瞄准具传光能力评价及测试方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瞄准具传光能力的高低直接关系着瞄准具视距的大小。传统传光能力测试方法普遍采用光电池直接测量光通量,或采用光电倍增管间接测量经过积分球匀光后的光照度。由于被测瞄准具的光学系统与国家计量部门提供的标准件屈光度不同,导致实测与空测时入射光束形态发生变化,产生测量基准不一致的误差,传统方法无法满足瞄准具研制、定型和生产过程中传光能力的全面评价及检验需要。本文在查阅国内外大量相关文献资料的基础上,对瞄准具传光能力所涉及的评价方法、测试理论及关键技术进行了深入的研究,并设计了传光能力测试系统。
     论文总结了国内外传光能力测量方法与仪器的现状,针对目前瞄准具传光能力存在片面评价的问题,提出了采用传光效率和光能相对分布两个概念来全面描述瞄准具。并在此概念的基础上,推导了传光效率和光能相对分布测量原理,建立了积分球出射照度与入射光束形态之间的关系模型并进行了仿真实验,证明了入射光束形态变化引起积分球逸出光通量随机变化,产生测量基准不一致,是导致目前传光能力测量方法无法实现平光系统和屈光系统统一测量的主因。针对该情况,提出了一种光束形态控制方法,调整朗伯屏与探测器等距同步,使屈光系统测量光斑和参考焦点形态一致,从而可消除了入射光束形态变化引起的测量基准不一致的误差。测量平光系统采用辅助透镜法,把平光系统测量转换为屈光系统测量,实现了平光系统与屈光系统测量基准的统一。同时,设计了一套能同时测量传光效率和光能相对分布的实验装置,对该装置的发射、接收和信息处理各模块的实现以及振动特性进行了分析和仿真研究。
     本文针对背景光的干扰问题进行了深入研究,提出了采用相关滤波克服背景光干扰达到亮场测试要求的方法。基准面光源、朗伯屏、成像镜头和CCD相机都存在非均匀性,影响光能相对分布测量精度。为了解决该问题,基于从空域上讲面光源、朗伯屏、成像镜头的非均匀光学特性具有确定性和CCD的不均匀响应具有随机性,提出了采用最小二乘方法拟合光源强度分布,重建基准面光源,实现面阵CCD相机联合标定的方法。
     实验表明:本设计能完成传光效率和光能相对分布的同时测量,实现了平光系统与屈光系统传光能力测量基准的统一,解决了平光系统和屈光系统传光能力的比对和传递的难题,传光能力的测试精度为0.3%。为全面评价和客观测量瞄具光学系统的传光能力提供了依据,对提高瞄准具视距,保证武器打击效能具有重要意义。
The level of light transmitting capability of sights is directly related to its visual range. Photocell is usually used to measure light flux directly, or photomultiplier is usually used to indirectly measure the output illuminance of integrating sphere in traditional measurement methods of light transmitting capability. Reference inconsistent errors may arise from changes of input light geometry due to the differences of diopter between under-tested optical system of sights and standard sample supplied by National Department of Metrology when placing and then removing them.Traditional measurement methods of light transmitting capability cannot meet the overall evaluation and inspection requirement of light transmitting capability of sights in the process of developing,setting and producting.After consulting related domestic and international literature and information, this paper proceeds thorough research on evaluation method, testing theory and key technology. Meantime the test system of light transmitting capability is designed.
     After analyzing and summarizing present situation of measurement method of light transmitting capability and instruments at home and abroad, two concepts that light transmitting efficiency and relative distribution of light energy are proposed to give an overall description of sights,aiming to the one-sided evaluation on light transmitting capability of sight. Based on the concepts, measuring theories of light transmitting efficiency and relative distribution of light energy are deduced, and the relationship model between the output illumination of integrating sphere and the incident beam geometry is established. Simulation experiment has proved that why the present measurement method of light transmitting capability cannot unify planar system measurement with nonplannar system measurement is mainly that reference inconsistency of incident geometry may arise from the random variation of escaped light flux due to the changes from incident beam geometry. Aiming to the problem, an incident geometry controlling method of nonplanner system is proposed. It can make the geometry of measurement focus of nonplannar sample be consistent with the geometry of reference focus by keeping lambert screen and detector simultaneous and equidistant, so the reference inconsistent error due to the changes from incident beam geometry is eliminated.For the planner system, the method, which converts plannar sample measurement to nonplannar sample measurement by using additional lens, unifies the measurement reference of plannar system with nonplannar system. Base on above method, a test setup, which can measure light transmitting efficiency and relative distribution of light energy together, is designed.Research on implementation method of transmitting,receiving and information processing module of the setup is made,and its vibration characteristics is also analyzed by simulation experiment.
     Deep study on the interferenc problem from background light is made here, and correlation filtering method is proposed to conquer background light interference in order to meet the requirement of bright field test.To solve the problem that the distribution nonuniformity errors of light source, lambert screen, imaging lens and CCD camera will influence the measurement of relative distribution of light energy, the distribution surface of luminous intensity is fitted with least square method for constructing light source reference plane to therefore realize the united calibration of CCD area array.based on the fact that the nonuniformity of light source, lambert screen and imaging lens is deterministic and the inhomogeneity of CCD is random from spatial domain analysis,
     Experimental results indicate that the design, which can measure light transmitting efficiency and relative distribution of light energy together, unifies the measurement reference of light transmitting capability of plannar system with nonplannar system, and solves the problems that light transmitting capability can not be compared and transferred between planar system and nonplanar system.and its accuracy of light transmitting capability is 0.3%. It provides evidence for objective and overall evaluation on the light transmitting capability of sights and also has great significance in improving the visual range of visibility of sights and guaranteeing the attack efficacy of weapons.
引文
[1]王欣.变倍白光瞄具像面稳定测量系统研究:[硕士学位论文].长春:长春理工大学,2008:3-8
    [2]高强.高射机枪光电瞄具模拟训练器的研制:[硕士学位论文].南京:南京理工大学,2004:6-7
    [3]刘宇,邝自力.轻武器光电瞄准具.应用光学.2006,27(3):171-176
    [4]向世明,倪国强.光电子成像器件原理.北京:国防工业出版社,1999:227-246
    [5]中国人民解放军总装备部.GJB5012-2003光电瞄具部队试验规程.2003:1-14
    [6]毕卫红,张保军,张宇,等.一种新颖的镀膜玻璃可见光透射比测量方法.光电工程.2008,35(4):53-57
    [7]杨照金,李燕梅.国防光学计量测试的新进展.应用光学.2001,22(4):p35-39
    [8]高明亮,孙劫.眼镜产品透射比测量中相关问题的研究.现代测量与实验室管理,2005年第3期,p32-34
    [9]Jessica Cheung. High accuracy dual lens transmittance measurements.Applied Optics.2007,46(22): 5396-5403.
    [10]J. G. Symons, E. A. Christie, and M. K. Peck. Integrating sphere for solar transmittance measurement of planar and nonplanar samples. APPLIED OPTICS,1982,21(15):2827-2832
    [11]Jeffrey Kessel. Transmittance measurements in the integrating sphere. APPLIED OPTICS,1986,25 (16): 2752-2756
    [12]J.C.Travis, N. K. Winchester, M. V. Smith, Determination of the transmittance uniformity of optical filter standard reference materials. Journal of Research of the National Institute of Standards and Technology,1995,100(3):241-56
    [13]V. Argueta-Dlaz, M. Trejo-Valdez, and A. Garcla-Valenzuela. dc and ac optical nulling bridges for sensitive transmittance measurements. REVIEW OF SCIENTIFIC INSTRUMENTS,2000,71(8):2995-3003
    [14]M. Montecchi Lumen. A highly versatile spectrophotometer for measuring thetransmittance throughout very long samples as well as microstructures. REVIEW OF SCIENTIFIC INSTRUMENTS,2004,75(11): 4636-4642
    [15]Etsuo Kawate. Method for Absolute Measurements of Reflectance and Transmittanceof Specular Samples with STAR GEM. Proc. of SPIE,2005,58800X:1-10
    [16]Martin Szylowski, Michele Mossman, David Barclay, et al. Novel fiber-based integrating sphere for luminous flux measurements. REVIEW OF SCIENTIFIC INSTRUMENTS 77,2006,063102:1-6
    [17]Marco Brambilla, Lorenzo Spinelli, Antonio Pifferi, et al. Time-resolved scanning system for double reflectance and transmittancefluorescence imaging of diffusive media. REVIEW OF SCIENTIFIC INSTRUMENTS 79,,2008,013103:1-10.
    [18]高伯龙.DF透反仪.工学学报,1976.
    [19]《光学测量与仪器》编辑组.光学测量与仪器.北京:国防工业出版社,1978:745-746
    [20]杨志文.光学测量.北京:北京理工大学出版社,1995:274-281
    [21]郝云彩,杨涂泉.大孔径相机系统透过率测量新方法研究.航天返回与遥感,1996,17(4):22-29,
    [22]朱建平,王莉茹.眼镜片中心透射比标准测量装置的成果转化及功能扩展.现代计量测试,2001,2:55-57
    [23]程玉清.飞机灯具透射率研究及测试.上海第二工业大学学报,2002,1:27-32
    [24]谭力,刘玉玲,余飞鸿.光学器件光谱透过率反射率实时测量系统的研制.光学仪器,2004,26(3):9-13
    [25]谢云,刘骏,李海峰,等.大口径光学薄膜透反射率测量方法的研究.光学仪器,2004,26(2):164-167,
    [26]邓锦辉,高岳.光纤面板透过率分布检测方法.光学技术,2005,31(4):494-499
    [27]陈栋.透反射率测量仪自动化硬件研制:[硕士学位论文].安徽:国防科技大学,2006:1-16
    [28]路靖.光学系统可见光透过率测试技术研究:[硕士学位论文].长春:长春理工大学,2008:1-16
    [29]毕卫红,张保军,张宇,等.一种新颖的镀膜玻璃可见光透射比测量方法。光电工程,2008,35(4):53-57
    [30]杨永才秦积荣董新梅.摄影镜头光谱透射率及色贡献指数的精确测定仪器.计量学报,1991,12(4):290-293.
    [31]强西林,高明,卢进军.便携式镀膜玻璃光学透过率测定仪.应用光学,1995,16(1):43-45
    [32]张强.镜片光谱透过率检测装置简介.中国眼镜科技杂志,2003,4:64-65
    [33]田丰贵.光学玻璃内透过率测试新方法.激光技术,2003,27(3):197-198
    [34]肖恒兵,侯绿.潜望镜白光透射比测量装置的设计与实施.新技术新仪器,2003,23(4):26-28
    [35]张森.基于互相关原理光学透过率测试的研究:[硕士毕业论文].长春:长春理工大学,2004,p1-15.
    [36]高明亮,孙劫.眼镜产品透射比测量中相关问题的研究.实验室管理,2005,3:32-354
    [37]刘骏.大口径光学元件透反射率测量系统的研究:[硕士毕业论文].浙江:浙江大学,2005:15-20
    [38]周磊,郑小兵.高精度分光光度计测量光谱透过率.光电工程,2006,33(12):32-38
    [39]董起顺,姜涛,张森,庞美鹃.基于互相关技术的光学系统透过率检测.兵工学报,2006,27(6):1103-1105
    [40]郑玉,周汉昌,王高.基于CCD相机的光纤器件透过率测试.传感器与微系统,2007,26(10):109-120
    [41]杨威.望远系统透过率测试系统:[硕士毕业论文].南京:南京理工大学,2007:1-14
    [42]郭鹏,梁静秋,朱艳青,等.光纤图像分割器的透过率分析与测试.光电子技术,2008,28(2):93-96
    [43]M-L Junltila. Stationary Fourier spectrometer for optical transmittance measurements. Meas. Sci. Technol.1993,4:740-745.
    [44]Jacek Golebiowski. Measurement of optical transmittance applied to determination of bio-component contents in diesel oil.Proc. of SPIE,2005,5948:1-8
    [45]海洋光学美国研发中心.传感器世界2008,10:50-50, wwww. sensorworld. com. cn
    [46]L. M. McMillin, L. J. Crone, M. D. Goldberg, et al. Atmospheric transmittance of an absorbing gas. 4. OPTRAN:a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles. Appl. Opt.1995,34:6269-6274.
    [47]L. M. McMillin, L. J. Crone, and T. J. Kleespies. Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach. Appl. Opt.1995,34:8396-8399
    [48]L. M. McMillin and H. E. Fleming. Atmospheric transmittance of an absorbing gas:acomputationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres. Appl. Opt.1976,15:358-363
    [49]J. Derber. The use of radiance data in the NCEP global and regional data assimilation systems. in Proceedings of the Twelfth International TOVS Study Conference,2002 (Bureau of Meteorology Research Centre, GPO 1289K, Melbourne, Victoria 3001, Australia), http://www. bom/gov. au/bmrc/basic/tors/ctsc.html.
    [50]T. J. Kleespies, P. V. Delst, L. M. McMillin, et al. Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model. Appl. Opt.2004,43:3103-3109
    [51]R. M. Saunders, M. Matricardi, and P. Brunel. An improved fast radiative transfer model for assimilation of satellite radiance observation. Q. J. R. Meteorol. Soc.1999,125:1407-1425
    [52]M. Matricardi and R. M. Saunders. Fast radiative transfer model for assimilation of infrared atmospheric sounding interferometer radiances. Appl. Opt.1999,38:5679-5691
    [53]M. P. Weinreb, H. E. Fleming, L. M. McMillin, et al. Transmittances for the TIROS Operational Vertical Sounder. NOAA Tech. Rep. NESS 85 (National Oceanic and Atmospheric Administration, Surtland, Md. 1981).
    [54]L. L. Strow, H. E. Motteler, R. G. Benson, et al.Fast computation of monochromatic infrared atmospheric transmittances using compressed look-up tables. Q. J. R. Meteorol. Soc.1998,59: 481-493
    [55]S. A. Clough, M. J. Iacono, and J. L. Moncet. Line-by-line calculations of atmospheric fluxes and cooling rates:application to water vapor. J. Geophys. Res.1992,97:15761-15785
    [56]E. Kawate. Symmetry X system and method for absolute measurements of reflectance and transmittance of specular samples. Appl. Opt.2003,42:5064-5072
    [57]E. Kawate, M. Koguchi, Z. Wang, et al. Comparison of AC laser calorimeter measurements with FT-IR measurements of superconductors, in Optical Diagnostic Methods for Inorganic Materials Ⅱ, L. M. Hanssen, ed., Proc. SPIE,2000,4103:30-41
    [58]J. M. Palmer. The measurement of transmission, absorption, emission, and reflection. New York: American Institute of Physics,1997,Chapter 25
    [59]L. M. Hanssen. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples.2001,40:3196-3204
    [60]K. A. Snail, A. A. Morrish, and L. M. Hanssen. Absolute specular reflectance measurements Proc. SPIE,1986,692:143-150 ()
    [61]E. Kawate. Comparison of Reflection Methods for Determining Optical Constants with STAR GEM. Measurement Science Review,2005,5, Section 3
    [62]S.P.F. Humphreys-Owen. Comparison Reflection Methods, for Measuring Optical Constants without Polarimetric Analysis, and Proposal for New Methods based on the Brewster Angle. Proc. Phy. Soc. 1961,77:949-957
    [63]刘学泽.枪用瞄准镜.四川兵工学报.2008,29(1):7-10
    [64]燕雄,汪岳峰,雷鸣.微光夜视仪最大作用距离的估算.光电子·激光,2000,11(6):620-622
    [65]孙传东陈良益高立民,等.水下微光高速光电成象系统作用距离的研究.光子学报,2000,29(2):185-190
    [66]黎全,刘泽金,舒柏宏,等.主动成像系统距离选通实验方案设计.强激光与粒子束,200,517(1):33-26
    [67]高思峰,吴平,何曼丽,等.复杂大气条件下红外系统作用距离的估算.红外与激光工程,2008,37(6):941-944
    [68]陈玉茄,胡以华,苗键.高分辨率可见光相机作用距离的估算.光学与光电技木,2006,4(3):40-42
    [69]田铁印.激光测距跟踪系统作用距离方程的探讨.光学精密工程.1996,4(1):33-36
    [70]刘磊,常本康,李蔚.微光夜间驾驶仪探测距离研究.兵工学报,2003,24(3):342-346
    [71]李蔚.微光夜视系统视距评估及其应用研究:[博士论文].南京:南京理工大学,2002:13-17
    [72]曹兴房.主动光学成象系统衬比传递特性及有效作用距离的分析.光子学报,1997,26(9):858-863
    [73]A. vanMeeteren. Predietionofrealistievisualtasksrfomimagequalitydata. SPIE.1977,98:58—64
    [74]GeogreCoPot, RodieaCoPot. Studiesontheobservationrangeofthenightvisiondevices. SPIE.2461:491—493
    [75]J. C. Monga, B. D. Bhawe. Perofrmance of active and Passive night viewing systerns under low ambient illumination levels. Optics And Laser Tecllnology.1983,15(5):259—262
    [76]金伟其,高稚允,苏学刚.光电成像系统与人眼视觉的匹配问题.红外技术,2000,22(5):40-44
    [77]周燕,金伟其,刘广荣.基于人眼视觉的光电成像系统性能评价方法研究.2002,23(4):504-507
    [78]程湘,王宇华,庞振章.光纤出射光强分布研究.中国计量学院学报.2006,17(1):21-24
    [79]颜青来,贾晓航,马骏.医用内窥镜光能传递效率的评价方法.中国计量学院学报.2008,a) 19(3):256-259
    [80]THE INTERNATIONAL ORGANIZATION FOR STAND—ARDIZATION. ISO 8600—1:2005, Optics and photonics —medical endoscopes and endotherapy devices Part 1:General requirements. Switzerland:ISO Copyright Office,2005
    [81]陈仲林,翁季,胡英奎,等.用数码相机测量亮度分布.照明工程学报,2005,16(3):11-14
    [82]David G. Goebel. Generalized integrating-sphere theory.Appl Opt.1967,6(1):125-128.
    [83]Jeffrey Kessel. Transmittance measurements in the integrating sphere.Appl. Opt.1986,25 (16):2752-2756.
    [84]Maria Luisa Rastello, Elio Miraldi, Paolo Pisoni.Luminous-flux measurements by an absolute integrating sphere. Appl. Opt.1996,35(22):4385-4391.
    [85]Herbert L. Tardy. Flux concentrators in integrating sphere experiments potential for increased detector signal. Appl. Opt.1985,24(22):3914-3916.
    [86]Herbert L. Tardy. Matrixmethod for integrating sphere calculations. J. Opt. Soc. Am,1991, 8(9):1411-141.
    [87]Blake G. Crowther. Computer modeling of integrating spheres. App.1 Opt.1996,35(30):5880-5886.
    [88]张贵彦,王成,袁宏韬,等.积分球幅出射度的蒙特卡罗模拟.光电工程,2006,33(11):75-78.
    [89]王高明,郭城,张亮亮,等.积分球光能均匀性的Monte Carlo模拟.激光与红外,2009,39(1):67-69.
    [90]李平,熊利民,王煜.积分球辐射场均匀性的数值分析.现代计量测试,2000(6):13-17.
    [91]G. Symons, E. A. Christie, and M. K. Peck. Integrating sphere for solar transmittance measurement of planar and nonplanar samples[J]. Appl. Opt.1982,21(15):2827-2832.
    [92]吴继宗,叶关荣.光辐射测量.北京:机械工业出版社,1992:167-225.
    [93]高晋占.微弱信号检测.北京:清华大学出版社,2004.
    [94]雷玉堂,王庆有,何加铭,等.光电检测技术.北京:中国计量出版社,1997.
    [95]江月松,阎平,刘振玉.光电技术与实验.北京:北京理工大学出版社,2000:70-80.
    [96]郭从良,孙金军,方容川,等.光电倍增管的噪声分析和建模。光学技术,2003,29(5):636-640
    [97]刘京南,陈从颜,余玲玲等.一种快速二维嫡阐值分割算法.计算机应用研究,2002,19(1):67-68
    [98]张毅军,吴雪竿,夏良正.二维嫡图像闽值分割的快速递推算法.模式识别与人L智能.1997,10(3):259-264
    [99]梁光明,刘东华,李波,等.用于显微细胞图象的二维自适应阂值分割算法的优化.中国图象图形学.2003,8(7):764-768
    [100]Haralick RM, Shapiro LG. lmage Segmentation teckniques, CVGIP,1985,29(37):100-132
    [101]Dither Dimegny. An Optima Linear Filtering for Edge Deteetion. ImageProeessing, IEEE Transactions, 2002,11(7):728-73
    [102]曹亮.基于Otsu理论的图像分割算法研究:[硕士学位论文].武汉:武汉理工大学,2008,6-13
    [103]吴敏金著.图像形态学.上海:科学技术文献出版社,1991.
    [104]P. MARAGOS, R. W. SCHAFER. Morphological Skeleton Representation and Coding of Binary Images. IEEE Trans. on ASSP,1986,34(5):1228-1244.
    [105]CHEN LANLAN, BI DUYAN. Application of Mathematical Morphology in Image Processing. Modem Electronical Technology,2002,12(8):18-20
    [106]REA J. A., LONGBOTHAM H. G., KOTHARI H. N. Fuzzy Logic and Mathematical Morphology:Implementation by Stack Filters. IEEE Trans. on Signal Processin,1996,44(1):142-147.
    [107]MARAGOS P. A Representation Theory for Morphological Image and Signal Processing. IEEE Trans. on PAM1,1989,11 (6):586-599
    [108]范立南,韩晓微,张广渊著.图像处理与模式识别.北京:科学出版社,2007.
    [109]MARAGOS P. Slope Transforms Theory:An Application to Nonlinerar Signal Processing. IEEE Trans. on Signal Processing,1995,43(4):864-877
    [110]FORESTI G., REGAZZORIC C. Statistical Morphological Skeleton for Representing and Coding Noisy Shapes. IEEE Proceedings:Vision, Image and Signal Processing,1999,146(2):85-92
    [111]GOUTSIAS J.,HEIJMANS H. J. Multi-resolution Signal Decomposition Schemes, Part 1:Linear and Morphological Pyramids. IEEE Trans. on Image Processing,2000,9(11):1862-1876.
    [112]MARAGOS P., SCHAFER R. W. Morphological Filters. IEEE Trans.,1987,35 (8):1178-1182
    [113]HO C P., CHIN R. T. Decomposition of Arbitrarily Shaped MorphologicalStructuring elements. IEEE Trans PAMI,1995, (17):2-15
    [114]LINAN FAN, YONG WEN, XINHE XU. Research on Edge Detection ofGray-scale Image Based on Multi-structuring Elements. The Fourth International Conference on Parallel and Distributed Computing, Application, Technologies,2003:840-843.
    [115]ROSENFELD A. Computer Vision:A Source of Models for Biological VisualProcessing. IEEE Trans on Biomed Eng,1989,36(1):83-94.
    [116]何东健,耿楠,张义宽.数字图像处理.陕西:西安电子科技大学,2003.
    [117]A BUTALEB A. S. Automatic Thresholding of Grey Level Pictures Using Two 85Dimensions Entropy. Computer Vision, Graphics and Image Processing,1989,47(1):22-32.
    [118]SHEN J., CASTAN S. An Optimal Linear Operator for Step Edge Detection. CVGIP Graphical Models and Image Process,1992, (54):112-133.
    [119]CHAN MINGHUA, DAVID LEE. Residual Analysis for Feature Detection. IEEE Trans on Pattand MmachIntelligence,1991,13(1):30-35.
    [120]RICHARD A. P. A New Algorithm for Image Noise Reduction usingMathematical Morphology. IEEE Transactions on Image Processing,1995,4(3):554-568.
    [121]LEE J. S. J., HARALICK R.M, SHPIRO L. G. Morphologic Edge Detection. IEEE Trans. on Robotics Automat,1987,3:140-156.
    [122]JIAN-NAN CHI, PING FU, DONG-SHU WANG et al.A Detection Method ofInfrared Image Small Target Based on Order Morphology Transformation andImage Entropy Difference. IEEE Proceedings of 2005 International Conference on Machine Learning and Cybernetics,2005,8:5111-5116.
    [123]STERBERG S. R.Biomedical Image Processing. IEEE Computer Magazine,1983,2:22-34.
    [124]POGGIO T., VOORHEES H., YUILLE A. A Regularized Solution to EdgeDetection. Tech. Rep. MA, Rep. AIM-833, MIT Artificial Intell. Lab.1985.5.
    [125]JAIN A. K. Fundamentals of Digital Image Processing. NewJersey:PrenticeHall, Inc,1999.
    [126]闫海霞.基于数学形态学的图像边缘检测和增强算法的研究:[博士论文].吉林:吉林大学,2009:1-28
    [127]曾庆勇.微弱信号检测.浙江:浙江大学出版社。1993:47-107
    [128]Wang Dangfeng, Wu Dexin. HBT's High Frequency Noise Modeling and Analysis.半导体学报, 2002,23(11):1140-1145.
    [129]林凌,王小林,李刚,等.一种新型锁定放大器的检测电路.天津大学学报,2005,38(1):65-68.
    [130]ModelSR810/830-DSPlock-inAmplifier.www. reperscientific. com.
    [131]The Analog lock-in Amplifier. www. signalrecovery. com
    [132]南京鸿宾微弱信号检测有限公司.HB-211型锁定放大器说明书.
    [133]黄美玲,张伯珩,边川平,等.CCD和CMOS图像传感器性能比较.科学技术与工程,2007,7(2):249-251.
    [134]周斌,刘秉琦.面阵CCD用于光场能量探测的研究.军械工程学院学报,2004,16(3):29-32.
    [135]高昕,王建立,周泗忠,等.空间目标光度特性测量方法研究.光电工程,2007,34(3):42-45.
    [136]The Corot Week 4. CCD Test Bench. http://pccorot15. obspm. fr/COROT-CAL/carac_CCD_agl. html, 2009-11-01.
    [137]奕中杰.线阵CDD光电参量测试系统的研究.光学精密工程,1994,2(4):140-149.
    [138]吴裕冰,曹丹华.CCD成像器件的不均匀性测试.华中理工大学学报,1998,26(8):58-59.
    [139]王崇.CCD感光特性测试系统的研究[硕士毕业论文].天津大学精密仪器与光电子工程学院,2006:1-7
    [140]李洋,刘亚侠TDICCD相机系统响应非均匀性校正.仪器仪表学报,2006,27(6):1226-1227.
    [141]楼波,张锋,宋利权,等.改进的神经网络非均匀性校正方法.红外与激光工程,2008,37(2):300-303.
    [142]Y. Jiang,O. Jedrkiewicz, S. Minardi, et al. Retrieval of spatial shot-noise in the full dynamic Range of calibrated CCD cameras. THE EUROPEAN PHYSICAL JOURNAL D,2003,22:521-526.
    [143]魏茂金.硅光电池实验输出光强不稳定现象的研究.三明学院学报,2007,24(4):383-385