电中性聚合物与非离子表面活性剂TX-100分子有序组合体的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于独特的亲水、亲油的两亲性质,表面活性剂分子在溶液中可以自发地聚集形成胶束、囊泡、微乳液以及液晶等分子有序组合体。这些分子有序组合体具有独特的极性或非极性的微环境,其尺度至少在一维方向上是纳米级,同时,这些分子有序组合体是物质存在的重要形式,因此,表面活性剂在生命科学,材料科学,能源科学以及许多现代高新技术发展中扮演着重要角色。表面活性剂与高分子的混合体系,特别是水溶性聚合物混合体系表现出单一表面活性剂或者聚合物体系所不具有的奇特性质,并且混合体系的其宏观性质可以通过设计和改变聚合物的分子结构、组成以及链长加以调节,以满足特定领域的应用。目前,表面活性剂和高分子的混合体系在石油开采、纺织染整工业、日用化工、纳米材料制备和制药工业中己有广泛的应用。表面活性剂与聚合物之间的相互作用的研究受到越来越多的重视,并不断向纵深方向发展,即逐渐由对宏观性质的研究深入到对微观结构的探测,从经验规律的总结发展到分子、亚分子水平的研究。
     本论文的工作是基于上述研究背景以及发展趋势展开的,选用了水溶性高分子聚乙二醇和聚氧乙烯-聚氧丙烯-聚氧乙烯型嵌段共聚物,研究其与非离子表面活性剂胶束,微乳液以及层状液晶的相互作用机理。从分子水平阐明高分子与胶束、微乳液、液晶的作用模型,考察高分子的分子链长、组成,温度等物理化学条件对高分子/表面活性剂复合物的微观结构以及性质的影响,主要得到以下几方面的
     结果:
     1.以荧光非辐射能量转移(FRET)、核磁共振(NMR)、动态光散射(DLS)、冷冻蚀刻电镜(FF-TEM)等方法研究了非离子表面活性剂Triton X-100 (TX-100)/聚乙二醇(PEG)复合物的微结构。研究结果表明:TX-100和芘为较好的供体-受体对,不同分子量的PEG的加入均使TX-100分子的苯环与芘分子之间的平均距离增加,表明复合物中TX-100胶束的结构比自由胶束松散,胶束结构的改变与PEG分子量无关。而复合物的表观形貌取决于PEG的分子量(MW):分子量较小的PEG(MW <2000 Dalton)插入TX-100胶束的亲水基层或覆盖在胶束表面,形成球形复合物;分子量较大的PEG (MW >2000 Dalton)将同时与多个胶束作用,形成珊瑚状团簇。此外,体系的温度升高有利于TX-100/PEG复合物的形成,而直链醇不影响复合物的形成。
     2.以核磁共振(NMR),动态光散射(DLS)以及等温滴定微量热(ITC)法考察了非离子表面活性剂TX-100与嵌段共聚物F127的相互作用。研究结果表明,F127与TX-100之间存在协同作用,形成TX-100/F127复合物,其微结构可以通过温度以及TX-100浓度调节。复合物的微结构随温度的转变(F127=20 mg/mL):在低TX-100浓度区域(<9.42 mM),5 oC时F127链在TX-100胶束表面吸附形成以TX-100胶束为主体的复合物,温度升高,TX-100胶束解体,并插入F127胶束形成以F127胶束为主体的复合物;在中等TX-100浓度区域(9.42-94.85 mM),随着温度的升高F127/TX-100复合物的结构由以F127为主体解体转变为以TX-100为主体;在高TX-100浓度区域内(>157.57 mM),F127与TX-100的相互作用达到饱和,体系中出现TX-100自由胶束。复合物的微结构随TX-100浓度的转变:在较低的温度(5-10 oC)下,F127单体吸附到TX-100胶束上形成复合物;15-25 oC范围内,TX-100的加入促进F127单体的聚集,与TX-100形成以F127为主体的复合物;30-40 oC范围内,少量的TX-100以单体的形式插入F127胶束形成以F127为主体的复合物,随着TX-100浓度的增加,F127胶束解体,复合物转变为以TX-100胶束为主体。
     3.以动态光散射(DLS),核磁共振(NMR),荧光探针,以及红外光谱法研究了聚乙二醇(PEG)对TX-100/环己烷/H2O体系反胶束结构的影响。结果表明:TX-100在环己烷中形成非球形的反胶束,温度升高,反胶束转变为球形。PEG400溶解于反胶束的内核,并取代结合水与TX-100的EO链作用,诱导反胶束间融合形成较大的团簇。PEG的分子链越长,反胶束的粒径越小,越有利于诱导反胶束的融合。但是,PEG在反胶束中的溶解度随分子量的增加而减小。
     4.以核磁共振(NMR),偏光显微镜(POM),小角X-衍射(SXRD)及冷冻蚀刻电镜(FF-TEM)等方法研究了PEG在TX-100/n-C8H17OH/H2O体系层状液晶(Lα)中的定位,以及在PEG诱导下Lα发生相转变过程中微结构的变化。非离子表面活性剂体系“液晶溶胀模型”的计算结果表明,绝大部分PEG分子溶解于Lα相的溶剂层,同时0.92-2.58 wt%的PEG分子渗透进入两亲双层。PEG在两亲双层中的渗透及在溶剂层中的无规团聚诱导液晶相向各向同性相转变。PEG分子链越长,诱导相转变的效率越高。此外,在TX-100/n-C8H17OH/PEG(aq)体系单相区域内,PEG对液晶结构的影响存在一个临界分子量,该分子量的PEG对液晶结构的影响最大。临界分子量的大小与溶剂层厚度无关。对于TX-100/n-C8H17OH/H2O体系PEG的临界分子量为2000。
     5.以核磁共振(NMR),偏光显微镜(POM),小角X-衍射(SXRD)及流变性质的测量研究了三嵌段共聚物F127,P123与TX-100/n-C8H17OH/H2O体系层状液晶的相互作用。并与F127的疏水片段PPG4000,及亲水片段PEG4000与疏水片段PPG4000的混合物比较,以考察嵌段共聚物链的组成及构象对其与层状液晶相互作用的影响。结果表明:嵌段共聚物的疏水链及亲水连与层状液晶的作用同时导致层状液晶向各向同性相转变。在疏水作用力的驱动下,F127的PPO链段溶于层状液晶的两亲双层,使得两亲双层的厚度增加,表面活性剂分子排列的有序性下降,水在两亲双层中的渗透率增加。亲水链的长度影响了嵌段共聚物诱导层状液晶相向各向同性相转变的机理。较长的亲水链在溶剂层中的无规团聚导致液晶层弯曲,从而发生相转变;较短的亲水连则以助表面活性剂形式在两亲双层亲水基中定位,导致表面活性剂分子层间距增大,从而发生相转变。此外,嵌段共聚物疏水链及亲水链的拆分有助于相转变的诱导。
Various molecular assemblies, such as micelles, vesicles, microemulsion and lyotropic liquid crystals, form spontaneously for the special hydrophilic and hydrophobic amphiphile properties of surfactant. They have been widely applied in biology, material synthesis, energy, and various modern science and technology because of their special polar and nonpolar microenvironment and of the nanometer scale in at least one dimension. The mixtures of surfactant and macromolecules, especially water soluble polymer, possess particular properties, which can be adjusted by the designation and modification of the molecular structure of polymer. So far, the mixtures of surfactant and polymer have been used in oil extraction, cosmetic, material synthesis, pharmaceutical etc. The investigation of the interaction between surfactant and polymer has been attracted much attention. They spread widely and go deep into the level of molecular and sub-molecular.
     In the present work, the interaction mechanism between water soluble polymer poly(ethylene glycol)s (PEG)、pluronic copolymer (poly(ethylene oxide)- poly(propylene oxide)- poly(ethylene oxide)) and various surfactant molecular assemblies such as micelles, lamellar liquid crystals and reverse micelles were investigated. We focus our attention on the interaction model of complex between polymer and surfactant assemblies, and the effect of polymer chain length, composition and temperature on the topology of the complex. The main results are listed as follows:
     1. The microstructure of Triton X-100 (TX-100)/poly (ethylene glycol) (PEG) complex has been investigated by fluorescence resonance energy transfer (FRET), dynamic light scatter (DLS), freeze-fractured transmission electron microscopy (FF-TEM) and 1H NMR technology. The nonionic surfactant TX-100 and pyrene are employed as energy donor and acceptor respectively, and the average distance between them is calculated quantitatively in the systems of TX-100/PEG with different molecular weights (MW). The results of FRET study indicate that the presence of PEG leads to the separation of donor and acceptor in TX-100 micelles, suggesting that PEG chains insert into TX-100 micelles making the microstructure of PEG-bound TX-100 aggregates looser than that of free micelles, which is independent of the MW of PEG. However, FF-TEM, DLS and 1H NMR studies show that the morphology of the complex of TX-100/PEG depends on the MW of the polymer. PEG with shorter chain (MW <2000 Dalton) insert into and wrap around TX-100 micelles and form sphere-like complex, while that with longer chain (MW >2000 Dalton) would interact with numbers of TX-100 micelles and form coral-shaped clusters. In addition, higher temperature facilitate complex formation, while alcohols do not effect the interaction of TX-100 and PEG.
     2. Formation and structure transition of the complex composed of triblock copolymer F127 and nonionic surfactant TX-100 have been investigated by 1H NMR spectroscopy, dynamic light scattering (DLS) and isothermal titration calorimetry (ITC). Three TX-100 concentration regions are identified, within which TX-100/20 mg/mL F127 complex undergoes different temperature-induced structure transitions: In low concentration region (<9.42 mM), F127 single molecular species (unimers) wrap around TX-100 micelles forming F127/TX-100 complex with TX-100 micelle as the skeleton at a lower temperature (5 oC), and the skeleton transfers to F127 micelle at higher temperature (40 oC); in intermediate TX-100 concentration region (9.42-94.85 mM), the skeleton of F127/TX-100 complex transfers from TX-100 micelle successively into F127 micelle and TX-100 micelle again upon heating; the interaction of F127 with TX-100 is saturated in high TX-100 concentration region (>157.57 mM), and free TX-100 micelles coexist with larger clusters of F127/TX-100 complexes. In addition, TX-100-induced F127/TX-100 complex formation and structure transition are also investigated at constant temperatures. The results show that: Within 5-10 oC, F127 unimers mainly adsorb on the surface of TX-100 micelles just like normal water soluble polymers; in the temperature region of 15-25 oC, TX-100 micelles prompts F127 micelle formation; within 30-40 oC, TX-100 inserts into F127 micelles leading to the breakdown of F127 aggregates at higher TX-100 concentrations, and the obtained unimers thread through TX-100 micelles forming complex with TX-100 micelle as skeleton.
     3. Dynamic light scattering (DLS), 1H NMR, fluorescence and FT-IR are employed to investigated the effect of poly (ethylene glycol)s (PEG) with different molecular weight (MW) on the reverse micelles in the system of TX-100/cyclohexane/H2O. The results show that TX-100 forms non-spherical reverse micelles in cyclohexane, which transfer to small spherical ones at higher temperature. PEG400 is solubilized in the polar core of reverse micelles, and interacts with EO chains of TX-100 replacing binding water. Larger clusters of reverse micelles induced by PEG are observed at higher temperatures and PEG concentration. The efficiency to induce cluster formation increases with PEG molecular weight.
     4. Lamellar-to-isotropic phase transition is observed in the system of TX-100/n-C8H17OH/H2O induced by neutral water soluble polymer poly (ethylene glycol) (PEG) with molecular weight ranging from 400 to 20000. The location of PEG in the lamellar liquid crystal and the microstructure change of the lamellar phase during phase transition are investigated by means of 2H NMR, small angle X-ray diffraction (SXRD), rheology, polarized optical microscopy (POM) and freeze-fractured transmission electron microscopy (FF-TEM). Calculations based on the“Swelling Model”show that 0.92-2.58 wt% PEG2000 penetrates into the amphiphile layer, and the rest resolve in water layer. Both of these two kinds of locations induce the lamellar-to isotropic phase transition. The longer the chain length of PEG, the higher the efficiency is. In addition, a critical molecular weight of PEG is observed before phase transition occurs, with which the disturbance of PEG on the microstructure of lamellar liquid crystal is most prominent. And the critical molecular weight of PEG is independent of the thickness of water layer. The value is 2000 for the system of TX-100/n-C8H17OH/H2O.
     5. 2H NMR, small angle X-ray diffraction (SXRD), rheology, and polarized optical microscopy (POM) are employed to investigated interaction of triblock copolymer F127 (PEG4000-PPG4000-PEG4000) with lamellar liquid crystal in the system of TX-100/n-C8H17OH/H2O. The results are compared with P123 (PEG1000-PPG4000-PEG1000), PPG4000, and the mixture of PPG4000 and PEG4000 to study the effect of composition and conformation of polymer chain on the interaction between polymer and lamellar liquid crystal. Lamellar to isotropic phase transition induced by polymer is observed. The hydrophobic blocks of copolymer penetrate into the the surfactant amphiphile bilayer. Random coils of longer hydrophilic chain of F127 in the water layer cause the bend of amphiphile bilayer, while shorter hydrophilic chains of P123 penetrate into the hydrophilic layer of amphiphile bilayer. Both the hydrophobic and hydrophiphilic chain of copolymer contribute to the microstructure change of lamellar liquid crystal and subsequently phase separation. In addition, the phase separation occurs easily induced by PEG than copolymer.
引文
[1]赵国玺,朱王步瑶,表面活性剂物理化学,中国轻工业出版社,北京,2003.
    [2] Clint J. H. Surfactant Aggregation, London & Glasgow, Blackie 1992, p1.
    [3] Liu X.; Kan C.; Wang X.; Yang X.; Lu L. J. Am. Chem. Soc. 2006, 12, 430.
    [4] Zamlynny V.; Burgess I.; Szymanski G.; Lipkowski J.; Majewski J.; Smith G.; Satija S.; Ivkov R. Langmuir 2000, 16, 9861.
    [5] MaBain J. W.; Salman C. S. J. Am. Chem. Soc. 1920, 43, 426
    [6] Corkill J. M.; Goodman J. F. Walker T. Trans Faraday Soc. 1967, 63, 768.
    [7] Hollmberg K.; J?nsson B.; Kronberg B.; Lindman B Surfactants and Polymers in Aqueous Solution, 2nd edition. John Wiley & Sons Ltd.
    [8] Singh R.; Dutta P. K. Langmuir 2000, 16, 4148.
    [9] Workman H.; Flynn P. F. J. Am. Chem. Soc. 2009, 131, 3806.
    [10] Fontell K.; Fox K. K.; Hansson E. Mol Cryst Liquid Cryst Lett 1985, 1, 9.
    [11] Luzzati V.; Biological Membrans, Chapmen, D. ed. New York: Academeic Press 1968, Chp. 3.
    [12] Steel W. H.; Damkaci F.; Nolan R.; Walker R. A. J. Am. Chem. Soc. 2002, 124, 4824.
    [13] Lu T.; Li Z.; Huang J.; Fu H. Langmuir 2008, 24, 10723.
    [14] Hari A.; Paruchuri R; Sabatini D.; Kibbey T. Environ. Sci. Technol. 2005, 39, 2592.
    [15] Han J.; Song G; Guo R. Chem. Mater. 2007, 19, 973.
    [16] Han J.; Liu Y.; Guo R. J. Am. Chem. Soc. 2009, 131, 2060.
    [17]严瑞瑄,水溶性高分子,化学工业出版社,北京,1998.
    [18]严瑞瑄,唐丽娟,水溶性高分子产品手册,化学工业出版社,北京,2003.
    [19] Lehmann A.; Volkert B.; Fischer S.; Schrader A.; Nerenz H. Colloids and Surf. A 2008, 331, 150.
    [20] Fruijtier-P?lloth C. Toxicology 2005, 214,1.
    [21] Xiao L., Takada H.; Maeda K.; Haramoto M.; Miwa N. Biomedecine & Pharmacotherapy 2005, 59, 351.
    [22] Fan F.; Guo R. Crystal Growth & Design 2009, 9, 1677.
    [23] Jaturanpinyo M.; Harada A.; Yuan X.; Kataoka K. Bioconjugate Chem. 2004, 15, 344.
    [24] Yusa S.; Fukuda K.; Yamamoto T.; Ishihara T.; Morishima Y. Biomacromolecules 2005, 6, 663.
    [25] Zana R.; Lang J.; Lianos P. Microdomains in Polymer Solution, New York: Plenum Press, 1985, p 357.
    [26] Bosco S. H.; Zettl H.; Crassous J. J.; Ballauff M.; Krausch G. Macromolecules 2006, 39,8793.
    [27] Robb I. D. In Surf. Sci., Ser ??, 1981, Cha. 3.
    [27] Neglade M. J.; Randall F. J.; Tcheurekdjian N. Macromolecules 1987, 20, 1782.
    [29] Turro N. J.; Baretz B. H.; Kuo P. Langmuir 1986, 2, 438.
    [30] Long J.; Zhang L. Y.; Xu Z. H. Masliyah J. H. Langmuir 2006, 22, 8831-8839.
    [31] Shigemoto N.; Al-Maamari R.; Jibril B. Y.; Hirayama A.; Sueyoshi M. Energy & Fuels 2007, 21, 1014.
    [32] Tao C.; Li J. Langmuir 2003, 19, 10353.
    [33] Malorikovo A.; Hayakawa K.; Kwak J. C. T J.Phys. Chem. 1984, 88, 1930.
    [34] Lake L. W. Enhanced Oil Recovery, New York: Plenum Press, 1989.
    [35] Schwuge M. J. J. Colloid and Interface Sci. 1973, 43, 491.
    [36] Mazeau K.; Heux L. J. Phys. Chem. B 2003, 107, 2394.
    [37] Shinto H.; Morisada S.; Miyahara M.; Higashitani K. Langmuir 2004, 20, 2017.
    [38] Chen Y. M.; Matsumoto S. J.; Gong J. P. Osada Y. Macromolecules 2003, 36, 8830.
    [39] Pettersson E.; Topgaard D.; Stilbs P.; Soderman O. Langmuir 2004, 20, 1138-1143.
    [40] Roscigno P.; Asaro F.; Pellizer G.; Ortona O.; Paduano L. Langmuir 2003, 19, 9638.
    [41] Wang X. Y.; Li Y. J.; Li J. X.; Wang J. B.; Wang Y. L.; Guo Z. X.; Yan H. K. J. Phys. Chem. 2005, 109, 10807.
    [42] Li Y.; Wang X.; Wang Y. L. J. Phys. Chem. B 2006, 110, 8499.
    [43] Zhang G. Z.; Winnik F. M.; Wu C. Physical Review Letters 2003, 90, 35506.
    [44] Xie D. H.; Xu K.; Bai R. K.; Zhang G. Z. J. Phys. Chem. B 2007, 111, 778-781.
    [45] Massiera G.; Ramos L. Langmuir 2002, 18, 5687.
    [46] Kubowicz S.; Andreas F. Langmuir 2005, 21, 7214.
    [47] Leonard M.J.; Strey H.H. Macromolecules 2003, 36, 9549.
    [48] Muzzalupo R.; Infacte M. R.; Perez L.; Pinazo A.; Marques E. F.; Antonelli M. L.; Strinati C.; Mesa C. L. Langmuir 2007, 23, 5963.
    [49] Mya K. Y.; Jamieson A. M.; Sirivat A. Langmuir 2000, 16, 6131.
    [50] Haldar B.; Charabarty A.; Mallick A.; Mandal M. C.; Das P.; Chattopadhyay N. Langmuir 2006, 22, 3514.
    [51] Deo P.; Deo N. Somasundaran, P. Langmuir 2007, 23, 5906.
    [52] Chakraborty T.; Chakraborty I.; Ghosh S. Langmuir 2006, 22, 9905.
    [53] Bao H.; Li L.; Gan L. H.; Zhang H. Macromelecules 2008, 41, 9406.
    [54] Schwuger M. J. J. Colloid Interface Sci. 1973, 43, 491.
    [55] Deo P.; Deo N.; Somasundaran P. Langmuir 2005, 21, 9998.
    [56] Romani A. P.; Gehlen M. H.; Itri R. Langmuir 2005, 21, 127.
    [57] Goreishi S. M.; Li Y.; Bloor D. M.; Warr J.; Wyn-Jones E. Langmuir 1999, 15, 4380.
    [58] Wang Y.; Han W.; Yan H.; Kwak J. C. T. Langmuir 1997, 13, 3119.
    [59] Arai H.; Marata M.; Shinoada K. J. Colloid Interface Sci. 1971, 37, 223.
    [60] Chu D.; Thomas J. K. J. Am. Chem. Soc. 1986, 108, 6270.
    [61] Hansson P.; Almgren M. J. Phys. Chem. 1995, 99, 16694.
    [62] Middleton H.; English R. J.; Williams P. A. Langmuir 2005, 21, 5174.
    [63] Bai G.; Santos L.; Nichifor M.; Lopes A.; Bastos M. J. Phys. Chem. B 2004, 108, 405.
    [64] Bai G.; Nichifor M.; Lopes A.; Bastos M. J. Phys. Chem. B 2005,109, 21681.
    [65] Nichifor M.; Bastos M.; Lopes S.; Lopes A. J. Phys. Chem. B 2008, 112, 15554.
    [66] Matulis D.; Rouzina I.; Bloomfield V. A. J. Am. Chem. Soc. 2002, 124, 7331.
    [67] Nishio T.; Shimizu T. Biophys. Chem. 2005, 117, 19.
    [68] Lapitsky Y.; Parikh M.; Kaler E. W. J. Phys. Chem. B 2007, 111, 8379.
    [69] Chari K.; Kwalczyk J.; Lal J. J. Phys. Chem. B 2004, 108, 2857.
    [70] Lisi R. D.; Simone D. D.; Millioto S. J. Phys. Chem. B 2000, 104, 12130.
    [71] Diab C.; Winnik F. M.; Tribert C. Langmuir 2007, 23, 3025.
    [72] Yue H.; Wu M.; Xue C.; Velayudham S.; Liu H.; Waldeck D. H. J. Phys. Chem. B 2008, 112, 8218.
    [73] Zheng Y.; Davis H. T. Langmuir 2000, 16, 6453.
    [74] Kuntz D. M.; Walker L. M. Ind. Eng. Chem. Res. 2009, 48, 2430.
    [75] Grant J.; Lee H.; Liu R. C. Allen C. Biomacromolecules 2008, 9, 2146.
    [76] Gianni P.; Barghini A.; Bernazzani L.; Mollica V.; Pizzolla P. J. Phys. Chem. B 2006, 110, 9112.
    [77] Hai M.; Han B.; Yan H. J. Phys. Chem. B 2001, 105, 4824.
    [78] Mezei A.; Meszaros R. Langmuir 2006, 22, 7148.
    [79] Shang B. Z.; Wang Z.; Larson R. G. J. Phys. Chem. B 2008, 112, 2888.
    [80] Nikas Y. J.; Blankschtein D. Langmuir 1994, 10, 3512.
    [81] Gianni P.; Bernazzani L.; Carosi R.; Mollica V. Langmuir 2007, 23, 8752.
    [82] Wesley R. D.; Cosgrove T.; Thompson L.; Armes S. P.; Baines F. L. Langmuir 2002, 18, 5704.
    [83] Wang X. Y.; Li Y. J.; Wang J.; Wang Y.; Ye J.; Yan H. J. Phys. Chem. B 2005, 109, 12850.
    [84] Silva R. C.; Olofesson G.; Schillen K.; Loh W. J. Phys. Chem. B 2002, 106, 1239.
    [85] Persson B.; Hugherth A.; Caram-Letham N. C.; Sundelof L.-O. Langmuir 2000, 16, 313.
    [86] Kogej K. J. Phys. Chem. B 2003, 107, 8003.
    [87] Thalberg K.; van Stam J.; Lindblad C.; Almgren M.; Lindman B. J. Phys. Chem. 1991, 95, 8975.
    [88] Wallin T.; Linse P. J. Phys. Chem. 1996, 100, 17873.
    [89] Loh W.; Teixera L. A. C.; Lee L. T. J. Phys. Chem. B 2004, 108, 3196.
    [90] Gu J.; Schelly Z. A. Langmuir 1997, 13, 4256.
    [91] Gu J.; Schelly Z. A. Langmuir 1997, 13, 4251.
    [92] Rangnekar V. M.; Oldham P. B. Anal. Chem. 1990, 62, 1144.
    [93] Zhu De M., Schelly Z. A. Langmuir 1992, 8, 48.
    [94] Das D., Nath D. N. J. Phys. Chem. B 2007, 111, 11009.
    [95] Kanamaru M.; Einaga Y. Polymer 2002, 43, 3925.
    [96] Emin S. M.; Denkova P. S.; Papazova K. I.; Dushkin C. D.; Adachi E. J. Colloid and Interface Sci. 2007, 305, 133.
    [97] Kon-No K.; Kitahara A. J. Colloid Interface Sci. 1970, 33, 124.
    [98] Kon-No K.; Kitahare A. J. Colloid Interface Sci. 1971, 41, 47.
    [99] Zhu D. M.; Wu X.; Schelly Z. A. Langmuir 1992, 8, 1538.
    [100] Kumbhakar M.; Goel T.; Mukherjee T.; Pal H. J. Phys. Chem. B 2005, 109, 14168.
    [101] Gochman-Hecht H.; Bianco-Peled H. J. Colloid and Interface Sci. 2006, 297, 276.
    [102] Yamada Y.; Kuboi R.; Komasawa I. Biotechnol Prog. 1993, 9, 468.
    [103] Shome A.; Roy S.; Das P. K. Langmuir 2007, 23, 4130.
    [104] Mukherjee S.; Chowdhury P.; DeGrado W. F.; Gai F. Langmuir 2007, 23, 11174.
    [105] Shastry M. C. R.; Eftink M. R. Biochemistry 1996, 35, 4094.
    [106] Wu. Biotecnol Prog. 2006, 22, 499.
    [107] In: M.P. Pileni, Editor, Structure and Reactivity in Reverse Micelles, Studies in Physical and Theoretical Chemistry 1989. vol. 65.
    [108] Pileni M.P.; Zemb T. Chem. Phys. Lett. 1985,118, 414.
    [109] Pileni M.P.; Cassin G.; Michel F.; Pitre F. Colloids Surf. B 1995, 3, 321.
    [110] Petit C.; Brochette P.; Pileni M.P. J. Phys. Chem. 1986, 90, 6517.
    [111] Melo E.P.; Aires-Barros M.R.; Cabral J.M.S. Biotechnol. Ann. Rev. 2001, 7, 87.
    [112] Melo E.P.; Costa S.M.B.; Cabral J.M.S.; Fojan P.; Petersen S.B. Chem. Phys. Lipids 2003, 124, 37.
    [113] Hai M.; Kong F. J. Chem. Eng. Data. 2008, 53, 765.
    [114] Laia C. A. T.; Brown W.; Almgren M.; Costa S. M. B. Langmuir 2000, 16, 465.
    [115] Talukder M. M. R.; Hayashi Y.; Takeyama T.; Zamam M. M.; Wu J. C.; Kawanishi T.; Shimizu N. Journal of Molecular Catalysis B 2003, 22, 203.
    [116] Iliopoulos I.; Olsson U. J. Phys. Chem. 1994, 98, 1500.
    [117] Ruppelt D.; K?tz J.; Jawger W.; Friberg S. E.; Mackay R. A. Langmuir 1997, 13, 3316.
    [118] Kosmella S.; K?tz J.; Friberg S. E.; Mackay, R. A. Colloid and Surface A 1996, 112, 227.
    [119] Zhang K.; Linse P. J. Phys. Chem. 1995, 99, 9130.
    [120] DeméB.; Dubois M.; Zemb T.; Cabane B. J. Phys. Chem. 1996, 100, 3828.
    [121] Singh M.; Ober R.; Kleman M. J. Phys. Chem. 1993, 97, 11108.
    [122] Yang B. S.; Lal J.; Kohn J.; Huang J. S.; Russel W. B.; Prudhomme R. K Langmuer 2001, 17, 6692.
    [123] De Gennes D. G. J. Phys. Chem. 1990, 94, 840.
    [124] Ficheux M. F.; Bellocq A. M.; Nallet F. J. Phys. (Fr.) 1995, 5, 823.
    [125] Ficheux M. F.; Bellocq A. M.; Nallet F. Colloid and Surface A. 1997, 123, 253.
    [126] Rajagopalan V.; Olsson U.; Iliopoulos I. Langmuir 1996, 12, 4378.
    [127] Yang B. S.; Lal J.; Richette P.; Marques C. M.; Russel W. B.; Prudhomme R. K. Langmuir 2001, 17, 5834.
    [128] Javierre I.; Bellocq A. M.; Nallet F. Langmuir 2001, 17, 5417.
    [129] Maldonado A.; López-Esparza R.; Ober R.; Gulik-Krzywicki T.; Urbach W.; Williams C. E. J. Colloid and Interface Sci. 2006, 296, 365.
    [130] Safinya C. R.; Sirota E. B.; Bruinsme R. R.; Jeppesen C.; Plano, R.; Wenzel L. Science 1993, 261, 588.
    [131] Mortensen K. Curr. Opin. Colloid Interface Sci. 2001, 6, 140.
    [132] Berghausen J. Z. J.; Lindner P.; Richtering W. J. Phys. Chem. B 2001, 105, 11081.
    [133] Radlinska E. Z.; Gulik-Krzywicki T.; Langevin D.; Lafuma F. Langmuir 1998, 14, 5070.
    [1] Razatos A.; Ong Y. L.; Boulay F. Langmuir 2000, 16, 9155.
    [2] Holownina P.; Perez-Amodio S. Anal. Chem. 2001, 73, 3426.
    [3] Nisha C. K.; Manorama S. V.; Maiti S. Langmuir 2004, 20,8468.
    [4] Nolan C. M.; Reyes C. D.; Debord J. D. Biomacromolecules 2005, 6, 2032.
    [5] Nakano S.; Karimata H.; Ohmichi T. J. Am. Chem. Soc. 2004, 126, 14330.
    [5] Deo P.; Somasundaran P. Langmuir 2005, 21, 3950.
    [6] Middleton H.; English R. J.; Williams P. A. Langmuir 2005, 21, 5174.
    [7] Deo P.; Deo. N.; Somasudaran P. Langmuir 2005, 21, 9998.
    [8] Noda T.; Hashidzume A.; Morishima Y. Langmuir 2000, 16, 5324.
    [9] Nolan B. H.; Zhong X.; Katanchalee V.; Roger E.M. Macromolecules 2001, 34, 6425.
    [10] Borisov O. V.; Halperin A. Micromolecules 1996, 29, 2612.
    [11] Qiao L.; Easteal A. J. Colloid Polym Sci. 1998, 276, 313.
    [12] Schild H. G.; Tirrell D. A. Macromolecules 1992, 25, 4553.
    [13] Kujawa P.; Liu R. C. W.; Winnik F. M. J. Phys. Chem. B 2002, 106, 5578.
    [14] Jons C. D.; McGrath J. G.; Lyon L. A. J. Phys. Chem. B 2004, 108, 12652.
    [15] Itaka K.; Harada A.; Nakamura K. Biomacromolecules 2002, 3, 841.
    [16]Oh J. K.; Yang J.; Tomba J. P. Macromolecules 2003, 36, 8836.
    [17] Laukkanen A.; Winnik F.M.; Tenhu H. Macromolecules 2005, 38, 2439.
    [18] Albertus P. H.; Schenning J.; Emiel P. J. Am. Chem. Soc. 2000, 122, 4489.
    [19] Li Y.; Nakashima K. Langmuir 2003, 19, 548.
    [20] Ye X.D.; Farinha J. P. S.; Oh J. K. Macromolecules 2003, 36, 8749.
    [21] Swati D.; Agnishwar G. J. Colloid and Interface Sci. 2004, 271, 485.
    [22] Tamura H.; Knoche M.; Bukovac M. J. Agric. Food Chem. 2001, 49, 1809.
    [23] Zhang G. X. Principles of surfactant action. Beijing: Chinese Light Industry Press, 2003, 38.
    [24] Guo R.; Liu T.Q.; Yu W. L. Langmuir 1999, 15, 624.
    [25] Li L. D.; Zhang M. Chinese Journal of Analytical Chemistry 1988, 16, 732.
    [26] Guo R.; Zhang X. H.; Guo X. J. Dispersion Science and Technology 2001, 22, 443.
    [27] Guo R.; Ding Y. H.; Liu T. Q. Acta chim. Sinica 1999, 57, 943.
    [28] Guo R.; Zhu W. Q.; Chen Z. Q.; Shen M. Chemical Journal of Chinese University 1995, 1104.
    [29] Guo R.; Ding Y. H.; Liu T. Q. J. Dispersion Science and Technology 2002, 23, 777.
    [30] Tokuoka Y.; Uchiyama H. Langmuir 1995, 11, 725.
    [31] Dai S.; Tam K. C. Langmuir 2004, 20, 2177.
    [32] Mya K.Y.; Jamieson A. M.; Sirivat A. polymer 1999, 40, 5741.
    [33] Brckman J. C.; Os N. M.; Engberts J. Langmuir 1988, 4, 1266.
    [1] Couderc S.; Li Y.; Bloor D. M.; Holzwarth J. F.; Wyn-Jones E. Langmuir 2001, 17, 4818.
    [2] Goldmints I.; Von-Gottberg I. K.; Smith K. A; Hatton T. A. Langmuir 1997, 13, 3659.
    [3] Baute D.; Goldbarb D. J. Phys. Chem. 2007, 111, 10931.
    [4] Jain T. K.; Morales M. A.; Sahoo S. K.; Leslie-Pelecky K. L.; Labhasetwar V. Molecular Pharmaceutics 2005, 194.
    [5] Collett J. H.; Tobin E. A. J. Pharm. Pharmacol. 1979, 31, 174.
    [6] Choi S. H.; Lee S. H.; Park T. G. Biomacromolecules 2006, 7, 18640.
    [7] Bae K. H.; Choi S. H.; Park S. Y.; Lee Y. H.; Park T. G. Langmuir 2006, 22, 6380.
    [8] Shaheen A.; Kaur I.; Mahajan R. K. Ind. Eng. Chem. Res. 2007, 46, 4706.
    [9] Bromerg L.; Temchenko M.; Colby R. H. Langmuir 2000, 16, 2609.
    [10] Dai S.; Tan K. C.; Li L. Macromolecules 2001, 34, 7049.
    [11] L?f D.; Schillén K.; Torres M. F.; Müller A. J. Langmuir 2007, 23, 11000.
    [12] Ganguly R.; Aswal V. K.; Hassan P. A.; Gopalakrishnan I. K.; Kulshreshtha S. K. J. Phys. Chem. 2006, 110, 9843.
    [13] Almgren M.; Van Stam J.; Lindblad C.; Li P.; Stilbs P.; Bahador P. J. Phys. Chem. 1991, 95, 5677.
    [14] Hecht E.; Mortensen K.; Gradzielski M.; Hoffmann H. J. Phys. Chem. 1995, 99,4866.
    [15] Li Y.; Xu R.; Couderc S.; Bloor D. M.; Wyn-Jones E.; Hlozwrth J. F. Langmuir 2001, 17, 1838.
    [16] Barbosa S.; Taboada P.; Castro E.; Mosquera V. J. J. Colloid Interf. Sci. 2006, 296, 677.
    [17] Jansson J.; Schillén K.; Olofesson G.; Silva R. C.; Loh W. J. Phys. Chem. B 2004 108, 82.
    [18] Ortona O.; D’Errico G.; Paduano L.; Vitagliano V. J. Colloid Interface Sci. 2006, 301, 63.
    [19] Silva R. C.; Olofsson G.; Schillén K.; Loh W. J. Phys. Chem. B 2002, 106, 1239.
    [20] Li Y.; Xu R.; Couderc S.; Bloor D. M. Holzwarth J. F.; Wyn-Jones E Langmuir 2001, 17, 5742.
    [21] Couderc-Azouani S.; Sidhu J. Thurn T.; Xu R.; Bloor D. M.; Penfold J.; Holzwarth J. F; Wyn-Jones E. Langmuir 2005, 21, 10197.
    [22] Glatter O.; Fritz G.; Lindner H.; Brunner-Popela J.; Mittelbach R.; Stery R.; Egelhaaf S. U Langmuir 2000, 16, 8692.
    [23] Saito S.; Arghel D. F. In Polymer-Surfactant Systems; Kwak, J. C. T., Ed; Surf. Sci. Series Vol 77; Marcel Dekker: New York, 1998, 357.
    [21] L?f D.; Niemiec A.; Schillén K.; Loh W. Olofsson G. J. Phys. Chem. B 2007, 111, 5911.
    [25] Alexandridis P.; Holzwarth J. F.; Hotton T. A Macromolecules 1994, 27, 2414.
    [26] Liang X. F.; Guo C.; Ma J. H.; Wang J.; Chen S.; Lin H. Z. J. Phys. Chem. B 2007, 111, 13217.
    [27] Berne B. J.; Pecora R. Dynamic Light Scattering, Plenum Press: New York, 1976.
    [28] Ma J. H.; Guo C.; Tang Y. L.; Liu H. Z. Langmuir 2007, 23, 9596.
    [29] Ma J. H.; Guo C.; Tang Y. L.; Wang J.; Zhen L. L.; Liang X. F.; Chen S.; Liu H. Z. Langmuir 2007, 23, 3075.
    [30] Ge L. L.; Zhang X. H.; Guo R. Polymer 2007, 48, 2681.
    [31] Yang L.; Alexandridis P.; Steytler D. C.; Kositza M.; Holzwa J. Langmuir 2000, 16, 8555.
    [34] Wanka G.; Hoffman H.; Ulbricht W. Macromolecules 1994, 27, 4145.
    [35] Ma J. H.; Guo C.; Tang Y. L.; Wang J.; Zheng L. L.; Liang X. I.; Chen S.; Lin H. Z. J. Colloid Interface Sci. 2006, 299, 953.
    [36] Lise P. Macromolecules 1994, 27, 6404.
    [37] Taboada P.; Velasquez G.; Barbosa S.; Yang Z.; Nixon S. K.; Zhou Z.; Heatley F.; Ashford M.; Mosquera V.; Attwood D.; Booth C. Langmuir 2006, 22, 7465.
    [38] Li X. F.; Wettig S. D.; Verrall R. E. Langmuir 2004, 20, 579.
    [39] Nagarajan R. Colloid Surf. 1985, 13, 1.
    [40] Pandit N.; Trygstad T.; Croy S.; Bohorquez M.; Koch C. J. Colloid Interface Sci. 2000, 222, 213.
    [1] Chakraborty A.; Seth D.; Setua P.; Sarkar N. J. Phys. Chem. B 2006, 110, 5359.
    [2] Brubach J. B.; Mermet A.; Filabozzi A.; Gerschel A.; Lairez D.; Krafft M. P.; Roy P. J. Phys. Chem. B 2001, 105, 430.
    [3] Lianos P; Modes S; Stiaikos G.; Brown W. Langmuir 1992, 8, 1054.
    [4] Papoutsi D; Lianos P; Brown W. Langmuir 1994, 10, 3402.
    [5] Suarez M.-J; Lévy. H.; Lang J. J. Phys. Chem. 1993, 97, 9808.
    [6] Meier W. J. Phys. Chem. 1997, 101, 919.
    [7] Brown W.; Fundin J; Miguel M. G. Macromolecules 1992, 25, 7192.
    [8] Medeirow G. M. M; Costa S. M. B. Colloid Surf. A 1996, 119, 141.
    [9] Meier, W. Langmuir, 1996, 12, 1188.
    [10] Laia C. A. T.; Brown W.; Almgren M.; Costa S. M. B. Langmuir 2000, 16, 465.
    [11] Mehta Sik; Sharma, S. J. Colloid and Interface Sci. 2006, 296, 690.
    [12] Emin S. M.; Denkova P. S.; Papazova K. I.; Dushkin C. D; Adachi E. J. Colloid and Interface Sci. 2007, 305, 133.
    [13] Calandra P.; Lorgo A.; Ruggirello A.; Liveri T. J. Phys. Chem. B 2004, 108, 8260.
    [14] Zhu D.; Schelly Z. A. Langmuir 1992, 8, 48.
    [15] Kanamaru M.; Einaga Y. Polymer 43, 2002, 3925, 465.
    [16] Laia C. A. T.; Brown W.; Almgren M.; Costa S. M. B. Langmuir 2000, 16, 465.
    [17] Rangnekar V. M.; Oldham P. B. Anal. Chem. 1990, 62, 1144.
    [18] Das D.; Nath D. N. J. Phys. Chem. B 2007, 111, 11009.
    [19] Kumbhakar M.; Goel T.; Mukherjee T.; Pal H. J. Phys. Chem. B 2005, 109, 14168.
    [20] Zhou N.; Li Q.; Wu J; Chen J.; Weng S.; Xu G. Langmuir 2001, 17, 4505.
    [21] Li Q.; Li T.; Wu J.; Zhou N. J. Colloid and Interface Sci. 2000, 229, 298.
    [22] Calandra P.; Longo A.; Ruggirello A.; Liveri V. T. J. Phys. Chem. B 2004, 108, 8260.
    [23] Brubach J.–B.; Mermet A.; Filabozzi A.; Gerschel A.; Lairez D.; Kratlt M. P.; Roy P. J. Phys. Chem. B 2001, 105, 430.
    [24] Vasilescu M.; Caragheorgheopol A.; Caldararu H.; Bandula R. J. Phys. Chem. B 1998, 102, 7740.
    [25] Liu Y.; Guo R. Biomolecules 2008, 2007, 8, 2902.
    [26] Kawai T.; Shindo N.; Kon-No K. Colloid Polymer Sci. 1995, 273, 195.
    [27] Emin S. M.; Denkova P. S.; Papazova K. I.; Dushkin C. D.; Adachi E. J. Colloid and Interface Sci. 2007, 305, 133.
    [28] Gu J.; Schelly Z. A. Langmuir 1997, 13, 4256.
    [29] Dutt G. B.; J. Phys. Chem. B, 2004, 108, 805.
    [30] Zhu D. M.; Wu X.; Schelly Z. A. Langmuir 1992, 8, 1538.
    [31] Ge L.; Zhang X.; Guo R. Polymer 2007, 48, 2681.
    [32] Guo R.; Ding Y.H.; Liu T.Q. Acta Chim. Sinica 1999, 57, 943.
    [33] Ge L.; Guo R.; Zhang X. J. Phys. Chem. 2009, 112, 14566.
    [34] Mehta S. K.; Sharma S. Journal of Colloid and Interface Science 2006, 296, 690.
    [35] Lianos P.; Modes S.; Staikos G.; Brown W. Langmuir 1992, 8, 1054.
    [36]严瑞瑄,陈振兴,宋宗文,鲍其,水溶性聚合物,化学工业出版社,1992,1,p171.
    [37] Berne BJ, Pecora R. Dynamic light scattering. New York: Plenum Press; 1976.
    [1] Almgren M.; Borne′, J.; Feitosa E.; Khan A.; Lindman B. Langmuir 2007, 23, 2768.
    [2] Nisha C.; Manorama S.; Kizhakkedathu J.; Maiti S. Langmuir 2004, 20, 8468.
    [3] Nolan C.; Reyes C.; Debord J.; García A.; Lyon L. Biomacromolecules 2005, 6, 2032.
    [4] Deo P.; Somasundaran P. Langmuir 2005, 21, 3950.
    [5] Alexandridis P.; Ivanova R.; Lindman B. Langmuir 2000, 16, 3676.
    [6] L?f D.; Schillén K.; Torres M. F.; Müller A. J. Langmuir 2007, 23, 11000.
    [7] Pacios I. E.; Renamayor C. S.; Horta A.; Lindman B.; Thuresson K. J. Phys. Chem. B 2002, 106, 5035.
    [8] Pacios I. E.; Renamayor C. S.; Horta A.; Thuresson K.; Lindman B. Macromolecules 2005, 38, 1949.
    [9] López-Esparza R; Gurdeau-Boudeville M-A; Cambin Y; Bodrígurz-Beas C; Maldonado A; Urbach W. J. Colloid Interface Sci. 2006, 30, 105.
    [10] Ding Y. H.; Xu B.; Guo R. Materials Chemistry and Physics 2006, 98, 425.
    [11] Bechthold N.; Tiersch B.; K?tz J.; Friberg S. E. J. Colloid and Interface Sci. 1999, 215, 106.
    [12] Ficheux M.F.; Bellocq A. M.; Nallet F. Colloids and Surface A 1997, 123, 253.
    [13] Rajagopalan V.; Olsson U.; Iliopoulos I. Langmuir 1996, 12, 4378.
    [14] Iliopoulos L.; Olsson U. J. Phys. Chem. 1994, 98, 1500.
    [15] Singh M.; Ober R.; Kleman M. J. Phys. Chem. 1993, 97, 11108.
    [17] Zhang K.; Linse P. J. Phys. Chem. 1995, 99, 9130.
    [18] DeméB.; Dubois M.; Zemb T.; Cabane B. J. Phys. Chem. 1996, 100, 3828.
    [19] Guo R.; Zhang X. H.; Guo X. J. Dispersion and Techi. 2001, 22, 443.
    [20] Pacios I. E.; Renamayor C. S.; Horta A.; Lindman B.; Thuresson K. J. Phys. Chem. B 2002, 106, 5035.
    [21] K?tz J.; Kosmella S. Current Opinion in Colloid and Interface Science 1999, 4, 348.
    [22] Dvinskikh S. V.; Furo I. Langmuir 2001, 17, 6455.
    [23] Pacios I. E.; Renamayor C. S.; Horta A.; Lindman B.; Thuresson K. J. Colloid and Interface Sci. 2006, 299, 378.
    [24] Bechthold N.; Tiersch B.; K?tz J.; Friberg S. E. J. Colloid and Interface Sci. 1999, 215, 106.
    [25] Wang Z.; Liu F.; Gao Y.; Zhuang W.; Xu L.; Han B.; Li G.;. Zhang G.. Langmuir 2005, 21, 4931.
    [26] Horányi T.; Halász L.; Pálinkás J.; Németh Zs Langmuir 2004, 20, 1639.
    [27] Németh Zs.; Halász L.; Pálinkás J.; Bóta A.; Horányi T. Colloid and Surface A1998, 145, 107.
    [28] Friberg S. E.; Ge, L. L.; Guo R. J. Dispersion and Techi. 2008, 29, 735.
    [29] Ward A. I. J.; Ku H.; Phillipi M. A.; Marie C. Mol. Cryst. Liq. Cryst. 1988, 154, 55.
    [30] Gradzieliski M.; Hofmann H.; Panitz J.; Wokaun A. J. Colloid Interface Sci. 1995, 169, 103.
    [31] Sidding M. A.; Radiman S.; Jan L. S.; Muniandy S. V. Colloid and Surface A 2006, 276, 15.
    [32] Ge L. L.; Zhang X. H.; Guo R. Polymer 2007, 48, 2681.
    [1] Zhang K.; Linse, P. J. Phys. Chem. 1995, 99, 9130.
    [2] Colton, C. K.; Satterfield, C. M.; Lai, C. S. AICHE J. 1975, 21, 189.
    [3] Brochare, F.; de Gennes, P. G. J. Chem. Phys. 1977, 67, 52.
    [4] Bouligand, Y. In Liquid Crystals; Liebert, l. Ed.; Academic Press; New Youk, 1978; P259.
    [5] Ahkong, Q. F.; Fisher, D.; Tampion, W.; Lucy, J. A. Nature 1975, 253, 194.
    [6] Robinson, J. M.; Roos, D. S.; Davidson, R. L.; Katnovsk, M. J. Cell Sci. 1979, 40, 63.
    [7] Ohno, H.; Sakai, T.; Tsuchida, E.;Honda, K.; Sasakawa, S. Biochem. Res. Commun. 1981, 102, 426.
    [8] Ficheus M. F.; Bellocq A. M.; Nallet F. J. Phys. (Fr) 1995, 5, 823.
    [9] Fecheus M. F.; Bellocq A. M. Colloids Surf. A 1997, 123, 253.
    [10] Pacios I. E.; Renamayor C. S.; Horta A. Macromolecules 2005, 38, 1949.
    [11] Ge L.; Zhang X.; Guo R. J. Phys. Chem. 2009, 113, 1993.
    [12] Bohorquez M.; Koch C.; Trygstad T.; Pandit N. J. Colloid and Interface Sci. 1999, 216, 34.
    [13] Liu Y.; Chen S.; Huang J. Macromolecules 1998, 31, 6226.
    [14] Nolan S. L.; Phillips R. J.; Cotts P. M.; Dungan S. R. J. Colloid and Interface Sci.1997, 191, 291.
    [15] Su Y.; Liu H.; Wang J.; Chen J. Langmuir 2002, 18, 865.
    [16] Frank C.; Sottmann T.; Stubenrauch C.; Allgaier J.; Strey R. Langmuir 2005, 21, 9058.
    [17] Sottmann T. Curr. Opin. Colloid Interface Sci. 2002, 7, 57.
    [18] Denesyuk N. A.; Gompper G. Macromolecules, 2006, 39, 5497.
    [19] Firestone M. A.; Wolf A. C.; Seifert S. Biomacromolecules 2003, 4, 1539.
    [20] Guo R.; Zhang X. H.; Guo X. J. Dispersion and Techi. 2001, 22, 443.
    [21] Pacios I. E.; Renamayor C. S.; Horta A., Lindman B., Thuresson K. J. Colloid and Interface Sci. 2006, 299, 378.
    [22] Pacios I. E.; Renamayor C. S.; Horta A.; Lindman B.; Thuresson K. J. Phys. Chem. B 2002, 106, 5035.
    [23] Freyssingeas E.; Antelmi D. Kékicheff P.; Richetti P.; Bellocq A. M. Eur. Phys. J. B 1999, 9, 123.
    [24] Platz G.; P?like J.; Thuning C.; Hofmann R.; Nickel D.; Rybinski W. V. Langmuir 1995, 11, 4250.
    [25] Cordobés F. Mu?oz J. Gallegos C. J. Colloid and Interface Sci. 1997, 187, 401.
    [26] K?tz J.; Kosmella S. Curr. Opin. Colloid and Interface Sci. 1999, 4, 348.
    [27] Piculell L.; Bergfeldt K.; Gerdes S. J. Phys. Chem. 1996, 100, 3675.
    [28] Bechthold N.; Tiersch B.; K?tz J.; Friberg S. E. J. Colloid and Interface Sci. 1999, 215, 106.
    [29] Guo R.; Zhang X. H.; Guo X. J. Dispersion and Techi. 2001, 22, 443.
    [30] Friberg S. E.; Ge, L. L.; Guo R. J. Dispersion and Techi. 2008, 29, 735.
    [31] Németh Zs.; Halász L.; Pálinkás J.; Bóta A.; Horányi T. Colloid and Surface A 1998, 145, 107.
    [32] Rodríguez-Abreu, C.; García-Roman, M; Kunieda, H. Langmuir 2004, 20, 5235.
    [33] Ge L.; Zhang X.; Guo R. Polymer 2007, 48, 2681.
    [34] Mik?íka I.; Deyla Z.; Ka?ickab V. Journal of Chromatography B 2000, 741, 37.
    [35] Rizwan S.B.; Dong Y.-D.; Boyd B.J.; Rades T.; Hook S. Micron 2007, 38, 478.
    [36] Soni S. S.; Brotons G.; Bellour M.; Narayanan T.; Gibaud A. J. Phys. Chem. 2006, 110, 15157.