826, 6: 369.
    [5] Pauling L. The Molecular Structure of The Tungstosilicates and Related Compounds [J]. J Am Chem Soc., 1929, 51(10): 2868-2880.
    [6] Dawson B. The structure of the 9(18)-heteropoly anion in potassium 9(18)-tungstophosphate, K6(P2W18O62)·14H2O [J]. Acta Crystallogr., 1953, 6: 113-126.
    [7] Waugh J C T, Schoemaker D P. On the structure of the heteropoly anion in ammonium 9-molybdomanganate, (NH4)6MnMo9O32.82O [J]. Acta Crystallogr., 1954, 7: 438-441.
    [8] Mizumo N, Misono M. Heterogeneous catalysis [J]. Chem. Rev., 1998, 98: 199–217.
    [9] Carrier X, Caillerie J B, Lambert J F. The support as a chemical reagent in the preparation of Wox/y-Al2O3 catalysts formation and deposition of aluminotungstic heteropolyanions [J]. J. Am. Chem. Soc., 1999, 121(14): 3377–3378.
    [10] Chen X, Xu Z, Okuhara T. Liquid-phase esterification of acrylic acid with 1-butanol catalyzed by solid acid catalysts [J]. Appl. Catal. A., 1999, 180(1-2): 261–269.
    [11] Harrup M, Hill C L. Triniobium polytungstophosphates, suntheses, structures, clarification of isomerism and reactivity in the presence of H2O2 [J]. Inorg. Chem., 1998, 37(21): 5550–5556.
    [12] Anne G, Pascal B, Edmond P. Preparation of hydrodesulfurization catalysts by impregnation of alumina with new heteropoly compounds [J]. Chem. Lett., 1997, 12: 1259–1260.
    [13] Hu C W, He Q L, Wang E B. Synthesis, stability and oxidative activity of polyoxometalates pillared anionic clays ZnAl-SiW11 and ZnAl-SiW11Zn [J]. Catl. Today., 1996, 30: 141–145.
    [14] Hu C W, He Q L, Zhang Y H, et al. Synthesis of new types of polyoxometalate pillared anionic clays:31P and 27Al NMR study of the orientation of intercalated PW11VO40 [J]. J. Chem. Soc. Chem. Commun., 1996, 121–122.
    [15] Katsoulis D E. A survey of applications of polyoxometalates [J]. Chem. Rev., 1998, 98: 359–388.
    [16] Pope M T, Muller A, Chemistry of polyoxometalates, Actual variation on an old theme with interdisciplinary references [J]. Angew. Chem. Int. Ed. Engl., 1991, 103(1): 56–70.
    [17] Baker L C W, Glick D C. Present general status of understanding of heteropoly electrolytes and traeing of some major highlights in the history of their elucidations [J]. Chem. Rev., 1998, 98: 3–50.
    [18] Wang E B, Li B T, Zhang B J. Researches into the proton conductivity of molybdovanadophosphotic acids with Well-Dawson structure [J]. Chem. Res. Chin. Univ., 1996, 12(4): 322–323.
    [19]王力,刘宗瑞,周云山等.取代型钨镓杂多配合物导电性及磁性研究[J].高等学校化学学报.1997, 18(6): 846–848.
    [20]胡长文,许林,王恩波,杂多金属氧酸盐的磁性[J].科学通报. 1998, 43(12): 1234–1236.
    [21]余新武,刘术侠,王戈等.三取代过渡技术钨镓杂多配合物的磁性及导电性能研究[J].化学学报. 1996, 54: 864–868.
    [22] Xu L, Hu C W, Wang E B. Magnetic properties of heteropolyoxometalates [J]. Chin. Sci. Bull., 1999, 44(6): 481–488.
    [23] Borshch S A, Bigot B. Magnetic properties of the mixed-valence heteropoly blues with a Keggin structure [J]. Chem. Phys. Lett., 1993, 212(3-4): 398–403.
    [24] Clemente-Juan J M, Coronado E, Gomez-Garcia C J. Increasing the nuclearity of magnetic polyoxometalates. Syntheses, structure, and magnetic properties of salts of the heteropolycomplexes [Ni3(H2O)(PW10O39)H2O]n-, [Ni4(H2O)2(PW10O34)2]10-, [Ni9(OH)3(H2O)6(HPO4)2(PW10O34)2]16- [J]. Inorg. Chem., 1999, 38: 55–63.
    [25] Cassan-Pastor N, Baker L C W. Magnetic properties of mixed-valence heteropoly blues interactions with complexes containing paramagnetic atoms in obvious sites as well as‘blue’electrodes delocalized over polytungstate frameworks [J]. J. Am. Chem. Soc., 1992, 114(26): 10384–10386.
    [26] Liu J F, Chen Y G, Meng L. Synthesis and characterization of novel heteropolytungstatoarsenates containing lanthanides {LnAs4W40O140}25- and their biological activity [J]. Polyhedron. 1998, 17(9): 1541–1546.
    [27] Yamase T, Fujita H, Fukushima K. Medical chemistry of polyoxometalates part 1. potent antitumor activity of polyoxomolybdates on animal transplantable tumors and human cancer xenograft [J]. Inorg. Chim. Acta., 1988, 151: 15–18.
    [28] Wang X H, Hill C L. Synthesis and anti-HIV activity of bis(methanofullerene) polyoxometalates [J]. Proc-Electrochem. Soc., 1998, 98(8): 1222–1226.
    [29] Fugita H, Fugita T, Skurai T. A new type of antiumor substances, polyoxomolybdates [J]. Chemotherapy. 1992, 40(2): 173–178.
    [30] Wang X H, Liu J F, Pope M T. Synthesis, characterization and biological activity of organotitanium substituted heteropolytungstates [J]. J. Chem. Soc, Dalton Trans., 2000, 1139–1142.
    [31] Wang X H, Dai H C, Liu J F. Synthesis and characterization of organotin-substituted heteropolytungstosilicates and their biological activity I [J]. Polyhedron. 1999, 18: 2293–2300.
    [32]刘术侠,刘彦勇,王恩波等. Keggin结构钨磷酸稀土镨盐杂多蓝的合成及抗艾滋病毒(HIV-1)活性的研究[J].高等学校化学学报. 1996,17(8): 1188–1190.
    [33] Katsoulis D. E. A Survey of Applications of Polyoxometalates [J]. Chem. Rev., 1998, (98): 359-387.
    [34] TézéA, Canny J, Gurban L. Synthesis,Structural Characterization,and Oxidation–Reduction Behavior of theγ-Isomer of the Dodecatungstungstosilicate Anion [J]. Inorg. Chem., 1996, 35(4): 1001-1005.
    [35] Baker C L W, Figgis J S. New fundamental type of inorganic complex:hybrid between heteropolyandconventional coordination complexes. Possibilities for geometrical isomerisms in 11-,12-,17-,and18-heteropoly derivatives [J]. J. Am. Chem. Soc., 1970, 92(12): 3794-3797.
    [36] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry [M]. Chemical Industrial Publishing Company, Beijing, 1998, 4.
    [37] Chen Q, Hill C L. A Bivanadyl Capped, Highly Reduced Keggin Polyanion, [PMoV6MoVI6O40(VIVO)2]5- [J]. Inorg. Chem., 1996, 35(8): 2403-2405.
    [38] Yang W B, Lu C Z, Zhan X P, et al. Hydrothermal synthesis of the first vanadomo-lybdenum polyoxocation with a“Metal-Bonded”spherical framework [J]. Inorg. Chem., 2002, 41(18): 4621-4623.
    [39] Xu Y, Zhu D R, Cai H, et al. [MoⅤ2MoⅥ6VⅣ8O40(PO4)]5-: the first polyanion with a tetracapped Keggin structure [J]. Chem. Commun., 1999, 787-788.
    [40] Xu Y, Zhu D R, Guo Z J, et al. Cation-induced Assembly of the First Mixed Molybdenum-vanadium Hexadecametal Host Shell Cluster Anions [J]. J. Chem Soc., Dalton Trans., 2001, (6): 772-773.
    [41] Liu C M, Zhang D Q, Xiong M, et al. A Novel Two-Dimensional Mixed Molybdenum-Vanadium Polyoxometalate with Two Types of Cobalt(II)Complex Fragments as Bridges [J].Chem. Commun., 2002, 1416-1417.
    [42] Han Z G, Zhao Y L, Peng J, et al. Directed Synthesis of a 1D Double-Chain PolyoxometalateAssembly:{[Ag2(bppy)3][Ag(bppy)2]-[Ag(bppy)]2PW11Co(bppy)O39}·2H2O [J]. Eur J Inorg Chem., 2005, 264-271.
    [43] Shi Z Y, Gu X J, Peng J, et al. From molecular double-ladders to an unprecedented polycatenation: A parallel catenated 3D network containing bicapped Keggin polyoxometalate clusters [J]. Eur.J.Inorg.Chem., 2005, 385-388.
    [44] Lei C, Mao J G, Sun Y Q, et al. A novel organic-inorganic hybrid based on an 8-electron-reducedkeggin polymolybdate capped by tetrahedral, trigonal bipyramidal, and octahedral zinc: Synthesis and crystal structure of (CH3NH3)(H2bipy)[Zn4(bipy)3(H2O)2MoV8MoVI4O36(PO4)]·4H2O [J]. Inorg. Chem., 2004, 43: 1964-1968.
    [45] Jin H, Qi Y F, Wang E B, Li Y G, Dai L M, Wang Y H, et al. A new molybdenum-oxide-based organic–inorganic hybrid framework templated by double-Keggin anions [J]. Cryst. Growth. Desi., 2006, 6: 2693-2698.
    [46] Li Y G, Wang E B, Wang S T, et al. A highly reduced polyoxoanion with phosphorus-centered alternate layers of Mo/V oxides, [PMo8V4O40(VO)2]9- [J]. J Mol Struct., 2002, 611: 185-191.
    [47] Yuan M, Li Y G, Wang E B, et al. Modified polyoxometalates: hydrothermal syntheses and erystal struetures of three novel reduced and eapped Keggin derivatives decorated by transition metal complexes [J]. Inorg Chem., 2003, 42(12): 4321-4325.
    [48] Xu Y, Xu J Q, Zhang K L, et al. Keggin Unit Supported Transition Metal Complexes: Hydrothermal Synthesis and Characterization of [Ni(2,2-bipy)3]1.5[PW12O40Ni(2,2-bipy)2(H2O)]·0.5H2O and [Co(1,10-phen)3]1.5[PMo12O40Co(1,10-phen)2(H2O)]·0.5H2O [J]. Chem. Commun., 2000, 153-154.
    [49] Wang J P, Shun Y, Niu J Y. Hydrothermal synthesis and crystal structure of a novel compoundsupported by a-Keggin units [Cu(2,2′-bipy)2]{AlWVI11WVO40[Cu(2,2′-bipy)2]2}·2H2O [J]. Coord Chem., 2006, 59: 1007–1014.
    [50] Xu Y, Xu J Q, Zhang K L, et al. Keggin Unit Supported Transitionmetal Metal Complexes: Hydrothermal Synthesis and Characterization of [Ni(2,2’-bipy)3]1.5[[PW12O40Ni(2,2’-bipy)2(H2O)]·0.5H2O and [Co(1,10’-phen)3]1.5[PMo12O40Co(1,10’-phen)2(H2O)]·0.5H2O [J]. Chem. Commun., 2000, 153-154.
    [51] Liu C M, Zhang D Q , Zhu D B. Mixed Molybdenum-Vanadium Polyoxoanion-Bridged Trimetallic Nanocluster Complexes: Hydrothermal Syntheses and Crystal Sturctures of {MoVI6MoV2VIV8O40(PO4)[Co(phen)2(H2O)]2}[Co2(phen)2(OH)2(H2O)4]0.5 and {MoVI5MoV3VIV8O40(PO4)- [Co(phen)(en)(H2O)]2}[Co(phen)3]·1.5H2O [J]. Crystal Growth and Design., 2003, 3: 363-368.
    [52] Reinoso S, Vitoria P, Lezama L, et al. A Novel Organic-Inorganic Hybrid Based on a Dinuclear Copper Complex Supported on a Keggin Polyoxometalate [J]. Inorg Chem., 2003, 42: 3709-3711.
    [53] Luan G Y, Li Y G, Wang S T, et al. A Newα-Keggin Type Polyoxometalate Coordinated to Four Silver-Complex Moieties: {PW9V3O40[Ag(2,2-bipy)]2[Ag2(2,2-bipy)3]2}[J]. J Chem Soc, Dalton Trans., 2003, 233–235.
    [54] Sadakane M, Dickman M H, Pope M T, Controlled assembly of polyoxometalate chains from lacunary building blocks and lanthanide-cation linkers [J]. Angew. Chem. Int. Ed., 2000, 39: 2914-2916.
    [55] Pierre M, Laurent L, Alain M, et al. Solid-State and Solution Studies of {Lnn(SiW11O39)} Polyoxoanions: An Example of Building Block Condensation Dependent on the Nature of the Rare Earth [J]. Inorg. Chem., 2003, 42: 2102-2108.
    [56] Niu J Y, Wei M L , Wang J P, et al. 1D-Polyoxometalate-Based Composite Compounds Design, Synthesis, Crystal Structures, and Properties of [{Ln(NMP)6}(PMo12O40)]n (Ln=La, Ce, Pr; NMP = N-methyl-2-pyrrolidone) [J]. Eur. J. Inorg. Chem., 2004, 160-170.
    [57] Wang J P, Duan X Y, Du X D, et al. Novel Rare Earth Germanotungstates and Organic Hybrid Derivatives : Synthesis and Structures of M/[α-GeW11O39] (M = Nd, Sm, Y, Yb) and Sm/[α-GeW11O39](DMSO) [J]. Cryst. Growt. Desig., 2006, 6: 2266-2270.
    [58] Tian A X, Ying J, Peng J, et al. Tuning the Dimensionality of the Coordination Polymer Based on Polyoxometalate by Changing the Spacer Length of Ligands [J]. Cryst. Grow. Desi., 2008, 8(10): 3717-3724.
    [59] Sha J Q, Peng J, Liu H S, et al. Keggin POMs Modified by Bonding to Multitrack Cu(bipy) Chains through Linearly Arrayed Terminal and Bridging Oxygen Atoms of the M3O13 Triad [J]. Eur. J. Inorg. Chem., 2007, 1268–1274.
    [60] Sha J Q, Peng J, Liu H S, et al. Two novel Keggin tungstocobaltates grafted by cobaltII complex group(s): K[Co(phen)2(H2O)]2[HCoW12O40]·2H2O and [Co(2,2′-bipy)3]1.5{[Co(2,2′-bipy)2(H2O)][HCoW12O40]}·0.5H2O [J]. Solid State Sci., 2007, 9: 1012-1019.
    [61] Sha J Q, Peng J, Liu H S, et al. Asymmetrical Polar Modification of a Bivanadium-Capped Keggin POM by Multiple Cu-N Coordination Polymeric Chains [J]. Inorg. Chem., 2007, 46: 11183-11189.
    [62] Gao G G, Xu L, Wang W J, et al. Cobalt(II)/Nickel(II)-Centered Keggin-Type Heteropolymolybdates:Syntheses, Crystal Structures, Magnetic and Electrochemical Properties [J]. Inorg. Chem., 2008, ASAP Article; DOI: 10.1021/ic700797v
    [63] Fu H, Chen W L, Wang E B, et al. Three new multidimensional organic–inorganic hybrids based on polyoxometalates and copper coordination polymers with 4,4′-bipyridine ligands [J]. Inorg. Chim. Acta., 2008, In press.
    [64] Jin H, Qi Y F, Wang E B, et al. Molecular and Multidimensional Organic-Inorganic Hybrids Based on Polyoxometalates and Copper Coordination Polymer with Mixed 4,4′-Bipyridine and 2,2′-Bipyridine Ligands [J]. Cryst. Grow. Desig., 2006, 6: 2693-2698.
    [65] Jin H, Wang X L, Qi Y F, et al. Hybrid organic–inorganic assemblies built up from saturated heteropolyoxoanions and copper coordination polymers with mixed 4,4′-bipyridine and 2,2′-bipyridine ligands [J]. Inorg. Chim. Acta., 2007, 360: 3347–3353.
    [66] Fang X K, Kgerler P, Isaacs L, et al. Cucurbit[n]uril-Polyoxoanion Hybrids [J]. J. Am. Chem. Soc., 2009, 131(2): 432–433.
    [67] Loose I, B?sing M, Klein R, et al. Synthesis, structure of polymeric cobalt-containing heteropolytungstatesand their applications in oxidation catalysis [J]. Inorg. Chim. Act., 1997, 263: 99-108.
    [68] Lisnard L, Dolbecq A, Mialane P,et al. Hydrothermal syntheses and characterizations of 0D to 3D polyoxotungstates linked by copper ions [J]. Inorg. Chim. Act., 2004, 357: 845-852.
    [69] Yan B B, Goh N K, Chia L S. Hydrothermal syntheses and crystal structures of novel one- and two-dimensional organic–inorganic hybrid materials composed of Paradodecatungstate-B clusters and [Cu(en)2]2+ complex groups [J]. Inorg Chim Acta., 2004, 357: 490-494.
    [70] He L W, Lin B Z, Liu X Z, et al. A novel layer formed by paradodecatungstate clustersand {Cu(en)2}2+ bridging groups: Synthesis and characterization of [{Cu(en)2}4(H4W12 -O42)]·9H2O [J]. Solid State Sci., 2008, 3: 237-243.
    [71] Zhang X T, Wang D, Dou J M, et al. Polyoxometalate (W/Mo) Compounds Connected via Lanthanide Cations with a Three-Dimensional Framework, H2{[K(H2O)2]2[Ln(H2O)5]2-(H2M12O42)}·nH2O: Synthesis, Structures, and Magnetic Properties [J]. Inorg Chem, 2006, 45: 10629-10635.
    [72] Sun C Y, Liu S X, Xie L H, et al. Synthesis and characterization of one- to three- dimensional compounds composed of paradodecatungstate-B cluster and transition metals as linkers [J]. J Solid State Chem., 2006, 179: 2093-2100.
    [73] Zhang C J, Chen Y G, Shi D M, et al. Synthesis and Characterization of a Three-dimensional Porous Compound: [Cu(H2O)6][{Cu(H2O)2}2{Cu(H2O)4H4W12O42}]·12H2O [J]. Z. Naturforsch, 2008, 63b: 187-192.
    [74] Xu Z H, Wang X L, Li Y G, et al. A novel bismuth ion-bridged chainlike assembly from paradodecatungstate [H2W12O42]10- anions: (NH4)7[Bi(H2W12O42)]·20H2O[J]. Inorg Chem Commum., 2007, 10: 276-278
    [75] Shi D M, Yu H X, Pang H J, et al. A New Polymeric Chain Constructed from Isopolyanions and Lanthanide Cations: Synthesis, Crystal Structure, and Propertiesof(NH4)5[Ln(NO3)2(H2O)3][H2W12O40]·nH2O (Ln = Ce,Pr, Nd, Gd, Dy, Ho) [J]. Solid State Sci., 2008, 10(7): 847-853
    [76] Pang H J, Chen Y G, Meng F X, et al. Assembly of Three Novel 2D Frameworks with Helical Chains Based on [H2W12O40]6- Clusters and Lanthanide-organic Complexes[J]. Inorg Chim Acta., accept.
    [77] Pang H J, Chen Y G, Meng F X, et al. Two Novel One-dimensional Inorganic-Organic Hybrids Constructed from [H2W12O40]6– Clusters and Lanthanide-organic Complexes: [(C5H5N-CO2)2Ln(H2O)3]2[H2W12O40]·nH2O (C5H5N-CO2 = Pyridine-4-carboxylate; Ln =La3+,n = 5; Ce3+, n = 7) [J]. Z Naturforsch, 2008, 63b; 16-22.
    [78] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large Clusters-Nanoscale Magnets [J]. Chem. Rev., 1998, 98(1): 239-271.
    [79] Müller A, Polarz S, Das S K, et al.“Open and shut”for guests in molybdenum-oxide-based giantspheres, baskets, and rings containing the pentagon as a common structural element [J]. Angew. Chem. Int. Ed., 1999, 38: 3241-3245.
    [80] Müller A, Krickemeyer E, Meyer J, et al. [Mo154(NO)14O420(OH)28(H2O)70](25±5)-: A water-soluble bigwheel with more than 700 atoms and a relative molecular mass of about 24000 [J]. Angew. Chem. Int. Ed. Engl., 1995, 34: 2122-2124.
    [81] Müller A, Shah S Q N, B?gge H, et al. Molecular growth from a Mo176 to a Mo248 cluster [J]. Nature, 1999, 397: 48-50.
    [82] Müller A, Beckmann E, B?gge, H, et al. Inorganic Chemistry Goes ProteinSize: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angew. Chem. Int, Ed. Engl., 2002, 41, 1162-1167.
    [83] Müller A, B?gge H, Henry M. C. R. Coordination chemistry under confined conditions: a simplified illustrative view [J]. Chimie, 2005, 8: 47-56.
    [84] Müller A, Zhou Y, Zhang L, et al. En route to coordination chemistry under confined conditions in a porous capsule: Pr3+ with different coordination shells [J]. Chem. Commun., 2004, 2038-2039.
    [85] Sch?ffer C, Merca A, B?gge H, et al. Unprecedented and Differently Applicable Pentagonal Units in aDynamic Library: A Keplerate of the Type {(W)W5}12{Mo2}30 [J]. Angew. Chem. Int. Ed., 2009, 48: 149-153.
    [86] Mitra T, MiróP, Tomsa A R, et al. Gated and Differently Functionalized (New) Porous Capsules Direct Encapsulates Structures: Higher and Lower Density Water [J]. Chem. Eur. J. 2009, 15: 1844-1852.
    [87] Ma J, Li Y G, Zhang Z M, et al. A polyethylene-glycol-functionalized ring-like isopolymolybdate cluster [J]. Inorganica Chimica Acta., 2008, in press.
    [88] Hagrman D, Hagrman P J, Zubieta J. Organic-inorganic hybrid materials: From“simple”coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew. Chem., Int. Ed. Engl., 1999, 38: 2638-2684.
    [89] Hagrman D, Hagrman P J, Zubieta J. Solid-State Coordination Chemistry: The Self-Assembly of Microporous Organic-Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters [J]. Angew. Chem., Int. Ed. Engl., 1999, 38: 3165-3168.
    [90] Müller A, Beckmann E, B?gge H, et al. A. Inorganic Chemistry Goes ProteinSize: A Mo368 Nano-Hedgehog Initiating Nanochemistry by Symmetry Breaking [J]. Angew. Chem. Int, Ed. Engl., 2002, 41: 1162-1167.
    [91] Streb C, Ritchie C, Long D L, et al. Modular Assembly of a Functional Polyoxometalate-Based Open Framework Constructed from Unsupported AgI···AgI Interactions [J]. Angew. Chem. Int. Ed., 2007, 46: 7579-7582.
    [92] Wang X L, Bi Y F, Chen B K, et al. Self-Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates [J]. Inorg. Chem., 2008, 47 (7): 2442–2448.
    [93] Li Y G, Dai L M, Wang Y H, et al. A new molybdenum-oxide-based organic–inorganic hybrid framework templated by double-Keggin anions [J]. Chem. Commun. 2007, 2593-2595.
    [94] Wei M L, He C, Hua W J. A Large Protonated Water Cluster H+(H2O)27 in a 3D Metal-Organic Framework [J]. J. Am. Chem. Soc., 2006, 128: 13318-13319.
    [95] Long D L, K?gerler P, Farrugia L J, et al. Restraining Symmetry in the Formation of Small Polyoxomolybdates: Building Blocks of Unprecedented Topology Resulting From Shrink-Wrapping [H2Mo16O52]10--Type Clusters [J]. Angew. Chem. Int. Ed., 2003, 42: 4180-4183.
    [96] Long D L, Abbas H, K?gerler P, et al. A High-Nuclearity "Celtic-Ring Isopolyoxotungstate, [H12W36O120]12-, That Captures Trace Potassium Ions [J]. J. Am. Chem. Soc., 2004, 126: 13880-13881.
    [97] Long D L, Brücher O, Streb C, et al. Inorganic crown: the host–guest chemistry of a high nuclearity Celtic-ring isopolyoxotungstate [H12W36O120]12– [J]. Dalton Trans, 2006, 2852-2860.
    [98] Long D L, K?gerler P, Parenty A D C, et al.Discovery of a Family of Isopolyoxotungstates [H4W19O62]6- Encapsulating a {WO6} Moiety within a {W18} Dawson-like Cluster Cage [J]. Angew. Chem. Int. Ed., 2006, 45: 4798-4803.
    [99] Long D L, K?gerler P, Cronin L. Old Clusters with New Tricks: Engineering S···S Interactions and Novel Physical Properties in Sulfite-Based Dawson Clusters [J]. Angew. Chem. Int. Ed., 2004, 43: 1817-1820.
    [100] Long D L , Abbas H, K?gerler P, et al. Confined Electron-Transfer Reactions within a Molecular Metal Oxide Trojan Horse [J]. Angew. Chem. Int. Ed., 2005, 44: 3415-3419.
    [101] Laye R H, Wei Q, Mason P V. A Highly Reduced Vanadium(III/IV) Polyoxovanadate Comprising an Octavanadyl Square-Prism Surrounding a Dimetallic Vanadium(III) Fragment [J]. J. Am. Chem. Soc., 2006, 128(28): 9020-9021.
    [102] Khan M I, Ayesh S, Doedens R J. Synthesis and characterization of a polyoxovanadate clusterrepresenting a new topology [J]. Chem. Commun., 2005, 4658–4660.
    [103] Chen L, Jiang F L, Lin Z Z, et al. A Basket Tetradecavanadate Cluster with Blue Luminescence [J]. J. Am. Chem. Soc., 2005, 127: 8588-8589.
    [104] Xue G L, Liu X M, Xu H S, et al. An Unusual Asymmetric Polyoxomolybdate Containing Mixed-ValenceAntimony and Its Derivatives: [Sb4VSb2IIIMo18O73(H2O)2]12-and{M(H2O)2[Sb4VSb2IIIMo18O73(H2O)2]2}22- (M=MnII, FeII, CuII or CoII) [J]. Inorg. Chem., 2008, 47: 2011-2016.
    [105] Sigmon G E, Unruh D K, Ling J, et al. Symmetry versus Minimal Pentagonal Adjacencies in Uranium-Based Polyoxometalate Fullerene Topologies [J]. Angew. Chem. Int. Ed., 2009, 48: 1-5. These are not the final page numbers
    [106] Sadakane M, Yamagata K, Kodato K, et al. Synthesis of Orthorhombic Mo-V-Sb Oxide Species by Assembly of Pentagonal Mo6O21 Polyoxometalate Building Blocks [J]. Angew. Chem. Int. Ed., 2009, 48: 1-5.
    [107] Liu H S, Gómez-Garc?a C J, Peng J, et al. Ferromagnetically Coupled Dimer of CuII-Substitutedγ-Decatungstosilicate [J]. Inorg. Chem., 2007, 46: 10041-10043.
    [108] Zhang Z M, Yao S, Li Y G, et al. New trimeric polyoxotungstate aggregates based on [P2W12O48]14- building blocks [J]. Chem. Commun., 2008, 1650–1652.
    [109] Zhang Z M, Yao S, Qi Y F, et al. A new heart-like Co-containing polyoxoanion based on the lacunary Preyssler anion [J]. J. Chem. Soc, Dalton Trans., 2008, 3051–3053.
    [1] Hill C L. Introduction: Polyoxometalates Multicomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems [J]. Chem. Rev., 1998, 98: 1-2.
    [2] Cheetham A K, Férey G, Loiseau T. Open-Framework Inorganic Materials. Angew. Chem. Int. Ed., 1999, 38(22): 3268-3292.
    [3] Peng Z H. Rational Synthesis of Covalently Bonded Organic-Inorganic Hybrids [J]. Angew. Chem. Int. Ed., 2004, 43(8): 930-935.
    [4] Hagrman D, Haushalter R C, Zubieta J. Three-Dimensional Organic/Inorganic Hybrid Materials Constructed from One-Dimensional Copper Diamine Coordination Polymers Linked by Bridging Oxoanion Tetrahedra: [Cu(dpe)(MoO4)] and [Cu(dpe)(SO4)(H2O)] [J]. Chem. Mater., 1998, 10(1): 361-365.
    [5] Ren Y P, Kong X J, Hu X Y, et al. Influence of Steric Hindrance of Organic Ligand on the Structure of Keggin-Based Coordination Polymer [J]. Inorg. Chem., 2006, 45(10): 4016-4023.
    [6] Sun Y Q, Zhang J, Chen Y M, et al. Porous Lanthanide-Organic Open Frameworks with Helical Tubes Constructed from Interweaving Triple-Helical and Double-Helical Chains [J]. Angew. Chem. Int. Ed., 2005, 44(36): 5814-5817.
    [7] Wilson E F, Abbas H, Duncombe B J, et al. Probing the Self-Assembly of Inorganic Cluster Architectures in Solution with Cryospray Mass Spectrometry: Growth of Polyoxomolybdate Clusters and Polymers Mediated by Silver(I) Ions [J]. J. Am. Chem. Soc., 2008, 130(42): 13876-13884.
    [8] Hao J, Xia Y, Wang L S, et al. Unprecedented Replacement of Bridging Oxygen Atoms in Polyoxometalates with Organic Imido Ligands [J]. Angew. Chem. Int. Ed. 2008, 47(14), 2626-2630.
    [9] Pope M T, Müller A. Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines [J]. Angew. Chem. Int. Ed., 1991, 30(1): 34-48.
    [10] Rhule J T, Hill C L, Judd D A, et al. Polyoxometalates in Medicine [J]. Chem. Rev., 1998, 98(1): 327-358.
    [11] Coronado E, Gómez-Garexa C J. polyoxometalate-based moleeular Materials [J]. Chem. Rev., 1998, 98(1): 273-296.
    [12] Huang X Y, Li J, Fu H, et al. The first covalent organic-inorganic networks of hybrid chaleogenides: struetures that may lead to a new type of quantumwells [J]. J. Am. Chem. Soc., 2000, 122(36): 8789-8790.
    [13] Keggin J F, Proc R Soc.1934, 144A: 75.
    [14] Wang J P, Shen Y, Niu J. Y. Hydrothermal synthesis and crystal structure of a novel compound supported by a-Keggin units [Cu(2,2′-bipy)2]{AlWV11WVO40[Cu(2,2′-bipy)2]2}·2H2O [J]. J. Coord. Chem., 2006, 59(9): 1007-1014.
    [15] Han Z G, Zhao Y L, Peng J, et al. Directed Synthesis of a 1D Double-Chain PolyoxometalateAssembly:{[Ag2(bppy)3][Ag(bppy)2]-[Ag(bppy)]2PW11Co(bppy)O39}·2H2O [J]. Eur. J.Inorg. Chem., 2005, 264-271.
    [16] An H Y, Li Y G, Wang E B, et al. Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes [J]. Inorg. Chem., 2005, 44(17): 6062-6070.
    [17] Weinstock I A, Cowan J J, Barbuzzi E M G, et al. Equilibria between R and Isomers of Keggin Heteropolytungstates [J]. J. Am. Chem. Soc., 1999, 121, 4608-4617.
    [18] Akitt J W, Farthing A. Aluminium-27 Nuclear Magnetic Resonance Studies of Heteropolyanions containing Aluminium as Heteroatom [J]. J. Chem. Soc. Dalton Trans., 1981, 1615-1616.
    [19] Liu F X, Marchal-Roch C, Bouchard P, et al. [Ag6(PMo10V2O40)](CH3COO)·8H2O: A 3D Macrocationic Polyoxometallic Keggin Complex [J]. Inorg. Chem., 2004, 43(7): 2240-2242.
    [1] Kozhevnikov I V. Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions [J]. Chem. Rev., 1998, 98(1): 171-198.
    [2] Müller A, Peters F, Pope M T, et al. Polyoxometalates: Very Large ClustersNanoscale Magnets [J]. Chem. Rev., 1998, 98(1): 239-271.
    [3] Hill C L. Introduction: PolyoxometalatesMulticomponent Molecular Vehicles To Probe Fundamental Issues and Practical Problems [J]. Chem. Rev., 1998, 98(1): 1-2.
    [4] Rhule J T, Neiwert W A, Hardcastle K I, et al. Ag5PV2Mo10O40, a Heterogeneous Catalyst for Air-Based Selective Oxidation at Ambient Temperature [J]. J. Am. Chem. Soc., 2001, 123 (48): 12101–12102.
    [5] Deitcheff C R, Fournier M, Franck R, et al. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure [J]. Inorg. Chem., 1983, 22(2): 207-216.
    [6] Han Z G, Zhao Y L, Peng J, et al. Co-existing intermolecular halogen bonding, aryl packing and hydrogen bonding in driving the self-assembly process of Keggin polyoxometalates [J]. Cryst. Eng. Comm., 2005, 7(63): 380–387.
    [7] Evans H T, Pope M T. Reinterpretation of five recent crystal structures of heteropoly and isopoly complexes: divanadodecamolybdophosphate, trivanadoenneamolybdophosphate, ".gamma.-dodecatungstophosphate", the dodecamolybdate-dodecamolybdomolybdate blue complex, and dihydrogen decavanadate [J]. Inorg.Chem., 1984, 23(4): 501–504.
    [8] Maguerès P L, Ouahab L, Golhen S, et al. Diamagnetic and Paramagnetic Keggin Polyoxometalate Salts Containing 1-D and 3-D decamethylferrocenium Networks: Preparation, Crystal Structures and Magnetic Properties of [Fe(C5Me5)2]4(POM)(solv)n (POM = [SiMo12O40]4-, [SiW12O40]4-, [PMo12O40]4-, [HFeW12O40]4-; solv = H2O, C3H7ON, CH3CN) [J]. Inorg. Chem., 1994, 33(23): 5180-5187.
    [9] Asami M, Ichida H, Sasaki Y. The structure of hexakis(tetramethylammonium) dihydrogendodecatungstate enneahydrate, [(CH3)4N]6[H2W12O40]·9H2O [J]. Acta Crystallogr., Sect. 1984, C 40: 35–37.
    [10] Wang X L, Bi Y F, Chen B K, et al. Self-Assembly of Organic–Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates [J]. Inorg.Chem., 2008, 47(7): 2442–2448.
    [11] Lin B Z, Chen Y M, Liu P D. A new polymeric chain formed by paradodecatungstate clusters and [Cu(en)2]2+ complexes: hydrothermal synthesis and characterization of [Cu(en)2]3[{Cu(en)2}2(H2W12O42)]·12H2O [J]. Dalton Trans, 2003, 2474-2477.
    [12] Sha J Q , Wang C , Peng J, et al. [Cu(4,4′-bipy)]2[H4P2W18O62]·2H2O: The first three-dimensional framework based on saturated Wells–Dawson POMs modified by multi-track Cu–N coordination polymeric chains [J]. Inorg. Chem. Commum., 2007, 10: 1321-1324.
    [13] Hagrman P J, Hagrman D, Zubieta J. Organic-Inorganic hybrid materials : from“simple”coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew. Chem. Int. Ed., 1999, 38: 2638-2684.
    [14] Jin H, Qi Y F, Wang E B, et al. Molecular and Multidimensional Organic-Inorganic Hybrids Based on Polyoxometalates and Copper Coordination Polymer with Mixed 4,4′-Bipyridine and 2,2′-Bipyridine Ligands [J]. Cryst. Growth Des., 2006, 6: 2693–2698.
    [15] Moriguchi I, Fendler J H. Characterization of electrochromic properties of ultrathin film self-assembled from poly(diallyldimethylammonium) chloride and sodium decatungstate [J]. Chem.Mater., 1998, 10: 2205–2211.
    [1] Bi L H, Reicke M, Kortz U, et al. First Structurally Characterized Palladium(II)-Substituted Polyoxoanion: [Cs2Na(H2O)10Pd3(α-SbIIIW9O33)2]9- [J]. Inorg. Chem., 2004, 43(13): 3915– 3920.
    [2] Xu B B, Peng Z H, Wei Y G, et al. Polyoxometalates covalently bonded with terpyridine ligands [J]. Chem.Commun., 2003, 2562– 2563.
    [3] Fukaya K, Yamase T. Alkali-metal-controlled self-assembly of crown-shaped ring complexes of lanthanide/[α-AsW9O33]9- [J]. Angew. Chem. Int. Ed., 2003, 42(6): 654– 658.
    [4] Sousa F L, Paz F A Almeida, Grnadeir C M C E, et al. The first one-dimensional lanthanopolyoxotungstoborate [J]. Inorg. Chem. Commun., 2005, 8: 924– 927.
    [5] Niu J Y, Guo D J, Wang J P, et al. 1D polyoxometalate-based composite compounds derived from the wells-dawson subunit: Synthesis and crystal structure of [{Ce(DMF)4(H 2O)3}{Ce(DMF)4(H2O)4}(P2W18O62)]·H2O and [{La(DMF)6(H2O)} {La(DMF)4.5(H2O)2.5}(P2W18O62)] [J]. Cryst.Growth Des., 2004, 4: 241– 247.
    [6] Wu C D, Lu C Z, Zuang H H, et al. Hydrothermal assembly of a novel three-dimensional framework formed by [GdMo12O42]9- anions and nine coordinated GdIII cations [J]. J. Am.Chem. Soc., 2002, 124: 3836– 3837.
    [7] Hagrman D, Hagrman P J, Zubieta J. Solid-state coordination chemistry: The self-assembly of microporous organic-inorganic hybrid framework constructed from tetrapyridylprophyrin and bimetallic oxide chains or oxide cluster [J]. Angew. Chem.Int. Ed., 1999, 38: 3165– 3168.
    [8] Shivaiah V, Reddy P V N, Cronin L, et al. A novel polyoxometalate chain formed from heteropolyanion building blocks and rare earth metal ion linkers: [La(H2O)7Al(OH)6Mo6O18]n·4nH2O [J]. J. Chem. Soc., Dalton Trans., 2002, 3781– 3782.
    [9] Drewes D, Limanski E M, Krebs B. A series of novel lanthanide polyoxometalates: condensation of building blocks dependent on the nature of rare earth cations [J]. J. Chem. Soc., Dalton Trans., 2004, 14: 2087– 2091.
    [10] An H Y, Lan Y, Li Y G, et al. A novel chain-like polymer constructed from heteropolyanions covalently linked by lanthanide cations: (C5H9NO2)2[La(H2O)7CrMo6H6O24]·11H2O (Proline=C5H9NO2) [J]. Inorg. Chem. Commun., 2004,7: 356– 358.
    [11] An H Y, Li Y G, Xiao D R, et al. Self-Assembly of Extended High-Dimensional Architectures from Anderson-type Polyoxometalate Clusters [J]. Cryst. Growth Des., 2006, 6(5): 1107–1112.
    [12]Gimenez-Saiz C, Galan-Mascaros J R, Triki S, et al. [(Co(H2O)4)2(H2W12O42)]n6n-: A Novel Chainlike Heteropolyanion Formed by Paradodecatungstate and Cobalt(II) Ions [J]. Inorg. Chem. 1995, 34(2): 524-526.
    [13] Loose I, B?sing M, Klein R, et al. Synthesis, structure of polymeric cobalt-containingheteropolytungstates and their applications in oxidation catalysis [J]. Inorg. Chim. Acta., 1997, 263: 99-108
    [14] Sun C Y, Liu S X, Xie L H, et al. Synthesis and characterization of one- to three-dimensional compounds composed of paradodecatungstate-B cluster and transition metals as linkers [J]. J. Solid State Chem., 2006, 179: 2093-2100.
    [15] Zhang X T, Dou J M, Wang D Q, et al. Divalent Manganese Linked Tungsten?Molybdenum Polyoxometalates: Synthesis, Structure, and Magnetic Characteristics [J]. Cryst. Growth Des. 2007, 7(9):1699-1705.
    [16] Zhang X T, Wang D Q, Dou J M, et al. Polyoxometalate (W/Mo) Compounds Connected via Lanthanide Cations with a Three-Dimensional Framework, H2{[K(H2O)2]2[Ln(H2O)5]2(H2M12O42)}·nH2O: Synthesis, Structures, and Magnetic Properties [J]. Inorg. Chem., 2006, 45(26): 10629-10635.
    [17] Evans Jr H T, Prince E. Location of internal hydrogen atoms in the paradodecatungstate polyanion by neutron diffraction [J]. J. Am. Chem. Soc., 1983, 105(14): 4838–4839.
    [18] Allmann R. Die Struktur des Ammoniumparawolframates (NH4)10[H2W12O42]·10H2O [J]. Acta Crystallogr., Sect., 1971, B27: 1393-1404.
    [19] Brown D, Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database [J]. Acta Crystallogr., Sect., 1985, B41: 244-247.
    [20] Blasse G, Grabmeyer B C. Luminescent Materials [M]. Springer: Berlin, 1994.
    [21] Shionoya S, Yen W M. Phosphor Handbook [M]. CRC Press: Boca Raton, 1999, 190.
    [22] Mho S -I, Wright J C. Site selective spectroscopy of defect chemistry in CdF2:Eu [J]. J. Chem. Phys., 1982, 77: 1183.
    [23] Judd B R. This Week’s Citation Classic [J]. Phys. Rev., 1962, 127: 750-761.
    [24] Ofelt G S. Intensities of Crystal Spectra of Rare-Earth Ions [J]. J. Chem. Phys., 1962, 37: 511.
    [25] Chen D, Shen G Z, Tang K B, et al. Mater. Res. Bull., 2003, 38: 1783-1789.
    [26] Nazarova M V, Jeona D Y, Kanga J H, et al. Luminescence properties of europium–terbium double activated calcium tungstate phosphorq [J]. Solid State Comm., 2004, 131: 307–311.
    [27] M. T. Pope, Heteropoly and Isopoly Oxometalates [M]. Springer: Berlin, 1983, 53-55.