锂离子电池正极材料LiNi_xCo_yMn_(1-x-y)O_2及相关电解液添加剂的性能与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三元正极材料LiNi_xCo_yMn_(1-x-y)O_2因具有价格低、热稳定性好、对环境友好以及高电位下比容量高等突出优势成为锂离子电池研究的热点之一,引起了研究者的广泛关注。本论文选择该系列材料为研究内容,主要工作集中在优化合成条件,并成功制备出具有良好电化学性能的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2和LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2正极材料,通过多种电化学与谱学手段表征它们的电化学、表面性质、热稳定以及储存等多方面的性能,并重点研究了LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料首次不可逆损失严重的原因,以及LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2粉末在空气中的储存稳定性等。
     在实验技术方面,本论文在国内首次建立了用于锂离子电池研究的原位差分电化学质谱装置(DEMS),自行设计制作DEMS用的电解池并搭建了整套系统,并且已将其成功应用于对电解液添加剂的研究中。
     在材料合成方面,本论文采用溶胶凝胶预处理高温烧结或共沉淀预处理高温烧结的两种方法,分别制备LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2和LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2材料,将烧结温度控制在850℃-900℃范围内可以得到层状结构良好的材料。他们的电化学性能突出,在2.5-4.6V里以0.1C(20mAh/g)的倍率充放,首次放电容量均达到200mAh/g,60圈后仍然具有首次70%以上的容量,具有较高的能量密度和较好的循环稳定性。
     在有关LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料的研究中也发现,该材料第一圈的库仑效率仅仅有77%,首次不可逆容量损失比较严重。为了了解出现这一现象的原因,本文选择NO_2BF_4作为脱锂剂,遵循LiNi_xCo_yMn_(1-x-y)O_2+m NO_2BF_4→Li_(1-m)Ni_xCo_yMn_(1-x-y)O_2+mNO_2+mLiBF_4反应方程式,用化学方法直接从粉末里氧化脱出定量的锂,希望能够模拟电池的电化学脱锂过程,排除导电剂,粘结剂,集流体的影响,帮助更好的理解三元正极材料的电化学行为。
     研究结果表明,该材料的结构稳定性较好,虽然在脱锂过程中,晶胞的体积发生先膨胀后收缩的变化,但仍维持O3的单相结构,并不会随锂的脱出形成新相。但过渡金属Ni和Co的氧化态却会随锂的脱出持续升高,尤其是在高电位下发生的Ni~(3+)→Ni~(4+)和Co~(3+)→Co~(4+)的变化,其可逆性比较差,给材料的电化学性能带来了负面影响。另外在高脱锂状态下,晶格氧会形成具有活性的氧物种,如:O_2~-,O~-,O_2~(2-),它们会逐渐失去电子形成O_2,进而发生吸附于材料表面甚至脱出氧气的不可逆变化,既打破了材料原来的物料平衡,也会在表面形成阻挡层,影响放电时锂的嵌入。因此如何控制高脱锂状态下过渡金属离子以及氧物种的不可逆变化,是该材料进一步提高电化学性能应该解决的问题。
     同时相对于LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2,在保证容量性能的前提下,由于降低了钴的相对含量而进一步降低了成本,LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2被认为具有了更好的商业化应用前景,那么材料存储过程中的稳定性就成为一个有意义的研究课题。本文选择4种不同的条件来储存LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2(放置在空气中;在空气氛恒温恒湿条件下;在Ar气氛手套箱里;在空气氛除去CO_2的条件下),通过对比它们存储2个月和8个月后的性能差别来确定该材料的最优储存条件。
     实验结果表明,该材料在空气中的储存性能突出,颗粒表面基本不与空气中的CO_2/H_2O发生反应,电化学性能保持良好。但是由于除氧环境(手套箱)提供的氧分压非常低,导致材料表面的氧物种处于非稳定的环境中,易于脱出;为了达到晶格中的电荷平衡,部分过渡金属Mn离子和Co离子就相应降低它们的氧化态而变得活泼性增强,参与电极反应,并溶解到电解液中去。这一不可逆变化使材料表面组分的平衡被打破,导致材料循环稳定性随之降低。因此选择与合成时高温烧结相同的氛围应更有助于材料性能的保持,将该材料生产出来以后只需要进行普通包装,相对那些必须真空包装的材料简化了生产过程,降低了成本。
     另外,在对正极的研究中发现,由于这些高电位型正极材料的投入使用对电解液体系也提出了新要求,如何提高电解液在高电位下的稳定性和高温性能等成为拓展锂离子电池应用领域的关键。基于此目的,本文选择碳酸乙烯亚乙酯(VEC)作为锂离子电池电解液添加剂,研究它对正极材料性能的影响,并使用DEMS装置对其改善电池体系的作用机制进行了深入的探讨。
     实验表明在LiPF_6/EC+DMC的电解液体系中添加2%的VEC能够有效改善锂离子电池正极材料LiNi_(0.8)Co_(0.2)O_2的电化学性能,特别是高温(50℃)下工作的循环稳定性。它是通过先于DMC、EC同OPF_3发生反应,抑制本来存在的电解液分解反应来达到的,具体的反应进程为:
     反应生成的OPF_2OR_a(R_a:-COOCH_2CHFCHCH_2);VEC上的C=C在高温下聚合而成的网状聚合物;以及由DMC同OPF_2OR之间不能完全避免的反应产物OPFR_b(R_b:CH_2OCOOCH_3)OCOOCH_2CHFCHCH_2等一类大分子,少量这类大分子并不会给电池的电化学性能带来负面效应,相反却能成为SEI层的有效成分,附于电极(正极)表面,改善电极的表面组成,隔离电极材料和电解液特别是其一系列不稳定分解产物的进一步接触,它们的存在对电池电化学性能的改善起到积极的作用。
Recently, LiNi_xCo_yMn_(1-x-y)O_2 material has become one of the promising cathode material systems for their high capacity, low cost, environmental-friendly, good thermal stability and stable cyclic performance in the lithium ion batteries. In this thesis, two kinds of material in this family, such as LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 and LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 with excellent electrolyte performance have been synthesized. Their structure, surface properties, thermal stability and storage performance were also studied in detail by various electrochemical methods and spectral techniques, including structural analysis, surface analysis, thermal analysis and electrochemical techniques. In particularly, the origination of the first irreversible capacity of LiMn_(1/3)Ni_(1/3)Co_(1/3)O_2,and the storage performance of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 were also emphasized.
     In addition, we have designed and set up Differential Electrochemical Mass Spectrometer (DEMS) for the first time in the lab for Li-ion batteries study, e.g. investigation of the improvement mechanism of VEC as the electrolyte additive.
     LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 and LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 cathode were prepared by sol-gel method and a mixed-hydroxide method with the sintering temperature of 850-900℃, respectively. The oxidation state of Ni, Co and Mn are +2, +3 and +4, both of them have good thermal stability. The electrochemical performances of the materials are excellent, especially at high charging voltage. They all delivered a capacity over 200 mAh/g in the 1~(st) discharge process when circling at 18 mA/g between 2.5 V and 4.6 V, and still maintain more than 70% after charge-discharge 60 cycles.
     However LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 loses 23% capacity in the first cycle, it is a big problem which affect its practical application. In order to make clearly of this origination, we took the NO_2BF_4 as oxidize, quantitatively extracted some lithium ions from the material which could avoid the interference of carbon, PVDF and current collector in the electrochemical analysis. The reaction is:LiNi_xCo_yMn_(1-x-y)O_2+ m NO_2BF_4→Li_(1-m)Ni_xCo_yMn_(1-x-y)O_2+mNO_2+mLiBF_4.The investigated results of this series of chemical delithium sample shown that LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 is able to keep its single phase during delithiation process. Oxidation states of Ni and Co increase to +4 when charging the material to high voltage (V≥4.3V) i.e. Ni~(3+)→Ni~(4+) and Co~(3+)→Co~(4+).These changes happened at the first cycle are partly irreversible, which may cause negative effects on the electrochemical performance of the material. Simultaneously, the active oxygen species such as O_2~-,O~-,O_2~(2-) will lose some electrons to form O_2,or immigrate to the surface of material at higher charging voltage. Parts of them even release from the delithiated materials. These irreversible changes also break the balance of charge and species in the original materials, affecting insertion of lithium ions into delithiated materials when it is discharged. These results will be very helpful to understand the structural changes of the materials and chemical activity of the lattice oxygen species during the electrochemical delithiation process in LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials.
     The storage stability of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 material was studied by comparing four materials which stored at different conditions (like exposing to air, or placing in glove box, or storing in a box maintained at 35℃and 45% HR, or storing in a airtight bottle without CO_2 which was also put into an incubator) for two and eight months. It is proved that the surface reaction between samples and CO_2/H_2O is so negligible that it could not affect the electrochemical performance of the materials. However the sample stored in the glove box has shown the worst cycle stability because of the oxygen release from the material surface. After that the Mn and Co ions will decrease their oxidation states, take part in the electrode reaction, and dissolve into electrolyte. The regular ion arrangement on the surface may be destroyed, and the cycle performance of the material becomes poorer. So keeping the storage atmosphere same as the synthesis condition would be a scientific choice for batteries materials. There is no especial request like vacuum-pack for LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 material which will be ??very valuable for its practical use.
     In the end of this thesis, the reason of improvement of VEC as an electrolyte additive was also investigated through the DEMS method. It is proved that adding 2 % VEC to LiPF_6/EC+DMC electrolyte can significantly improve the cyclic performance of LiNi_(0.8)Co_(0.2)O_2 cathode material at elevated temperature such as 50℃. It works through former reacted with OPF3 before EC and DMC, which would suppress the decomposition of electrolyte, the possible reactions are:
     In summary, the products of OPF_2OR_a,the net high-polymer molecule from self-polymerized of VEC, and OPFR_bOCOOCH_2CHFCHCH_2 from the unavoidable reaction between DMC and OPF_2OR_a are helpful in forming a stable SEI layer.It could prevent subsequent decomposition of the electrolyte during charge/discharge process, and improve the electrochemical performance of the batteries.
引文
[1].Whittingham,M. S., Electrical Energy-Storage and Intercalation Chemistry. Science 1976, 192, (4244),1126-1127.
    [2].吴宇平,万春荣,姜长印,锂离子二次电池.化学工业出版社:北京,2002.
    [3].Thompson, A. H., Electron-Electron Scattering in Tis-2. Physical Review Letters 1975,35, (26), 1786-1789.
    [4].Whittingham, M. S.; Panella,J. A., Formation of Stoichiometric Titanium Disulfide. Materials Research Bulletin 1981,16, (1),37-45.
    [5].Whittingham, M. S.; Gamble, F. R., Lithium Intercalates of Transition-Metal Dichalcogenides. Materials Research Bulletin 1975,10,(5), 363-371.
    [6].Mizushima,K.; Jones, P. C; Wiseman, P. J.; Goodenough, J. B., Li_2CoO_2 "(Oless-Thanxless-Than-or-Equal-Tol) - a New Cathode Material for Batteries of High-Energy Density. Materials Research Bulletin 1980,15, (6), 783-789.
    [7].Samar, B. Rechargeable battery. 1981.
    [8].Ozawa,K., Lithium-Ion Rechargeable Batteries with LiCoO_2 and Carbon Electrodes - the LiCoO_2 C System.Solid State Ionics 1994,69, (3-4), 212-221.
    [9].Nishi, Y., Lithium ion secondary batteries; past 10 years and the future. Journal of Power Sources 2001,100,(1-2), 101-106.
    [10].Wakihara, M., Recent developments in lithium ion batteries. Materials Science & Engineering R-Reports 2001,33,(4), 109-134.
    [11].Lithium ion technical handbook. Gold peak Industries Ltd.: Taiwan.
    [12].Choi, H. C; Jung,Y. M.; Noda, I.; Kim, S. B., A study of the mechanism of the electrochemical reaction of lithium with CoO by two-dimensional soft X-ray absorption spectroscopy (2D XAS), 2D Raman, and 2D heterospectral XAS-Raman correlation analysis. Journal of Physical Chemistry B 2003,107, (24), 5806-5811.
    [13].Tarascon, J. M; Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 2001,414,(6861), 359-367.
    [14].Hitchcock,R. Explanation of common battery technologies seen in the computer industry.
    [15].Buchmann, I., Batteries in a portable world ?a handbook on rechargable natteries for non-engineers. 2nd Edition ed.; Cadex Electronics Inc.: 2001; p 300.
    [16]. Imanishi, N.; Kashiwagi,H.; Ichikawa,T.; Takeda, Y; Yamamoto, O.;Inagaki, M., Charge-Discharge Characteristics of Mesophase-Pitch-Based Carbon-Fibers for Lithium Cells. Journal of the Electrochemical Society 1993,140,(2), 315-320.
    [17].Endo, M.; Nishimura, Y;Takahashi, T.; Takeuchi, K.; Dresselhaus, M. S., Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery. Journal of Physics and Chemistry of Solids 1996, 57,(6-8), 725-728.
    [18].Dahn, J. R., Phase-Diagram of Li_xC_(6-) Physical Review B 1991,44, (17), 9170-9177.
    [19].Dahn, J. R.; Zheng,T.; Liu, Y. H.; Xue, J. S., Mechanisms for Lithium Insertion in Carbonaceous Materials.Science 1995,270, (5236), 590-593.
    [20].Flandrois, S.; Simon,B., Carbon materials for lithium-ion rechargeable batteries. Carbon 1999, 37, (2),165-180.
    [21].Sato, K.;Noguchi, M.; Demachi, A.; Oki,N.; Endo. M., A Mechanism of Lithium Storage in Disordered Carbons. Science 1994,264, (5158), 556-558.
    [22].Funabiki, A.; Inaba,M.; Ogumi, Z.; Yuasa,S.; Otsuji, J.; Tasaka,A., Impedance study on the electrochemical lithium intercalation into natural graphite powder. Journal of the Electrochemical Society 1998,145, (1),172-178.
    [23].Kuribayashi, I.; Yokoyama, M.; Yamashita, M., Battery Characteristics with Various Carbonaceous Materials. Journal of Power Sources 1995,54,(1),1-5.
    [24].Menachem, C; Peled, E.;Burstein, L.; Rosenberg,Y., Characterization of modified NG7 graphite as an improved anode for lithium-ion batteries. Journal of Power Sources 1997,68, (2), 277-282.
    [25].Zaghib, K.;Brochu, R;Guerfi,A.; Kinoshita,K.,Effect of particle size on lithium intercalation rates in natural graphite. Journal of Power Sources 2001,103,(1), 140-146.
    [26].Li, N. C; Mitchell, D. T.; Lee, K. P.; Martin,C. R., A nanostructured honeycomb carbon anode. Journal of the Electrochemical Society 2003,150,(7), A979-A984.
    [27].Shodai, X; Okada, S.; Tobishima, S.; Yamaki, J., Study of Li_(3-x)M_((x))N (M:Co,Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 1996, 86-8, 785-789.
    [28].Ducrosa,J. B.; Bach, S.; Pereira-Ramos,J. P.; Willmann, P., Layered lithium cobalt nitrides: A new class of lithium intercalation compounds. Journal of Power Sources 2008,175,(1),517-525.
    [29].Shodai, T.; Okada,S.; Tobishima, S.; Yamaki, J., Anode performance of a new layered nitride Li_(3-x)Co_xN(x=0.2-0.6). Journal of Power Sources 1997,68, (2), 515-518.
    [30].Nishijima, M.; Takeda, Y; Imanishi, N.; Yamamoto, O.; Takano, M., Li Deintercalation and Structural-Change in the Lithium Transition-Metal Nitride Li_3FeN_2.Journal of Solid State Chemistry 1994,113,(1),205-210.
    [31].Nishijima, M.; Tadokoro, N.; Takeda, Y; Imanishi, N.; Yamamoto, O., Li Deintercalation-Intercalation Reaction and Structural-Change in Lithium Transition-Metal Nitride, Li7mnn4. Journal of the Electrochemical Society 1994,141, (11), 2966-2971.
    [32].Wang, J. H.; Li, B.; Wu, H. Y; Guo, Y. Z., Synthesis of mesoporous SnO_2 and its application in lithium-ion battery. Acta Physico-Chimica Sinica 2008,24,(4), 681-685.
    [33].Park, M. S.;Kang, Y M.; Dou, S. X.; Liu, H. K., Reduction-free synthesis of carbon-encapsulated SnO_2 nanowires and their superiority in electrochemical performance. Journal of Physical Chemistry C 2008,112, (30),11286-11289.
    [34].Qiao, H.; Zheng, Z.; Zhang, L. Z.; Xiao, L. F., SnO_2@C core-shell spheres: synthesis, characterization, and performance in reversible Li-ion storage. Journal of Materials Science 2008,43,(8), 2778-2784.
    [35].Auborn, J. J.; Barberio, Y L., Lithium Intercalation Cells without Metallic Lithium - MoO_2/LiCoO_2 and WO_2/LiCoO_2. Journal of the Electrochemical Society 1986,133, (8), C291-C291.
    [36].Auborn, J. J.; Barberio, Y. L., Lithium Intercalation Cells without Metallic Lithium - MoO_2/LiCoO_2 and WO_2/LiCoO_2.Journal of the Electrochemical Society 1987,134, (3), 638-641.
    [37].Tan, C. L.; Lu,D. S.; Li, W. S.; Xu, M. Q.;Zhou,D.Y; Hu, S. J., Study of electrodeposited Sn/Ni alloy as anode materials for Li-ion batteries. Rare Metal Materials and Engineering 2008,37,(3), 472-475.
    [38].Hu, R. Z.; Zhang, Y; Zhu, M., Microstructure and electrochemical properties of electron-beam deposited Sn-Cu thin film anodes for thin film lithium ion batteries. Electrochimica Acta 2008,53, (8), 3377-3385.
    [39].Lindsay, M. J.; Wang,G X.; Liu, H. K., Al-based anode materials for Li-ion batteries. Journal of Power Sources 2003,119, 84-87.
    [40].Kim, Y. L.; Sun, Y. K.; Lee, S. M., Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Ada 2008,53, (13), 4500-4504.
    [41].Zhou,L. Q.; Liang,Y. G; Hu, L.; Han, X. Y; Yi, Z. H.; Sun, J. T.; Yang,S. J., Much improved capacity and cycling performance of LiVMoO6 cathode for lithium ion batteries. Journal of Alloys and Compounds 2008, 457,(1-2), 389-393.
    [42].Das, B.; Reddy, M. V.; Rao, G V. S.; Chowdari, B. V. R., Synthesis of Mo-cluster compound, LiHoMo_3O_8,by carbothermal reduction and its reactivity towards Li. Journal of Solid State Electrochemistry 2008, 12, (7-8),953-959.
    [43].Jovic, N.; Antic, B.; Kremenovic, A.; Spasojevic-de Bire, A.; Spasojevic, V., Cation ordering and order-disorder phase transition in Co-substituted Li_4Ti_5O_(12) spinels. Physica Status Solidi a-Applied Research 2003,198,(1), 18-28.
    [44].Prosini, P. P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P., Li_4Ti_5O_(12) as anode in all-solid-state, plastic,lithium-ion batteries for low-power applications. Solid State Ionics 2001,144, (1-2), 185-192.
    [45].Ohzuku, T.; Ueda, A.; Yamamoto, N., Zero-Strain Insertion Material of Li[Li_(1/3)Ti_(5/3)]O_4 for Rechargeable Lithium Cells. Journal of the Electrochemical Society 1995,142,(5),1431-1435.
    [46].Wang,K.; He, X. M.; Wang, L.; Ren, J. G; Jiang,C. Y; Wan, C. R., Si, Si/Cu core in carbon shell composite as anode material in lithium-ion batteries. Solid State Ionics 2007,178, (1-2), 115-118.
    [47].M Morita,M. I., Y Matsuda,Lithium Ion Batteries: Fundamentals and Performance. WILEY-VCH Verlay Gmbh:Weinheim, Germany, 1998.
    [48].Whittingham, M. S., Lithium batteries and cathode materials. Chem.Rev. 2004,104,4271-4301.
    [49].Benedek,R.; Vaughey, J.; Thackeray, M. M., Theory of overlithiation reaction in LiMO_2 battery electrodes.Chemistry of Materials 2006,18,(5), 1296-1302.
    [50].Ohzuku, T; Ueda,A.;Nagayam,M., Electrochemistry and Structural Chemistry of LiNiO_2(R(3)over-Bar-M) for 4 Volt Secondary Lithium Cells. Journal of the Electrochemical Society 1993,140, (7), 1862-1870.
    [51].Winter, M.; Besenhard, J. O.;Spahr, M. E.; Novak,P., Insertion electrode materials for rechargeable lithium batteries. Advanced Materials 1998,10,(10),725-763.
    [54].Amatucci, G G; Tarascon, J. M.; Klein, L. C, CoO2, the end member of the LixCoO2 solid solution. Journal of the Electrochemical Society 1996,143, (3), 1114-1123.
    [55].J.B.Goodenough; K.Mizuchima Electrochemical cell with new fast ion conductors 4.302.518, 1981.
    [52].刘汉三;杨勇;张忠如;林祖赓,锂离子电池正极材料锂镍氧化物研究新进展.电化学2001,7,(2),145-154.
    [53].刘汉三.锂离子电池正极材料锂镍氧系列化合物的合成、结构和性能研究.厦门大学,厦门,2003.
    [56].Liu,H. S.; Zhang, Z. R.;Gong, Z. L.; Yang, Y., Origin of deterioration for LiNiO_2 cathode material during storage in air. Electrochemical and Solid Slate Letters 2004,7, (7), A190-A193.
    [57].Lee, Y. S.; Sun, Y. K.; Nahm, K. S., Synthesis and characterization of LiNiO_2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries. Solid State Ionics 1999,118, (1-2), 159-168.
    [58].Hwang, B. J.; Santhanam, R.; Chen, C. H., Effect of synthesis conditions on electrochemical properties of LiNi_(1-y)CO_yO_2 cathode for lithium rechargeable batteries. Journal of Power Sources 2003,114,(2),244-252.
    [59].Dahn, J. R.; Vonsacken, U.; Michal, C. A., Structure and Electrochemistry of Li_(1+/-Y)NiO_2 and a New Li_2NiO_2 Phase with the Ni(OH)_2 Structure. Solid State Ionics 1990,44,(1-2), 87-97.
    [60].Armstrong, A. R.; Bruce, P. G, Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries.Natun 1996,381, (6582), 499-500.
    [61].Capitaine, F.; Gravereau, P.; Delmas,C,A new variety of LiMnO_2 with a layered structure. Solid State Ionics 1996,89,(3-4), 197-202.
    [62].Chen, R. J.; Zavalij, P.; Whittingham, M. S., Hydrothermal synthesis and characterization of K chi MnO_2 center dot gamma H_2O. Chemistry of Materials 1996,8, (6), 1275-1280.
    [63].Chen, R. J.; Whittingham, M. S., Cathodic behavior of alkali manganese oxides from permanganate. Journal of the Electrochemical Society 1997,144, (4), L64-L67.
    [64].Zhang, F.; Whittingham, M. S., Hydrothermal synthesis and electrochemistry of a delta-type manganese vanadium oxide. Electrochemistry Communications 2000,2, (1), 69-71.
    [65].Doeff, M. M.; Richardson, T. J.; Kepley, L., Lithium insertion processes of orthorhombic Na_xMnO_2-based electrode materials. Journal of the Electrochemical Society 1996,143, (8), 2507-2516.
    [66].Shaju, K.M.; Rao, G V. S.; Chowdari, B. V. R., EIS and GITT studies on oxide cathodes,O2-Li_((2/3))(Co_(0.15)Mn_(0.85))O_(-2)(x=0 and 1/3). Electrochimica Acta 2003,48, (18), 2691-2703.
    [67].Numata, K.; Yamanaka, S., Preparation and electrochemical properties of layered lithium-cobalt-manganese oxides. Solid State Ionics 1999,118, (1-2), 117-120.
    [68].Ohzuku, T.; Makimura, Y, Layered lithium insertion material of LiNi1/2Mn1/202: A possible alternative to LiCoO_2 for advanced lithium-ion batteries. Chemistry Letters 2001, (8), 744-745.
    [69].Spahr, M. E.; Novak, P.; Schnyder, B.; Haas, O.; Nesper, R., Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials. Journal of the Electrochemical Society 1998, 145, (4), 1113-1121.
    [70].Armstrong, A. R.; Robertson, A. D.; Bruce, P. G, Structural transformation on cycling layered Li(Mn_(1-y)Co_y)O_2 cathode materials. Electrochimica Acta 1999,45, (1-2), 285-294.
    [71].Armstrong, A. R.; Gitzendanner, R.; Robertson, A. D.; Bruce, P. G, The intercalation compound Li(Mn_(0.9)Co_(0.1))O_2 as a positive electrode for rechargeable lithium batteries. Chemical Communications 1998, (17),1833-1834.
    [72].Robertson, A. D.; Armstrong, A. R.; Bruce, P. G, Layered Li_xMn_(1-y)Co_yO_2 intercalation electrodes-influence of ion exchange on capacity and structure upon cycling. Chemistry of Materials 2001,13,(7), 2380-2386.
    [73].Armstrong, A. R.; Paterson, A. J.; Robertson, A. D.; Bruce, P. G, Nonstoichiometric layered Li_xMn_yO_2 with a high capacity for lithium intercalation/deintercalation. Chemistry of Materials 2002,14,(2), 710-719.
    [74].Rossen, E.; Jones, C. D. W.; Dahn, J. R., Structure and Electrochemistry of Li_xMn_yNi_(1-Y)O_2.Solid State Ionics 1992,57, (3-4), 311-318.
    [75].Periasamy, P.; Kalaiselvi, N., Electrochemical performance behavior of combustion-synthesized LiNi_(0.5)Mn_(0.5)O_2 lithium-intercalation cathodes. Journal of Power Sources 2006,159,(2), 1360-1364.
    [76].Arachi, Y; Kobayashi, H.; Emura, S.; Nakata, Y; Tanaka, M.; Asai, T.; Sakaebe, H.; Tatsumi, K.; Kageyama,H., Li de-intercalation mechanism in LiNi_(0.5)Mn_(0.5)O_2 cathode material for Li-ion batteries. Solid State Ionics 2005,176, (9-10), 895-903.
    [77].Koyama, Y; Makimura, Y; Tanaka, I.; Adachi, H.; Ohzuku, T., Systematic research on insertion materials based on superiattice models in a phase triangle of LiCoO_2-LiNiO_2-LiMnO_2. I. First-principles calculation on electronic and crystal structures, phase stability and new LiNi_(1/2)Mn_(1/2)O_2 material. Journal of the Electrochemical Society 2004,151,(9), A1499-A1506.
    [78].Delmas, C; Menetrier, M.; Croguennec, L.; Saadoune, I.; Rougier, A.; Pouillerie, C; Prado, G; Grune, M.;Fournes, L., An overview of the Li(Ni,M)O_2 systems: syntheses, structures and properties. Electrochimica Acta 1999,45,(1-2), 243-253.
    [79].Rougier, A.; Saadoune, I.; Gravereau, P.; Willmann, P.; Delmas, C, Effect of cobalt substitution on cationic distribution in LiNi_(1-y)Co_yO_2 electrode materials. Solid State Ionics 1996,90,(1-4), 83-90.
    [80].Saadoune, I.; Delmas, C, On the Li_xNi_(0.8)Co_(0.2)O_2 system. Journal of Solid State Chemistry 1998, 136, (1),8-15.
    [81].Saadoune, I.; Menetrier, M.; Delmas, C, Redox processes in Li_xNi_(1-y)Co_yO_2 cobalt-rich phases. Journal of Materials Chemistry 1997, 7, (12), 2505-2511.
    [82].Zhecheva, E.; Stoyanova, R., Stabilization of the Layered Crystal-Structure of LiniO_2 by Co-Substitution.Solid State Ionics 1993,66,(1-2), 143-149.
    [83].Cho, J. P.; Jung, H. S.; Park, Y C; Kim, G B.; Lim, H. S., Electrochemical properties and thermal stability of Li_aNi_(1-x)Co_xO_2 cathode materials. Journal of the Electrochemical Society 2000,147,(1),15-20.
    [84].Park, S. H.; Kang, S. H.; Belharouak, I.; Sun, Y. K.; Amine, K., Physical and electrochemical properties of spherical Li_(1+x)(Ni_(1/3)Co_(1/3)Mn_(1/3))_((1-x))O_(-2) cathode materials. Journal of Power Sources 2008, 177, (1), 177-183.
    [85].Kikkawa, J.; Akita, T.;Tabuchi, M.; Shikano, M.;Tatsumi, K.; Kohyama, M., Fe-rich and Mn-rich nanodomains in Li_(1.2)Mn_(0.4)Fe_(0.4)O_2 positive electrode materials for lithium-ion batteries. Applied Physics Letters 2007,91,(5),3.
    [86].Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Amine, K.; Thackeray, M. M., The effects of acid treatment on the electrochemical properties of 0.5 Li_2MnO_3 center dot 0.5 LiNi_(0.44)Co_(0.25)Mn_(0.31)O_2 electrodes in lithium cells.Journal of the Electrochemical Society 2006,153, (6), A1186-A1192.
    [87].Shinova,E.; Zhecheva,E.;Stoyanova,R., Formation of LiA1_yNi_(1-y)O_2 solid solutions under high and atmospheric pressure. Journal of Solid State Chemistry 2006,179, (10), 3151-3158.
    [88].Johnson,C. S.;Kim, J. S.; Lefief, C; Li, N.; Vaughey, J. T.; Thackeray, M. M., The significance of the L_(i2)MnO_3 component in 'composite' xLi_((2))MnO_((3)) center dot (1-x)LiMn_(0.5)Ni_(0.5)O_2 electrodes. Electrochemistry Communications 2004,6, (10), 1085-1091.
    [89].Xiao-Jian Guo, Y.-X. L., Min Zheng, Jian-Ming Zheng, Jie Li, Zheng-Liang Gong, Yong Yang, Structural and electrochemical characterization of xLi[Li_(1/3)Mn_(2/3)]O_2·(1-x)Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2 (0≤x≤0.9) as cathode materials for lithium ion batteries. Journal of Power Sources 2008,184,414-419.
    [90].Ammundsen, B.; Paulsen, J.; Davidson,I.; Liu, R.S.;Shen, C. H.; Chen, J. M; Jang, L. Y.; Lee, J. F.,Local structure and first cycle redox mechanism of layered Li_(1.2)Cr_(0.4)Mn_(0.4)O_2 cathode material. Journal of the Electrochemical Society 2002,149, (4), A431-A436.
    [91].Lu, Z. H.; Beaulieu, L. Y; Donaberger, R. A.;Thomas, C. L.; Dahn, J. R., Synthesis, structure, and electrochemical behavior of Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_2.Journal of the Electrochemical Society 2002, 149, (6),A778-A791.
    [92].Lu, Z. H.; MacNeil, D. D.; Dahn, J. R., Layered cathode materials Li[Ni_xLi_((1/3-2x/3))Mn_((2/3-x/3))]O_2 for lithium-ion batteries. Electrochemical and Solid State Letters 2001,4, (11),A191-A194.
    [93].Wu, Y; Manthiram, A., High capacity, surface-modified layered Li[Li_((1-x)/3)Mn_((2-x)/3)Ni_(x/3)Co_(x/3)]O_(-2) cathodes with low irreversible capacity loss. Electrochemical and Solid State Letters 2006,9,(5),A221-A224.
    [94].Wu,Y; Manthiram,A., Effect of A13+ and F- doping on the irreversible oxygen loss from layered Li[Li_(0.17)Mn_(0.58)Ni_(0.25)]O_(-2) cathodes. Electrochemical and Solid State Letters 2007,10,(6),A151-A154.
    [95].Lu, Z. H.; Chen, Z. H.; Dahn, J. R., Lack of cation clustering in Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_(-2) (0    [96].Thackeray, M. M.; Johnson, C. S.; Vaughey, J. T.; Li, N.; Hackney, S. A., Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries. Journal of Materials Chemistry 2005,15,(23), 2257-2267.
    [97].Jain,G R.;Yang, J. S.; Balasubramanian, M.; Xu, J. J., Synthesis, electrochemistry, and structural studies of lithium intercalation of a nanocrystalline Li_2MnO_3-like compound. Chemistry of Materials 2005, 17, (15),3850-3860.
    [98].Riou, A.; Lecerf, A.; Gerault, Y; Cudennec, Y, Structural-Analysis of Li_2MnO_3.Materials Research Bulletin 1992,27,(3), 269-275.
    [99].Rossouw, M. H.; Thackeray, M. M., Lithium Manganese Oxides from Li_2MnO_3 for Rechargeable Lithium Battery Applications. Materials Research Bulletin 1991,26,(6), 463-473.
    [100].Robertson, A. D.; Bruce, P. G, The origin of electrochemical activity in Li_2MnO_3.Chemical Communications 2002, (23), 2790-2791.
    [101].Robertson, A. D.; Bruce, P. G, Mechanism of electrochemical activity in Li_2MnO_3.Chemistry of Materials 2003,15,(10), 1984-1992.
    [102].Armstrong, A. R.; Bruce, P. G, Electrochemistry beyond Mn_(4+) in Li_xMn_(1-y)Li_yO_2.Electrochemical and Solid State Letters 2004, 7, (1), A1-A4.
    [103].Johnson, C. S.; Li, N.; Vaughey, J. T; Hackney, S. A.; Thackeray, M. M., Lithium-manganese oxide electrodes with layered-spinel composite structures xLi_((2))MnO_((3)) center dot (1-x)Li_(1+y)Mn_(2-y)O_4 (0    [104].Armstrong, A. R.; Holzapfel, M.; Novak, P.; Johnson, C. S.; Kang, S. H.; Thackeray, M. M.; Bruce, P. G,Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni_(0.2)Li_(0.2)Mn_(0.6)]O_2.Journal of the American Chemical Society 2006,128, (26), 8694-8698.
    [105].Thackeray,M. M.; David,W.I.F.;Bruce, P. G; Goodenough, J. B., Lithium Insertion into Manganese Spinels. Materials Research Bulletin 1983,18, (4), 461-472.
    [106].Thackeray, M. M., Manganese oxides for lithium batteries. Progress in Solid State Chemistry 1997,25, (1-2),1-71.
    [107].Tarascon, J. M.; Wang, E.; Shokoohi, F. K.; McKinnon, W. R.; Colson, S., The Spinel Phase of LiMn_2O_4 as a Cathode in Secondary Lithium Cells. Journal of the Electrochemical Society 1991,138, (10), 2859-2864.
    [108].Amatucci, G G; Pereira,N.; Zheng, T; Tarascon, J. M., Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-z)F-z solid solution. Journal of the Electrochemical Society 2001,148, (2), A171-A182.
    [109].Gao, Y; Dahn, J. R., Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications. Journal of the Electrochemical Society 1996,143,(1),100-114.
    [110].Wang,M. J.; Navrotsky, A., Thermochemistry of Li_(1+x)Mn_(2-x)O_4 (0<= x<=1/3) spinel. Journal of Solid State Chemistry 2005,178, (4), 1182-1189.
    [111].Takahashi, Y; Kijima,N.; Akimoto, J., Crystal growth and structural properties of the spinel-type Li_(1+x)Mn_(2-x)O_4 (x=0.10,0.14). Solid State Ionics 2006,177, (7-8), 691-695.
    [112].Zhang, S. S.; Xu,K.; Jow, T. R., LiBOB-based gel electrolyte Li-ion battery for high temperature operation.Journal of Power Sources 2006,154,(1),276-280.
    [113].Wills, A. S.; Raju, N. P.; Greedan, J. E., Low-Temperature Structure and Magnetic Properties of the Spinel LiMn_2O_4:A Frustrated Antiferromagnet and Cathode Material. Chemistry of Materials 1999,11,1510-1518.
    [114].Wu, H. M.; Tu, J. P.; Yuan, Y. F.; Xiang, J. Y; Chen, X. T.; Zhao, X. B.; Cao, G S., Effects of abundant Co doping on the structure and electrochemical characteristics of LiMn_(1.5)Ni_(0.5-x)Co_xO_4.Journal of Electroanalytical Chemistry 2007,608,(1),8-14.
    [115].Terada, Y.; Yasaka, K.; Nishikawa, F.; Konishi, T.; Yoshio, M.; Nakai, I., In situ XAFS analysis of Li(Mn,M)_2O_4 (M = Cr, Co, Ni) 5 V cathode materials for lithium-ion secondary batteries. Journal of Solid State Chemistry 2001, 156, (2), 286-291.
    [116].Park, S. B.; Eom, W. S.; Cho, W. I.; Jang, H., Electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode after Cr doping. Journal of Power Sources 2006,159, (1), 679-684.
    [117].Yoshio, M.; Xia, Y. Y; Kumada, N.; Ma, S. H., Storage and cycling performance of Cr-modified spinel at elevated. Journal of Power Sources 2001,101, (1), 79-85.
    [118].Sulochana, A.; Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S.; Yamaki, J., Sol-gel synthesis of 5V LiCu_xMn_(2-x)O_4 as a cathode material for lithium rechargeable batteries. Journal of the Electrochemical Society 2008,155,(3), A206-A210.
    [119].Martin, P.; Lopez, M. L.; Pico, C; Veiga, M. L., Influence of Mn(Ⅲ) content on physical properties and electrochemical behaviour of Li-Mn-Cr spinel-type oxides. Journal of Physics D-Applied Physics 2008, 41,(1),10.
    [120].Ariyoshi, K.; Yamatoa, R.; Makimura, Y; Amazutsumi, T.; Maeda, Y; Ohzukua, T., Three-volt lithium-ion battery consisting of Li[Ni_(1/2)Mn_(3/2)]O_(-4) and Li[Li_(1/3)Ti_(5/3)]O_(-4):Improvement of positive-electrode material for long-life medium-power applications. Electrochemistry 2008,76,(1),46-54.
    [121].Liu,G.Q.;Wang, Y. J.; Qilu;Li, W.; Chenhui, Synthesis and electrochemical performance of LiNi_(0.5)Mn_(1.5)O_4 spinel compound. Electrochimica Acta 2005,50,(9),1965-1968.
    [122].Arrebola, J. C; Caballero, A.; Cruz, M.; Hernan, L.; Morales, J.; Castellon, E. R., Crystallinity control of a nanostructured LiNi_(0.5)Mn_(1.5)O_4 spinet via polymer-assisted synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Advanced Functional Materials 2006,16,(14),1904-1912.
    [123].Yoshio, M.; Konishi, T.; Todorov, Y. M.; Noguchi, H., Electrochemical behavior of nonstoichiometric LiMn_(2-x)N_(ix)O_4 as a 5-V cathode material. Electrochemistry 2000,68, (6), 412-414.
    [124].Patoux, S.; Sannier, L.; Lignier, H.; Reynier, Y; Bourbon, C; Jouanneau, S.; Le Cras, F.; Martinet, S., High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochimica Acta 2008,53, (12), 4137-4145.
    [125].Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y; Dahn, J. R., Synthesis and electrochemistry of LiNi_xMn_(2-x)O_4.Journal of the Electrochemical Society 1997,144, (1), 205-213.
    [126].Xiang, H. F.; Jin, Q. Y; Wang, R.; Chen, C. H.; Ge, X. W, Nonflammable electrolyte for 3-V lithium-ion battery with spinel materials LiNi_(0.5)Mn_(1.5)O_4 and Li_4Ti_5O_(12).Journal of Power Sources 2008,179, (1), 351-356.
    [127].Padhi, A. K..; Nanjundaswamy,K. S.; Goodenough, J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries.Journal of the Electrochemical Society 1997,144, (4), 1188-1194.
    [128].Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C; Okada, S.; Goodenough, J. B., Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates. Journal of the Electrochemical Society 1997,144, (5), 1609-1613.
    [129].Yang, G; Ying, J. R.; Gao, J.; Jiang, C. Y; Wan, C. R., Research progresses on vanadium-based polyanion-type compounds electrode materials for lithium-ion batteries. Rare Metal Materials and Engineering 2008,37,(5), 936-940.
    [130].Ying, J. R.; Gao, J.; Jiang, C. Y; Li, W.; Tang, C. P., Preparation and characterization of Li_3V_2(PO4)_3 cathode material for lithium ion batteries. Journal of Inorganic Materials 2006,21,(5), 1097-1102.
    [131].Okada, S.; Sawa, S.; Uebou, Y; Egashira, M.; Yamaki, J.; Tabuchi, M.; Kobayashi, H.; Fukumi, K.;Kageyama, H., Charge-discharge mechanism of LiCoPO_4 cathode for rechargeable lithium batteries.Electrochemistry 2003,71,(12),1136-1138.
    [132].Okada, M.; Lee, Y. S.; Yoshio, M., Cycle characterizations of LiM_xMn_(2-x)O_4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region. Journal of Power Sources 2000,90, (2), 196-200.
    [133].Gong, Z. L.; Li, Y. X.; Yang, Y, Synthesis and characterization of Li_xMnxFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries. Electrochemical and Solid State Letters 2006,9,(12),A542-A544.
    [134].Nyten, A.; Abouimrane, A.; Armand, M.; Gustafsson, T.; Thomas, J.O.,Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material. Electrochemistry Communications 2005,7,(2),156-160.
    [135].Gong, Z. L.; Li, Y. X.; Yang, Y, Synthesis and electrochemical performance of Li_2CoSiO_4 as cathode material for lithium ion batteries. Journal of Power Sources 2007,174, (2), 524-527.
    [136].Li,Y.X.;Gong, Z. L.; Yang, Y, Synthesis and characterization of Li_2MnSiO_4/C nanocomposite cathode material for lithium ion batteries. Journal of Power Sources 2007,174,(2), 528-532.
    [137].Morgan, D.; Van der Ven, A.; Ceder, G, Li conductivity in Li_xMPO_4 (M = Mn, Fe, Co, Ni) olivine materials.Electrochemical and Solid State Letters 2004,7,(2), A30-A32.
    [138]. Burba, C. M.; Frech,R.,Vibrational spectroscopic investigation of structurally-related LiFePO_4,NaFePO_4,and FePO_4 compounds. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 2006,65,(1), 44-50.
    [139].Yamada, A.; Chung, S. C; Hinokuma,K.,Optimized LiFePO_4 for lithium battery cathodes. Journal of the Electrochemical Society 2001,148, (3), A224-A229.
    [140].Hu, Y. Q.; Doeff, M. M.; Kostecki, R.; Finones, R., Electrochemical performance of sol-gel synthesized LiFePO_4 in lithium batteries. Journal of the Electrochemical Society 2004,151,(8), A1279-A1285.
    [141].Yang, S. F.; Zavalij, P. Y; Whittingham, M. S., Hydrothermal synthesis of lithium iron phosphate cathodes.Electrochemistry Communications 2001,3,(9), 505-508.
    [142].Zhou, F.; Marianetti,C.A.;Cococcioni, M.; Morgan, D.; Ceder, G, Phase separation in LixFePO_4 induced by correlation effects. Physical Review B 2004,69,(20), 4.
    [143].Andersson, A. S.; Thomas, J. O.;Kalska, B.; Haggstrom,L.,Thermal stability of LiFePO_4-based cathodes.Electrochemical and Solid State Letters 2000,3, (2), 66-68.
    [144].Huang, H.; Yin, S. C; Nazar, L. F., Approaching theoretical capacity of LiFePO_4 at room temperature at high rates. Electrochemical and Solid State Letters 2001,4, (10), A170-A172.
    [145].Gao, F.; Tang, Z. Y.; Xue, H. J., Preparation and characterization of nano-particle LiFePO_4 and LiFePCVC by spray-drying and post-annealing method. Electrochimica Acta 2007,53,(4), 1939-1944.
    [146].Lim, S. Y; Yoon, C. S.; Cho, J. P., Synthesis of nanowire and hollow LiFePO_4 cathodes for high-performance lithium batteries. Chemistry of Materials 2008,20,(14), 4560-4564.
    [147].Chung, S. Y; Bloking, J. X; Chiang, Y. M., Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials 2002,1, (2), 123-128.
    [148].Chung, S. Y; Bloking, J. T.; Chiang, Y. M., From our readers - On the electronic conductivity of phosphoolivines as lithium storage electrodes - Reply. Nature Materials 2003,2,(11),702-703.
    [149].http://www.a123systems.com/#
    [150].Z.L.Liu; A.Yu; J.Y.Lee,Synthesis and characterization of LiNi_(1-x-y)Co_xMn_yO_2 as the cathode materials of secondary lithium batteries. Journal of Power Sources 1999,81-82,416-419.
    [151].Yoshio, M.; Noguchi, H.;Itoh, J.; Okada, M.;Mouri, T., Preparation and properties of LiCo_yMnxNi_(1-x-y)O_2 as a cathode for lithium ion batteries. Journal of Power Sources 2000,90,(2),176-181.
    [152].Ohzuku, T.; Makimura, Y, Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries. Chemistry Letters 2001,(7), 642-643.
    [153].Cho, T. H.; Park, S. M.; Yoshio, M.; Hirai, T.; Hideshima, Y, Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O-2 prepared by carbonate co-precipitation method.Journal of Power Sources 2005,142, (1-2), 306-312.
    [154].Tian, C. X.; Hou, J.; Li, H.; Zhang, Z., Synthesis and characterization of spinel LiCo_(0.05)Ni_(0.05)Mn_(1.9)O_(3.9)F_(0.1) as a cathode for rechargeable lithium-ion battery. Rare Metal Materials and Engineering 2005,34,(11),1758-1761.
    [155].Jouanneau, S.; Dahn, J. R., Preparation, structure, and thermal stability of new Ni_xCo_(1-2x)Mn_x(OH)_((2)) (0<= x<=1/2) phases. Chemistry of Materials 2003,15,(2), 495-499.
    [156].Ngala, J.K.;Chernova, N. A.; Ma, M. M.; Mamak, M.; Zavalij, P. Y; Whittingham, M. S., The synthesis,characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2 compound. Journal of Materials Chemistry 2004,14,(2),214-220.
    [157].Zhang, Y; Cao, H.; Zhang, J.; Xia, B. J., Synthesis of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode material by a carbonate co-precipitation method and its electrochemical characterization. Solid State Ionics 2006,177, (37-38), 3303-3307.
    [158].Cho, T. H.; Park, S. M.; Yoshio, M.; Hirai, T.; Hideshima, Y, Effect of synthesis condition on the structural and electrochemical properties of Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2 prepared by carbonate co-precipitation method. Journal of Power Sources 2005,142, (1-2), 306-312.
    [159].Saadoune, I.; Dahbi, M.; Wikberg, M.; Gustafsson, T.; Svedlindh, P.; Edstrom, K., Effect of the synthesis temperature on the structure and electrochemical behaviour of the LiNi_(0.65)Co_(0.25)Mn_(0.1)O_2 positive electrode material.Solid State Ionics 2008,178, (31-32), 1668-1675.
    [160].He, Y S.; Ma, Z. F.; Liao, X. Z.; Jiang, Y, Synthesis and characterization of submicron-sized LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 by a simple self-propagating solid-state metathesis method. Journal of Power Sources 2007,163,(2), 1053-1058.
    [161].Liu, J. J.; Qiu, W. H.; Yu, L. Y; Zhang, G H.; Zhao, H. L.; Li, T., Studies on the low-heating solid-state reaction method to synthesize LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials. Journal of Power Sources 2007,174,(2),701-704.
    [162].Wang, X.; Yang, X. H.; Zheng, H. G; Shen, T.; Zhang, Z. D., Layered O2-Li_(2/3)(Ni_(1/3-x)Mn_(2/3-x)M_(2x))O_2 (M=Cr,Co, x=0.05) cathode materials for Li-ion rechargeable batteries. Solid State Ionics 2005,176, (11-12), 1043-1049.
    [163].Tang, A. D.; Huang, K.L.,Electrochemical properties and structural characterization of layered Li_xNi_(0.35)Co_(0.3)Mn_(0.35)O_2+delta cathode materials. Materials Science and Engineering B-Solid State Materials for Advanced Technology2005, 122,(2), 115-120.
    [164].Tang, A. D.; Huang, K. L., Effect of synthesizing temperature on the structure and property of hexagonal Li-Ni-Co-Mn-O solid solution. Acta Metallurgica Sinica 2005,41,(12),1280-1284.
    [165].Zhang, W.; Liu, H. X.; Hu, C; Zhu, X. J.; Li, Y. X., Preparation of layered oxide Li(Co_(1/3)Ni_(1/3)Mn_(1/3))O_(-2) via the sol-gel process. Rare Metals 2008,27, (2), 158-164.
    [166].Park, S. H.; Yoon, C. S.; Kang, S. G; Kim, H. S.; Moon, S. I.; Sun, Y. K., Synthesis and structural characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials by ultrasonic spray pyrolysis method.Electrochimica Acta 2004,49,(4), 557-563.
    [167].Li, D. C; Muta, T.; Zhang, L. Q.; Yoshio, M.; Noguchi, H., Effect of synthesis method on the electrochemical performance of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2.Journal of Power Sources 2004, 132, (1-2), 150-155.
    [168].Tong, D. G; Lai, Q. Y; Wei, N. N.; Tang, A. D.; Tang, L. X.; Huang, K. L.; Ji, X. Y, Synthesis of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 as a cathode material for lithium ion battery by water-in-oil emulsion method. Materials Chemistry and Physics 2005,94,(2-3), 423-428.
    [169].Kim, J. M.; Chung, H. T., The first cycle characteristics of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 charged up to 4.7 V.Electrochimica Acta 2004,49, (6), 937-944.
    [170].Li, J.; Zheng, J. M.; Yang, Y, Studies on storage characteristics of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 as cathode materials in lithium-ion batteries. Journal of the Electrochemical Society 2007, 154, (5), A427-A432.
    [171].Shaju, K. M.; Rao, G V. S.; Chowdari, B. V. R., Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_(-2) as cathode for Li-ion batteries. Electrochimica Acta 2002,48,(2),145-151.
    [172].Lu, Z. H.; MacNeil, D. D.; Dahn, J. R., Layered Li[Ni_xCo_(1-2x)Mn_x]O_2 cathode materials for lithium-ion batteries. Electrochemical and Solid State Letters 2001,4,(12),A200-A203.
    [173].Koyama, Y; Tanakaa, L; Adachia, H.; Makimurab, Y.; Ohzuku, T., Crystal and electronic structures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2(0≤x≤1].Power Source 2003,119-121,644-648.
    [174].Koyama, Y; Yabuuchi, N.; Tanaka, I.; Adachi, H.; Ohzuku, T., Solid-state chemistry, and electrochemistry of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries -1. First-principles calculation on the crystal and electronic structures. Journal of the Electrochemical Society 2004,151,(10), A1545-A1551.
    [175].Hwang,B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G, A combined computational/experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2.Chemistry of Materials 2003,15,(19), 3676-3682.
    [176].Yabuuchi, N.; Ohzuku,T., Novel lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries. J. Power Source 2003,119-121,171.
    [177].Yabuuchi, N.; Ohzuku, T., Electrochemical behaviors of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 in lithium batteries at elevated temperatures. J. Power Source 2005,146,636-639.
    [178].Jouanneau, S.; MacNeil, D. D.; Lu, Z.; Beattie, S. D.; Murphy, G; Dahn, J. R., Morphology and Safety of Li[Ni_xCo_(1-2x)Mn_x]O_2 (0<= x<=1/2). Journal of the Electrochemical Society 2003,150, (10), A1299-A1304.
    [179].Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y, The studies on structural and thermal properties of delithiated Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2(0    [180].Park, S. H.; Shin, H. S.; Myung, S. T.; Yoon, C. S.; Amine, K.; Sun, Y. J., Synthesis of nanostructured Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via a modified carbonate process. Chemistry of Materials 2005,17,(1), 6-8.
    [181].Yang, S. F.; Song, Y. N.; Ngala, K.; Zavalij, P. Y; Whittingham, M. S., Performance of LiFePO_4 as lithium battery cathode and comparison with manganese and vanadium oxides Journal of Power Sources 2003, 119-121,239-146.
    [182].Oh, S. W.; Park, S. H.; Park, C. W.; Sun, Y. K.,Structural and electrochemical properties of layered Li[Ni_(0.5)Mn_(0.5)]__((1-x))Co_xO_2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 2004,171,(3-4), 167-172.
    [183].Jouanneau, S.; Eberman, K.W.;Krause, L. J.; Dahn, J. R., Synthesis, characterization, and electrochemical behavior of improved Li[Ni_xCo_(1-2x)Mn_x]O_2 (0.1<=x<=0.5). Journal of the Electrochemical Society 2003, 150,(12),A1637-A1642.
    [184].Myung, S. T.; Izumi, K.;Komaba, S.; Sun, Y.K.;Yashiro, H.;Kumagai, N., Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries. Chemistry of Materials 2005,17,(14), 3695-3704.
    [185].Sun, Y K.; Cho, S. W.; Lee, S. W.; Yoon, C. S.; Amine, K.,AlF3-coating to improve high voltage cycling performance of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials for lithium secondary batteries. Journal of the Electrochemical Society 2007,154, (3), A168-A172.
    [186].Park, B. C; Kim, H. B.; Myung, S. T.; Amine, K.; Belharouak, I.; Lee, S. M.; Sun, Y. K., Improvement of structural and electrochemical properties of AlF_3-coated Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials on high voltage region. Journal of Power Sources 2008,178, (2), 826-831.
    [187].Kim, G H.; Myung, S. T.; Bang, H. J.; Prakash, J.; Sun, Y. K., Synthesis and electrochemical properties of Li[Ni_(1/3)Co_(1/3)Mn_(1/3-x)Mg_(-x)]O_(2-y)F_y via coprecipitation. Electrochemical and Solid State Letters 2004, 7, (12),A477-A480.
    [188].Kim, G H.; Kim, J. H.; Myung, S. T.; Yoon, C. S.; Sun, Y. K., Improvement of high-voltage cycling behavior of surface-modified Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(-2) cathodes by fluorine substitution for Li-ion batteries. Journal of the Electrochemical Society 2005,152, (9), A1707-A1713.
    [189].Dai, K. H.; Wang, Y. J.; Feng, H. J.; Xie, Y. T.; Qi, L., Preparation conditions of LiMn_(0.45)Mn_(0.45)Co_(0.1)O_2 via hydroxide co-precipitation. Acta Physico-Chimica Sinica 2007,23, (12), 1927-1931.
    [190].Ding, M. S., Liquid phase boundaries, dielectric constant, and viscosity of PC-DEC and PC-EC binary carbonates. Journal of the Electrochemical Society 2003,150, (4), A455-A462.
    [191].Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 2004,104, (10), 4303-4417.
    [192].Liu, Z, K., Thermodynamic modeling of organic carbonates for lithium batteries. Journal of the Electrochemical Society 2003,150, (3), A359-A365.
    [193].Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. Journal of the Electrochemical Society 1974, (11),1457-1459.
    [194].Rauh, R. D.; Brummer, S. B., Effect of Additives on Lithium Cycling in Propylene Carbonate.Electrochimica Acta 1977,22,(1),75-83.
    [195].Rauh, R. D.; Reise, T. F.; Brummer, S. B., Efficiencies of Cycling Lithium on a Lithium Substrate in Propylene Carbonate. Journal of the Electrochemical Society 1978,125, (2), 186-190.
    [196].Aurbach, D.; Daroux, M. L.; Faguy, P. W.;Yeager, E., Identification of Surface-Films Formed on Lithium in Propylene Carbonate Solutions. Journal of the Electrochemical Society 1987,134,(7),1611-1620.
    [197].Guyomard, D.; Tarascon, J. M., Rechargeable Li_(1+X)Mn_2O_4/Carbon Cells with a New Electrolyte-Composition - Potentiostatic Studies and Application to Practical Cells. Journal of the Electrochemical Society 1993,140,(11),3071-3081.
    [198].Tarascon, J. M.; Guyomard,D.,New Electrolyte Compositions Stable over the O-V to 5-V Voltage Range and Compatible with the Li_(1+X)Mn_2O_4 Carbon Li-Ion Cells. Solid State Ionics 1994,69,(3-4), 293-305.
    [199].Huang, S. Y; Kavan, L.; Exnar, I.; Gratzel, M., Rocking Chair Lithium Battery Based on Nanocrystalline TiO_2 (Anatase). Journal of the Electrochemical Society 1995,142, (9), L142-L144.
    [200].Zheng, T.; Liu, Y. H.; Fuller, E. W.; Tseng, S.; Vonsacken, U.; Dahn, J. R., Lithium Insertion in High-Capacity Carbonaceous Materials. Journal of the Electrochemical Society 1995,142, (8), 2581-2590.
    [201].EinEli,Y; Thomas, S. R.;Chadha, R.; Blakley,T. J.; Koch, V. R., Li-ion battery electrolyte formulated for low-temperature applications. Journal of the Electrochemical Society 1997,144, (3), 823-829.
    [202].EinEli, Y.; Thomas, S. R.; Koch, V.; Aurbach, D.; Markovsky, B.; Schechter, A., Ethylmethylcarbonate, a promising solvent for Li-ion rechargeable batteries. Journal of the Electrochemical Society 1996, 143, (12),L273-L277.
    [203].Ue, M.; Mori, S., Mobility and Ionic Association of Lithium-Salts in a Propylene Carbonate-Ethyl Methyl Carbonate Mixed-Solvent. Journal of the Electrochemical Society 1995,142, (8), 2577-2581.
    [204].Ue, M., Mobility and Ionic Association of Lithium and Quaternary Ammonium-Salts in Propylene Carbonate and Gamma-Butyrolactone. Journal of the Electrochemical Society 1994,141,(12), 3336-3342.
    [205].Gnanaraj J S, Z. E., Levi M D, A comparison among LiPF_6,LiPF_3(CF_2CF_3)_3 (LiFAP), and LiN(SO_2CF_2CF_3)_2 (LiBETI) solutions: electrochemical and thermal studies. Journal of Power Sources 2003,119, 779-804.
    [206].E, B. G, Electrolytes for advanced batteries. Journal of Power Sources 1999, 81,112-118.
    [207].Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X., Possible use of non-flammable phosphonate ethers as pure electrolyte solvent for lithium batteries. Journal of Power Sources 2008,177, (1), 194-198.
    [208].Holomb, R.; Xu, W.; Markusson, H.; Johansson, P.; Jacobsson, P., Vibrational spectroscopy and ab initio studies of lithium bis(oxalato) borate (LiBOB) in different solvents. Journal of Physical Chemistry A 2006, 110,(40), 11467-11472.
    [209].Pu, W. H.; He, X. M.; Wang, L.; Wan, C. R.; Jiang, C. Y., LiBOB-based electrolyte for lithium batteries.Progress in Chemistry 2006,18, (12), 1703-1709.
    [210].Yamaguchi, H.; Takahashi, H.; Kato, M.;Arai, J., Lithium tetrakis(haloacyloxy)borate: An easily soluble and electrochemically stable electrolyte for lithium batteries. Journal of the Electrochemical Society 2003, 150, (3),A312-A315.
    [211].Sato, T.;Maruo, T.; Marukane, S.; Takagi, K., Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. Journal of Power Sources 2004,138,(1-2), 253-261.
    [212].Lee, J. S.; Bae, J. Y; Lee, H.; Quan, N. D.; Kim, H. S.; Kim, H., Ionic liquids as electrolytes for Li ion batteries. Journal of Industrial and Engineering Chemistry 2004,10, (7), 1086-1089.
    [213].Borodin,O.;Smith, G D., LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. Journal of Physical Chemistry B 2006,110, (10), 4971-4977.
    [214].Peled, E., The Electrochemical-Behavior of Alkali and Alkaline-Earth Metals in Non-Aqueous Battery Systems - the Solid Electrolyte Interphase Model. Journal of the Electrochemical Society 1979, 126, (12),2047-2051.
    [215].Aurbach, D.; Eineli, Y; Chusid, O.; Carmeli, Y; Babai, M.; Yamin, H., The Correlation between the Surface-Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable Rocking-Chair Type Batteries. Journal of the Electrochemical Society 1994,141, (3), 603-611.
    [216].EinEli, Y; Thomas, S. R.; Koch, V. R., New electrolyte system for Li-ion battery. Journal of the Electrochemical Society 1996,143, (9), L195-L197.
    [217].Shu, Z. X.; McMillan, R. S.; Murray, J. J., Effect of 12 Crown-4 on the Electrochemical Intercalation of Lithium into Graphite. Journal of the Electrochemical Society 1993,140, (6), L101-L103.
    [218].Shu, Z. X.; McMillan, R. S.; Murray, J. J., Electrochemical Intercalation of Lithium into Graphite. Journal of the Electrochemical Society 1993,140, (4), 922-927.
    [219].Wrodnigg, G H.; Besenhard, J. O.; Winter, M., Ethylene sulfite as electrolyte additive for lithium-ion cells with graphitic anodes. Journal of the Electrochemical Society 1999,146, (2), 470-472.
    [220].Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries. Electrochimica Acta 2000,45, (12), 1893-1899.
    [221].Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y; Schmidt, M.; Heider, U., On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries. Electrochimica Acta 2002, 47, (9),1423-1439.
    [222].Ota, H.; Shima,K.; Ue, M.; Yamaki, J., Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta 2004,49, (4), 565-572.
    [223].Wang, Y. X.; Nakamura, S.; Tasaki, K.; Balbuena, P. B., Theoretical studies to understand surface chemistry on carbon anodes for lithium-ion batteries: How does vinylene carbonate play its role as an electrolyte additive? Journal of the American Chemical Society 2002,124, (16), 4408-4421.
    [224].Lee, H. H.; Wang, Y. Y; Wan, C. C; Yang, M. H.; Wu, H. C; Shieh, D. T, The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. Journal of Applied Electrochemistry 2005, 35,(6), 615-623.
    [225].Wang, C. X.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., Electrochemical behaviour of a graphite electrode in propylene carbonate and l,3-benzodioxol-2-one based electrolyte system. Journal of Power Sources 1998,74, (1), 142-145.
    [226].Li, W. T.; Lucht, B. L., Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries. Journal of Power Sources 2007,168, (1), 258-264.
    [227].Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J.; Callahan, J. H.; Choi, L. S., Synthesis of cyclic aza-ether compounds and studies of their use as anion receptors in nonaqueous lithium halide salts solution. Journal of the Electrochemical Society 2000,147, (1), 9-14.
    [228].Lee, H. S.; Yang, X. Q.; McBreen, J.; Choi, L. S.; Okamoto,Y, The synthesis of a new family of anion receptors and the studies of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. Journal of the Electrochemical Society 1996,143, (12), 3825-3829.
    [229].Morita, M.; Hayashida, H.; Matsuda, Y, Effects of Crown-Ether Addition to Organic Electrolytes on the Cycling Behavior of the TiS_2 Electrode. Journal of the Electrochemical Society 1987, 134, (9), 2107-2111.
    [230].Nagasubramanian, G; Distefano, S., 12-Crown-4 Ether-Assisted Enhancement of Ionic-Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes. Journal of the Electrochemical Society 1990, 137, (12),3830-3835.
    [231].Lonergan, M. C; Ratner, M. A.; Shriver, D. F.,Cryptand Addition to Polyelectrolytes - a Means of Conductivity Enhancement and a Probe of Ionic Interactions. Journal of the American Chemical Society 1995,117,(8), 2344-2350.
    [232].Lee, H. S.; Sun, X.; Yang, X. Q.; McBreen, J., Synthesis and study of new cyclic boronate additives for lithium battery electrolytes. Journal of the Electrochemical Society 2002,149, (11), A1460-A1465.
    [233].Lee, H. S.; Yang, X. Q.; Xiang, C. L.; McBreen, J.; Choi, L. S., The synthesis of a new family of boron-based anion receptors and the study of their effect on ion pair dissociation and conductivity of lithium salts in nonaqueous solutions. Journal of the Electrochemical Society 1998,145, (8), 2813-2818.
    [234].Sun, X.; Lee, H. S.; Yang, X. Q.; McBreen, J., Comparative studies of the electrochemical and thermal stability of two types of composite lithium battery electrolytes using boron-based anion receptors. Journal of the Electrochemical Society 1999,146, (10), 3655-3659.
    [235].Sun, X.; Lee, H. S.; Yang, X. Q.; McBreen, J., A new additive for lithium battery electrolytes based on an alkyl borate compound. Journal of the Electrochemical Society 2002,149, (3), A355-A359.
    [236].Sun, X.; Lee, H. S.; Yang, X. Q.; McBreen, J., Improved elevated temperature cycling of LiMn_2O_4 spinel through the use of a composite LiF-based electrolyte. Electrochemical and Solid State Letters 2001, 4, (11),A184-A186.
    [237].Sun, X.; Lee, H. S.; Yang, X. Q.; McBreen, J., Using a boron-based anion receptor additive to improve the thermal stability of LiPF6-based electrolyte for lithium batteries. Electrochemical and Solid State Letters 2002, 5,(11),A248-A251.
    [238].Abraham, K. M.; Pasquariello, D. M.; Willstaedt, E. B., Normal-Butylferrocene for Overcharge Protection of Secondary Lithium Batteries. Journal of the Electrochemical Society 1990,137, (6), 1856-1857.
    [239].Abraham, K. M.; Pasquariello, D. M., Synthesis, Characterization, and Lithium Battery Applications of Molybdenum Oxysulfides. Chemistry of Materials 1993,5, (9), 1233-1241.
    [240].Golovin, M. N.; Wilkinson, D. P.; Dudley, J. T.; Holonko, D.; Woo, S., Applications of Metallocenes in Rechargeable Lithium Batteries for Overcharge Protection. Journal of the Electrochemical Society 1992, 139, (1),5-10.
    [241].P. Arora, Z. M. Z., Battery separators Chem. Rev. 2004,104,4419-4462.
    [242].Kostecki, R.; Norin, L.; Song, X. Y; McLarnon, F., Diagnostic studies of polyolefin separators in high-power Li-ion cells. Journal of the Electrochemical Society 2004,151,(4), A522-A526.
    [243].Maleki, H.; Shamsuri, A. K., Thermal analysis and modeling of a notebook computer battery. Journal of Power Sources 2003,115,(1),131-136.
    [244].Laman, F. C; Gee, M. A.; Denovan, J., Impedance Studies for Separators in Rechargeable Lithium Batteries.Journal of the Electrochemical Society 1993,140, (4), L51-L53.
    [245].吴宇平;戴晓兵;马军旗;程预江,锂离子电池-应用与实践.化学工业出版社:2004.
    [246].Zhang,D.; Haran, B. S.; Durairajan,A.; White, R. E.; Podrazhansky, Y; Popov, B. N., Studies on capacity fade of lithium-ion batteries. Journal of Power Sources 2000, 91, (2), 122-129.
    [247].Ramadass, P.; Haran, B.; White, R.; Popov, B. N., Capacity fade of Sony 18650 cells cycled at elevated temperatures Part I. Cycling performance. Journal of Power Sources 2002,112, (2), 606-613.
    [248].Ramadass, P.; Haran, B.; White, R.; Popov, B. N., Capacity fade of Sony 18650 cells cycled at elevated temperatures Part II. Capacity fade analysis. Journal of Power Sources 2002,112, (2), 614-620.
    [249].Wu, M. S.; Chiang,P. C. J.; Lin, J. C, Electrochemical investigations on capacity fading of advanced lithium-ion batteries after storing at elevated temperature. Journal of the Electrochemical Society 2005, 152, (6),A1041-A1046.
    [250].Araki, K.; Sato, N., Chemical transformation of the electrode surface of lithium-ion battery after storing at high temperature. Journal of Power Sources 2003,124, (1), 124-132.
    [251].Amatucci, G G; Schmutz,C. N.; Blyr, A.; Sigala, C; Gozdz, A. S.; Larcher, D.; Tarascon, J. M., Materials' effects on the elevated and room temperature performance of C/LiMn_2O_4 Li-ion batteries. Journal of Power Sources 1997,69, (1-2), 11-25.
    [252].Noguchi, T.; Yamazaki, I.; Numata,T; Shirakata,M. In Effect of Bi oxide surface treatment on 5 V spinel LiNi_(0.5)Mn_(1.5-x)Ti_xO_4,13th International Meeting on Lithium Batteries, Biarritz, FRANCE, Jun 18-23, 2006; Elsevier Science Bv: Biarritz,FRANCE, 2006; pp 359-365.
    [253].Takahashi, M.; Yoshida, T; Ichikawa, A.; Kitoh, K.; Katsukawa, H.; Zhang, Q.; Yoshio, M., Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature. Electrochimica Acta 2006,51,(25), 5508-5514.
    [254].Liu, H. S.; Yang, Y; Zhang, J. J., Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO_2 with CO_2.Journal of Power Sources 2007,173,(1),556-561.
    [255].Liu, H. S.; Yang, Y; Zhang, J. J., Investigation and improvement on the storage property of LiNi_(0.8)Co_(0.2)O_2 as a cathode material for lithium-ion batteries. Journal of Power Sources 2006,162, (1), 644-650.
    [256].薄红志;陈晗;范长岭;徐仲榆;韩绍昌,LiFePO_4用作锂离子电池正极材料的储存性能研究 In第十三次全国电化学会议,中国广东广州,2005.
    [257].Imhof, R.; Novak, P., In situ investigation of the electrochemical reduction of carbonate electrolyte solutions at graphite electrodes. Journal of the Electrochemical Society 1998,145, (4), 1081-1087.
    [258].Novak,P.; Panitz, J. C; Joho, F; Lanz, M.; Imhof, R.; Coluccia, M. In Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries, International Symposium on Rechargeable Lithium Batteries, Kyoto, Japan, Nov 14-16,1999; Kyoto, Japan, 1999; pp 52-58.
    [259].杨军;解晶莹;王久林,化学电源测试原理与技术.化学工业出版社:2006.
    [260].La Mantia, F.; Novak,P., Online detection of reductive CO_2 development at graphite electrodes in the 1M LiPF_6,EC:DMC battery electrolyte. Electrochemical and Solid State Letters 2008, 11, (5), A84-A87.
    [261].Buqa, H.; Wursig, A.; Vetter, J.; Spahr, M. E.; Krumeich, F.; Novak,P.In SEI film formation on highly crystalline graphitic materials in lithium-ion batteries, Meeting of the International-Battery-Association (IBA),Graz, AUSTRIA,Apr 18-22, 2004; Graz,AUSTRIA,2004; pp 385-390.
    [262].Lanz,M.; Novak, P., DEMS study of gas evolution at thick graphite electrodes for lithium-ion batteries: the effect of gamma-butyrolactone. Journal of Power Sources 2001,102,(1-2), 277-282.
    [263].Vetter, J.; Holzapfel, M.; Wuersig,A.; Scheifele, W.; Ufheil, J.; Novak,P. In In situ study on CO_2 evolution at lithium-ion battery cathodes, 3rd International Conference on Materials for Advanced Technologies (ICMAT-2005)/9th International Conference on Advanced Materials (ICAM 2005), Singapore, SINGAPORE, Jul 03-08,2005; Elsevier Science Bv: Singapore, SINGAPORE, 2005; pp 277-281.
    [264].UfheiI, J.; Baertsch, M. C; Wursig, A.; Novak, P., Maleic anhydride as an additive to gamma-butyrolactone solutions for Li-ion batteries. ElectrochimicaActa 2005,50, (7-8), 1733-1738.
    [265].Yao,W. H.; Zhang,Z. R.;Gao, J.; Li, J.; Xu, J.; Wang,Z. C; Yang, Y, Vinyl ethylene sulfite as a new additive in PC based electrolyte for lithium ion batteries. Energy and Enviromental Science 2008, prepared.
    [266].Li, J.; Yao, W. H.; Meng,Y. S.; Yang, Y, Effects of vinyl ethylene carbonate additive on elevated-temperature performance of cathode material in lithium ion batteries. Journal of Physical Chemistry C 2008,112, (32), 12550-12556.
    [267].La Mantia,F.;Rosciano, F.; Tran, N.; Novak, P. In Direct evidence of oxygen evolution from Li_(1+x)(Ni_(1/3)Mn_(1/3)Co_(1/3))_((1-x))O_2 at high potentials, GEI ERA 2007 Conference, Cagliari,ITALY, Jul, 2007; Springer:Cagliari, ITALY, 2007; pp 893-896.
    [1].刘汉三,厦门大学理学博士学位论文[D],厦门:2003.
    [2].张忠如,厦门大学理学博士学位论文[D],厦门:2004.
    [3]. Yabuuchi N,OkzuKu,T.Novel lithium insertion material of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 for advanced lithium-ion batteries [J]. Power Sources. 2003, 119-121: 171-174
    [4]. Venkatraman S.Shin Y.Manthiram A,et al.Phase Relationships and Structural and Chemical Stabilities of Chargeed Li_(1-x)CoO_(2-δ) and Li_(1-x)Ni_(0.85)Co_(0.15)O_(2-δ) cathodes. Electrochem.Solid-State Lett. 2003, 6(1): A9-A12
    [5]. Venkatraman S,Manthiram A. Structural and Chemical Characterization of Layered Li_(1-x)Ni_(1-y)Mn_yO_2-δ(y=0.25 and 0.5, and 0≤(1-x)≤1) Oxides. Chem Mater 2003, 15: 5003-5009
    [6]. A C Larson and R B Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory, Report LAUR 86-748,2000
    [7]. B H Toby, J. Appl.Cryst,2001,34:210
    [8].马礼敦.X射线粉末衍射的新起点-Rietveld全谱拟合[J].物理学进展,1996,16(2):251-265.
    [9].刘红超,郭常霖.X射线多晶衍射全谱图拟合方法在无机材料研究中的应用[J].无机材料学报,1996,11(3):407-414.
    [10].武汉大学等编,《分析化学》,高等教育出版社,北京,1995
    [11].刘世宏等编,《X-射线光电子能谱分析》[M].,科学出版社,北京:1988.
    [12].白春礼 扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [13]. Takeo Ozawa,Thermal analysis-review and prospect, Thermochimica Acta, 2000, 355: 35-42
    [14]. Michael E. Brown, Introduction to Thermal Analysis-Techniques and Applications (Second Edition), Kluwer Academic Publishers, New York, Boston, Dordrecht, London, Moscow, 2004
    [15]. D. A. Skoog and J. J. Leary, Principles of Instrumental Analysis, 4th ed., Saunders College Publ., 1992
    [16].邓勃,宁永成,刘密新,仪器分析,清华大学出版社,1991
    [17].李冰,杨红霞.电感耦合等离子体质谱技术最新进展[J].分析实验室,2003,22(1):94-100
    [18].李金英,郭东发,姚继军,曹淑琴.电感耦合等离子体质谱(ICP-MS)新进展[J].质谱学报.2002,23(3):164-179
    [19].史春开,厦门大学理学博士学位论文[D].厦门:2003.
    [20]. R. Imhof, P. Novak, In Situ Investigation of the Electrochemical Reduction of Carbonate Electrolyte Solutions at Graphite Electrodes. J. Electrochem. Soc., 1998,145 (4):1081-1087
    [21]. R. Imhof, P. Novak,Oxidative Electrolyte Solvent Degradation in Lithium-Ion Batteries: An In Situ Differential Electrochemical Mass Spectrometry Investigation J. Electrochem.Soc., 1999, 46 (5):1702-1706
    [22]. J. Ufheil, M. C. Baertsch,A.Wursig,P. Novak,Maleic anhydride as an additive to y-butyrolactone solutions for Li-ion batteries. Electrochim. Acta, 2005,50,1733-1738
    [23]. A. R. Armstrong, M. Holzapfel, P. Novak,C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G Bruce,Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni_(0.2)Li_(0.2)Mn_(0.6)]O_2. J. Am. Chem. Soc., 2006, 128, 8694-8698
    [24].M.L.马丹等著,蒋大智等译,《实用核磁共振波谱学》,科学出版社,1987
    [25].宁永成,《有机化合物结构鉴定与有机波谱学》,第二版,科学出版社2000
    [26].储炜,厦门大学理学博士学位论文[D].厦门:1999.
    [27].杨孙楷等.仪器分析实验[M].厦门:厦门大学出版社,厦门:1996.
    [1]. Ohzuku, T.; Makimura,Y., Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries.Chemistry Letters 2001,(7), 642-643.
    [2]. Kim,J. M.; Chung, H. T., The first cycle characteristics of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(-2) charged up to 4.7 V.Electrochimica Acta 2004,49,(6), 937-944.
    [3]. Lee, M. H.; Kang, Y.; Myung, S. T.; Sun, Y. K., Synthetic optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(-2) via co-precipitation. Electrochimica Acta 2004,50,(4), 939-948.
    [4]. Shaju, K. M.; Rao, G V. S.; Chowdari, B. V. R.,Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode for Li-ion batteries. Electrochimica Acta 2002,48,(2), 145-151.
    [5]. Hwang,B. J.; Tsai, Y. W.; Carlier, D.; Ceder, G, A combined computational/experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2. Chemistry of Materials 2003,15,(19), 3676-3682.
    [6]. Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y, The studies on structural and thermal properties of delithiated Li_xNi_(1/3)Co_(1/3)Mn_(1/3)O_2 (0    [7]. Park,S. H.; Yoon, C. S.; Kang, S. G; Kim,H. S.; Moon, S. I.; Sun,Y. K., Synthesis and structural characterization of layered Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 cathode materials by ultrasonic spray pyrolysis method.Electrochimica Acta 2004,49,(4), 557-563.
    [8]. Li, D. C; Muta,T.; Zhang, L. Q.; Yoshio, M.; Noguchi, H., Effect of synthesis method on the electrochemical performance of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2.Journal of Power Sources 2004,132, (1-2), 150-155.
    [9]. Yabuuchi, N.; Ohzuku, T. In Novel lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries, 11th International Meeting on Lithium Batteries, Monterey, California, Jun 24-28, 2002; Monterey,California, 2002;pp171-174.
    [10]. Belharouak,I.; Sun, Y. K.; Liu, J.; Amine, K.,Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_(-2) as a suitable cathode for high power applications. Journal of Power Sources 2003,123, (2), 247-252.
    [11]. Kanno, R.; Kubo, H.; Kawamoto, Y; Kamiyama, T.; Izumi, F.;Takeda, Y; Takano, M., Phase relationship and lithium deintercalation in lithium nickel oxides. Journal of Solid State Chemistry 1994,110, 216-225.
    [12]. Takahashi, Y; Akimoto, J.; Gotoh, Y; Kawaguchi, K.; Mizuta, S., Single crystal growth and structural chemistry of Li_(1-z)Ni_(1+z)O_2 with z=0.075. Journal of SolidState Chemistry 2001,160, (1), 178-183.
    [13]. Koyama,Y; Tanaka, I.; Adachi, H.; Makimura, Y; Ohzuku, T. In Crystal and electronic structures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2 (0<=x<=1),11th International Meeting on Lithium Batteries, Monterey,California, Jun 24-28,2002; Monterey, California, 2002; pp 644-648.
    [14]. Chebiam,R.V.;Prado, F.; Manthiram, A., Structural instability of delithiated Li_(1-x)Ni_(1-y)Co_yO_2 cathodes.Journal of the Electrochemical Society 2001,148, (1), A49-A53.
    [15]. Lu, Z. H.; Beaulieu, L. Y; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R., Synthesis, structure, and electrochemical behavior of Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_(-2).Journal of the Electrochemical Society 2002, 149, (6),A778-A791.
    [16]. Ceder, G; Mishra, S. K., The stability of orthorhombic and monoclinic-layered LiMnO_2.Electrochemical and Solid State Letters 1999,2, (11), 550-552.
    [17]. Kotschau, I. M.; Dahn, J. R., In situ X-ray study of LiMnO_2.Journal of the Electrochemical Society 1998,145, (8), 2672-2677.
    [18]. Venkatraman, S.; Manthiram, A., Structural and chemical characterization of layered Li_(1-x)Ni_(1-y)Mn_yO_2-delta(y=0.25 and 0.5, and 0<=(1-x)<=1) oxides. Chemistry of Materials 2003,15,(26), 5003-5009.
    [19]. Liu, H. S.; Li, J.; Zhang, Z. R.; Gong, Z. L.; Yang, Y, Structural, electrochemical and thermal properties of LiNi_(0.8-y)Ti_yCo_(0.2)O_2 as cathode materials for lithium ion battery. Electrochimica Acta 2004,49,(7),1151-1159.
    [20]. Venkatraman, S.; Shin, Y; Manthiram, A., Phase relationships and structural and chemical stabilities of charged Li_(1-x)CoO_2-delta and Li_(1-x)Ni_(0.85)Co_(0.15)O_2-delta cathodes. Electrochemical and Solid State Letters 2003, 6,(1),A9-A12.
    [21]. Sun, Y.C.;Ouyang, C; Wang, Z. X.; Huang, X. I.; Chen, L. Q., Effect of co content on rate performance of LiMn_(0.5-x)Co_(2x)Ni_(0.5-x)O_2 cathode materials for lithium-ion batteries. Journal of the Electrochemical Society 2004,151,(4),A504-A508.
    [22]. Shaju, K. M.; Ramanujachary, K. V.; Lofland, S. E.; Rao, G V. S.; Chowdari, B. V. R., Spectral, magnetic and electrochemical studies of layered manganese oxides with P2 and 02 structure. Journal of Materials Chemistry 2003,13,(10), 2633-2640.
    [23]. Marco, J. F.; Gancedo, J. R.; Gracia, M.; Gautier, J. L.; Rios, E. I.; Palmer, H. M.; Greaves, C; Berry, F. J.,Cation distribution and magnetic structure of the ferrimagnetic spinel NiCo_2O_4.Journal of Materials Chemistry 2001,11,(12), 3087-3093.
    [24]. Dupin, J. C; Gonbeau, D.; Benqlilou-Moudden, H.; Vinatier, P.; Levasseur, A., XPS analysis of new lithium cobalt oxide thin-films before and after lithium deintercalation. Thin Solid Films 2001,384,(1),23-32.
    [25]. Zhang, Z. R.; Gong, Z. L.; Yang, Y, Electrochemical performance and surface properties of bare and TiO_2-coated cathode materials in lithium-ion batteries. Journal of Physical Chemistry B 2004, 108, (45),17546-17552.
    [26]. Shao, Z. P.; Yang, W.S.;Cong, Y; Dong, H.; Tong, J. H.; Xiong, G X., Investigation of the permeation behavior and stability of a Ba_(0.5)Sr_(0.5)Co_(0.8)Fe_(0.2)O_3-delta oxygen membrane. Journal of Membrane Science 2000,172,(1-2), 177-188.
    [27]. Zhen, Z.; Yang, X. G; Wu, Y, Comparative study of Nickel-based perovskite-like mixed oxide catalysts of direct decomposition of NO. Applied Catalysis B:environmental 1996,8,281-297.
    [1]. Ngala,J.K.;Chernova, N. A.; Ma, M. M.; Mamak, M.; Zavalij, P. Y.; Whittingham, M. S., The synthesis,characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2 compound. Journal of Materials Chemistry 2004,14, (2), 214-220.
    [2]. Li, J.; Zheng, J. M; Guo, X. J.; Gong, Z. L.; Yang, Y, Preparation, characterization and electrochemical performance of LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2 as cathode materials in lithium ion battery. Chemical Journal of Chinese Universities-Chinese 2006,27, (7), 1311-1314.
    [3]. Oh, S. W.; Park, S. H.; Park, C. W.; Sun, Y. K., Structural and electrochemical properties of layered Li[Ni_(0.5)Mn_(0.5)]_((1-x))Co_xO_2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics 2004,171,(3-4),167-172.
    [4]. Shaju, K. M.; Rao, G V. S.; Chowdari, B. V. R., Performance of layered Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode for Li-ion batteries. Electrochimica Acta 2002,48,(2),145-151.
    [5]. Koyama, Y; Tanaka, I.; Adachi, H.; Makimura, Y; Ohzuku, T. In Crystal and electronic structures of superstructural Li_(1-x)[Co_(1/3)Ni_(1/3)Mn_(1/3)]O_2 (0<=x<= 1),11th International Meeting on Lithium Batteries, Monterey,California, Jun 24-28,2002; Monterey, California, 2002; pp 644-648.
    [6]. Lu, Z. H.; MacNeil, D. D.; Dahn, J. R., Layered cathode materials Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_(-2) for lithium-ion batteries. Electrochemical and Solid State Letters 2001,4,(11),A191-A194.
    [7]. MacNeil, D. D.; Lu, Z.; Dahn, J. R., Structure and electrochemistry of Li[Ni_xCo_(1-2x)Mn_x]O_(-2) (0<=x<=1/2).Journal of the Electrochemical Society 2002,149, (10), A1332-A1336.
    [8]. Liu, H. S.; Zhang, Z. R.; Gong, Z. L.; Yang, Y, Origin of deterioration for LiNiO_2 cathode material during storage in air. Electrochemical and Solid State Letters 2004,7, (7), A190-A193.
    [9]. Liu, H. S.; Yang, Y; Zhang, J. J., Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO_2 with CO_2.Journal of Power Sources 2007,173, (1), 556-561.
    [10]. Liu, H. S.; Yang, Y; Zhang, J. J., Investigation and improvement on the storage property of LiNi_(0.8)Co_(0.2)O_2 as a cathode material for lithium-ion batteries. Journal of Power Sources 2006,162,(1),644-650.
    [11]. Matsumoto, K.; Kuzuo, R.; Takeya, K.;Yamanaka, A. In Effects of CO_2 in air on Li deintercalation from LiNi_(1-x-y)Co_xAl_yO_2,9th International Meeting on Lithium Batteries, Edinburgh, Scotland, Jul 12-17, 1998;Edinburgh, Scotland, 1998; pp 558-561.
    [12]. Zhuang, G V.; Chen, G Y; Shim, J.; Song, X. Y; Ross, P. N.; Richardson, T. J., Li_2CO_3 in LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathodes and its effects on capacity and power. Journal of Power Sources 2004, 134, (2),293-297.
    [13].刘汉三.锂离子电池正极材料锂镍氧系列化合物的合成、结构和性能研究.理学博士,厦门大学,厦门,2003.
    [14]. Gong, Z. L.; Liu, H. S.; Guo, X. J.; Zhang, Z. R.; Yang, Y, Effects of preparation methods of LiNi_(0.8)Co_(0.2)O_2 cathode materials on their morphology and electrochemical performance. Journal of Power Sources 2004,136,(1),139-144.
    [15]. Yang, H. F.; Feng, J.; Liu, Y. L.; Yang, Y; Zhang, Z. R.; Shen, G L.; Yu, R. Q., Electrochemical and surface enhanced Raman scattering spectroelectrochemical study of phytic acid on the silver electrode. Journal of Physical Chemistry B 2004,108,(45), 17412-17417.
    [16]. Biensan, P.; Simon, B.; Peres, J. P.; de Guibert, A.; Broussely, M.; Bodet, J. M.; Perton, F. In On safety of lithium-ion cells, 9th International Meeting on Lithium Batteries, Edinburgh, Scotland, Jul 12-17, 1998; Edinburgh,Scotland, 1998; pp 906-912.
    [17]. Zhang, Z.; Fouchard, D.; Rea, J. R., Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. Journal of Power Sources 1998, 70, (1), 16-20.
    [18]. Baba, Y; Okada, S.; Yamaki, J. In Thermal stability of Li_xCoO_2 cathode for lithium ion battery, International Conference on Materials for Advanced Technologies (ICMAT2001), Singapore, Singapore, Jul 01-06, 2001;Singapore, Singapore, 2001; pp 311-316.
    [19]. Belharouak, I.; Sun, Y K.;Liu, J.;Amine, K.,Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_(-2) as a suitable cathode for high power applications. Journal of Power Sources 2003,123, (2), 247-252.
    [20]. Mijung, N.; Lee, Y; Cho, J., Water adsorption and storage characteristics of optimized LiCoO_2 and LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 composite cathode material for Li-ion cells. Journal of the Electrochemical Society 2006,153,(5),A935-A940.
    [21]. Dedryvere, R.; Laruelle, S.; Grugeon, S.; Gireaud,L.;Tarascon, J. M.; Gonbeau, D., XPS identification of the organic and inorganic components of the electrode/electrolyte interface formed on a metallic cathode. Journal of the Electrochemical Society 2005,152, (4), A689-A696.
    [22]. Eriksson, T.; Andersson,A.M; Bishop, A. G; Gejke, C; Gustafsson, T.; Thomas, J. O., Surface analysis of LiMn_2O_4 electrodes in carbonate-based electrolytes. Journal of the Electrochemical Society 2002, 149, (1),A69-A78.
    [23]. Aurbach, D. In Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, Solid State Lithium Battery Workshop, Towson, Maryland, Jul,1999; Towson, Maryland, 1999;pp 206-218.
    [24]. Andersson, A. M.; Abraham,D. P.; Haasch, R.; MacLaren, S.; Liu,J.;Amine, K.,Surface characterization of electrodes from high power lithium-ion batteries. Journal of the Electrochemical Society 2002, 149, (10),A1358-A1369.
    [1]. Zhang,X. R.;Kostecki, R.; Richardson, T. J.; Pugh, J. K.; Ross, P. N., Electrochemical and infrared studies of the reduction of organic carbonates. Journal of the Electrochemical Society 2001,148,(12), A1341-A1345.
    [2]. Ota,H.;Sakata, Y.; Inoue, A.; Yamaguchi, S., Analysis of vinylene carbonate derived SEI layers on graphite anode. Journal of the Electrochemical Society 2004,151,(10),A1659-A1669.
    [3]. Ota,H.; Sakata,Y.; Otake, Y.; Shima,K.;Ue,M;Yamaki, J., Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. Journal of the Electrochemical Society 2004,151,(11),A1778-A1788.
    [4]. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt,M.; Heider, U., On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries. Electrochimica Acta 2002, 47, (9),1423-1439.
    [5]. Hu, Y. S.; Kong, W. H.; Hong,L.; Huang, X. J.; Chen, L. Q., Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochemistry Communications 2004,6, (2), 126-131.
    [6]. Oesten, R.; Heider, U.; Schmidt,M. In Advanced electrolytes, International Conference on Materials for Advanced Technologies (ICMAT2001), Singapore, Singapore, Jul 01-06, 2001; Singapore, Singapore, 2001; pp 391-397.
    [7]. Newman, M. S.; Addor, R. W., Synthesis and Reaction of Vinylene Carbonate. Journal of the American Chemical Society 1955,77,3789-3793.
    [8].Chen,G. Y.; Zhuang, G. V.; Richardson, T. J.; Liu, G.; Ross, P. N., Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte. Electrochemical and Solid State Letters 2005, 8, (7), A344-A347.
    [9]. Ota,H.; Sato, T.; Suzuki, H.; Usami, T. In TPD-GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries,10th International Meeting on Lithium Batteries, Como,Italy, May 28-Jun 02,2000; Como,Italy, 2000; pp 107-113.
    [10]. Hu, Y. S.; Kong, W. H.; Wang,Z. X.; Li, H.; Huang,X. J.; Chert,L.Q.,Effect of morphology and current density on the electrochemical behavior of graphite electrodes in PC-based electrolyte containing VEC additive.Electrochemical and Solid State Letters 2004,7,(11),A442-A446.
    [11]. Wang,Z. X.; Hu, Y. S.; Chen, L. Q. In Some studies on electrolytes for lithium ion batteries, 12th International Meeting on Lithium Batteries, Nara, JAPAN, Jun 27-Jul 02,2004; Nara, JAPAN, 2004; pp 51-57.
    [12]. Doughty, D. H.; Roth, E. P.; Crafts, C. C; Nagasubramanian, G.; Henriksen, G.; Amine, K. In Effects of additives on thermal stability of Li ion cells,12th International Meeting on Lithium Batteries, Nara,JAPAN, Jun 27-Jul 02,2004; Nara,JAPAN, 2004; pp 116-120.
    [13]. Vollmer,J. M.; Curtiss,L. A.;Vissers,D.R.;Amine, K., Reduction mechanisms of ethylene, propylene, and vinylethylene carbonates - A quantum chemical study. Journal of the Electrochemical Society 2004,151,(1),A178-A183.
    [14]. Gong,Z.L.;Liu, H. S.; Guo, X. J.; Zhang,Z.R.;Yang,Y.,Effects of preparation methods of LiNi_(0.8)Co_(0.2)O_2 cathode materials on their morphology and electrochemical performance. Journal of Power Sources 2004,136,(1),139-144.
    [15]. Vetter, J.; Holzapfel, M.; Wuersig, A.; Scheifele, W.; Ufheil, J.; Novak,P.In In situ study on CO_2 evolution at lithium-ion battery cathodes, 3rd International Conference on Materials for Advanced Technologies (ICMAT-2005)/9th International Conference on Advanced Materials (ICAM 2005), Singapore, SINGAPORE, Jul 03-08,2005; Singapore, SINGAPORE, 2005; pp 277-281.
    [16]. Song,S.W.;Zhuang, G. V.; Ross, P. N., Surface film formation on LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathodes using attenuated total reflection IR spectroscopy. Journal of the Electrochemical Society 2004,151,(8),A1162-A1167.
    [17]. Colthup, N. B.; Daly, L. H.; Wiberley, A. E., Introduction to Infaraed and Raman Sepectroscopy. 3rd ed.;Avademic Press: New York, 1990.
    [18]. Http://teaching.shu.ac.uk
    [19]. Perkampus, H. H.; Grinter, H. C; Threlfall, T. L., UV-Vis Spectroscopy and Its Applications. Springer: 1992.
    [20]. Http://nmr.chem.ualberta.ca
    [21]. Ravdel, B.; Abraham,K. M.; Gitzendanner, R.; DiCarlo, J.; Lucht, B.; Campion, C. In Thermal stability of lithium-ion battery electrolytes,11th International Meeting on Lithium Batteries, Monterey, California,Jun 24-28,2002; Monterey, California,2002; pp 805-810.
    [22]. Campion, C. L.; Li, W. T.; Lucht,B. L., Thermal decomposition of LiPF_6-based electrolytes for lithium-ion batteries. Journal of the Electrochemical Society 2005,152, (12), A2327-A2334.
    [23]. Kawamura,T.;Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J. I., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of Power Sources 2002,104,(2), 260-264.
    [24]. Sloop, S. E.; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita,K.,Chemical reactivity of PF_5 and LiPF_6 in ethylene carbonate/dimethyl carbonate solutions. Electrochemical and Solid State Letters 2001,4,(4),A42-A44.
    [25]. Xu,K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 2004,104, (10), 4303-4417.
    [26]. Lee, H. H.; Wang, Y. Y.; Wan, C. C; Yang, M. H.; Wu, H. C; Shieh, D. T., The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries. Journal of Applied Electrochemistry 2005, 35,(6), 615-623.