磨削射流冷却的理论分析和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削液动压力是指磨削液流过旋转砂轮与工件表面之间的楔形空间时,在收敛的楔形域内形成的压力。该动压力的大小,一方面可以反映出磨削液供给是否充足;另一方面,表征作用于砂轮上的法向作用力大小。这两个方面都是磨削过程中重点关注的地方。因此,掌握磨削液动压力在楔形空间的变化规律具有重要意义。
     本文在对目前国内外有关磨削液动压力的研究现状及发展进行综述的基础上,指出了现存方法在流体力学理论的应用、数学模型的建立及建模假设三个方面所存在的局限性。围绕所存在的问题,本文在理论和实验两个方面进行了系统的研究。
     理论上,首先,根据磨削过程喷嘴供液的特点,采用气液两相流理论对该流动特性进行理论研究。然后,将VOF方法引入到磨削液动压力的数学模型中,建立了描述磨削液射入旋转砂轮周边空气流场时,所形成的磨削气液两相流的瞬态模型。最后,在不施加特殊的出口压力边界条件下,求解瞬态模型。
     实验上,自行设计了磨削射流系统,并在MM7125平面磨床上,采用三种不同型号喷嘴供液,进行了磨削射流冷却的实验研究。实验的目的有三个:一是通过实验验证本文所采用的流体力学理论、建立的气液两相流瞬态模型以及对出口压力边界条件的处理三个方面的合理性。二是通过实验获得磨削气液两相流的动压力与喷嘴射流速度之间的关系。三是获取各种实验条件下磨削气液两相流动压力的实验数据,为建立基于人工神经网络的磨削射流冷却预测模型提供训练样本和测试样本。
     在上述研究工作的基础上,提出以磨削气液两相流的最大动压力与磨削液供给充分时磨削液单相流的最大动压力之比作为评价指标,用于衡量磨削射流冷却的效果。建立了基于人工神经网络的磨削射流冷却预测模型。
     为了求取评价指标中使用的磨削液单相流的最大动压力,本文对磨削液单相流进行了理论研究。分别建立了磨削液单相层流数学模型和磨削液单相湍流数学模型。通过施加特殊的出口压力边界条件,求解数学模型获得了磨削液单相流的动压力变化规律及动压力的最大值。
     在确定喷嘴射流速度的临界值时,需要以空气的最大压力作为参考值。为此,本文建立了描述磨削空气流场特性的数学模型。仿真求解获得了磨削空气流场压力的变化规律及空气流场压力的最大值。
     本文理论模型的仿真结果与实验测试结果吻和得较好。这充分说明:将气液两相流理论用于磨削流场动压力的理论研究,方法是正确的。
     利用本文所建立的气液两相流瞬态模型模拟磨削流场特性时,获得以下结论:(1)磨削液在离开磨削区进入空闲区时,是贴着砂轮圆周面,而不是贴着工件的表面。(2)磨削区内的磨削液是贴着工件的表面而不是贴着砂轮的圆周面,这有利于对流换热。(3)当喷嘴射流速度达到一定值时,再继续提高射流速度对改善冷却效果无益。(4)MM7125平面磨床的原冷却系统在高速工作时冷却效果不佳,需要进行改进。(5)基于人工神经网络的磨削射流冷却预测模型不仅可用于磨削加工过程中在线监测而且还可用于冷却液供给方式的优化研究。
     总之,本文所进行的工作对未来智能磨削的应用和发展具有一定的指导意义。
Hydrodynamic pressure of coolant is generated in the converged area while coolant flows into the zone between grinding wheel and workpiece. This hydrodynamic pressure, on the one hand, indicates whether the coolant supplied is sufficient. On the other hand, it illustrates how much the normal force exerted on the grinding wheel is. More active researches have been made in these two respects recently. Therefore, it is of great importance to catch on the distribution of hydrodynamic pressure within jet zone and grinding zone.
     However, through the analysis of the status quo about coolant hydrodynamic pressure, this paper finds out some limitations to the study of coolant hydrodynamic pressure in existence in such three aspects as theory of fluid dynamics adopted, mathematical models constructed and assumptive conditions given. Considering these problems, this paper makes theoretical studies and experimental researches on coolant hydrodynamic pressure of grinding, systematically.
     In theory, gas-liquid two-phase flow is selected to explore the distribution of coolant hydrodynamic pressure. And then, the method of VOF is inducted into the mathematical model to build up an instantaneous model describing properties of gas-liquid two-phase flow field, which emerges in due course of coolant jetting into gas flow field. Finally, the instantaneous model is solved out in the case of no special pressure conditions exerted on the outlet boundary.
     In experiment, the system of grinding jet for cooling is designed, and three kinds of nozzles are employed to supply coolant in surface grinder of MM7125. Three purposes of this experiment are: (1) To verify the effectiveness of this instantaneous model of gas-liquid two-phase flow. (2) To explore the relationship between hydrodynamic pressure of gas-liquid two-phase flow and jet velocity of nozzles. (3) To collect experimental results to be used as training samples and test samples for the predictive model of grinding jet for cooling.
     On the basis of the above studies, one evaluation index of cooling effect is advanced, which is a ratio of the maximum hydrodynamic pressure of gas-liquid two-phase flow to the maximum hydrodynamic pressure of liquid one-phase flow. Moreover, the predictive model of grinding jet for cooling based on ANN is constructed.
     To calculate the maximum hydrodynamic pressure of liquid one-phase flow, this paper carries out a research for the properties of liquid one-phase flow field. With the result that mathematical model for laminar flow and mathematical model for turbulent flow are built, respectively. Accordingly, the hydrodynamic pressure distribution of liquid one-phase flow and maximum hydrodynamic pressure are obtained.
     The maximum pressure of gas one-phase flow will be used for reference to fix the critical jet velocity of nozzles. For this reason, mathematical model describing properties of gas one-phase flow is built and solved with gas pressure distribution and maximum pressure gained.
     It is feasible and effective to employ gas-liquid two-phase flow in the study of hydrodynamic pressure of grinding fluid field in that results of experiments agree by and large with numerical results of calculations.
     From the foregoing the following conclusions can be drown: (1) Coolant exiting the grinding zone is attached to the surface of grinding wheel, not to the surface of workpiece. (2) Coolant entered into the grinding zone is attached to the workpiece surface, not to the surface of grinding wheel, facilitating to convection heat transfer. (3) It will make no sense to increase jet velocity of nozzles when the velocity comes to a certain value. (4) The original cooling system of MM7125 surface grinder with grinding wheel rotating at the speed of 44m/s is to be modified due to poor cooling effect. (5) The predictive model of grinding jet for cooling based on ANN can be applied both in the test on line during grinding and in navigating coolant delivery for optimization.
     To sum up, all of the researches in this paper will go a good way with application and development of intelligent grinding in the near future.
引文
[1]蔡光起.磨削技术现状与新进展.制造技术与机床,2000(2):10-11
    [2]任敬心,孟庆国等.GH33A高温合金的磨削温度与残余应力.航空工艺技术,1995(1):3-7
    [3]赵恒华,蔡光起,李长河,金滩.高效深磨中磨削温度和表面烧伤研究.中国机械工程,2004.15(22):2048-2051
    [4]徐鸿钧,傅玉灿,孙方宏.高效磨削时弧区热作用机理与强化弧区换热的基础研究.中国科学,2002.32(3):296-307
    [5]Jin T,Cai G.Q,Jong H D.Study on Heat Transfer in Super-High-Speed Grinding:Energy Partition to the Workpiece in HEDG.Journal of Materials Processing Technology,2001.111(1):261-264
    [6]Jin T,Cai,G.Q.Approach to Heat Transfer Mechanism in Ultrahigh Speed Grinding.Journal of Northeastern University(Natural Science),1999.20(4):384-387
    [7]金滩,蔡光起.高速钢的深磨研究.金刚石与磨料磨具工程,1999.4(112):19-22
    [8]金滩,蔡光起.超高速磨削热传递机制探讨.东北大学学报(自然科学版),1999.20(4):384-387
    [9]王霖,秦勇,刘镇昌,葛培琪等.计算机仿真技术在磨削温度场中的应用,2001.35(10):19-21
    [10]王霖,秦勇,刘镇昌,葛培琪等.磨削温度场的研究现状与发展趋势.工具技术,2002.36(6):7-10
    [11]崔江红,穆云超.ANSYS在CBN砂轮磨削温度场计算机仿真中的应用.精密制造与自动化,2005(1):39-55
    [12]赵恒华,冯宝富,金滩等.高效深磨的三种解析热模型.金刚石与磨料磨具工程,2003.3:18-20
    [13]江世璟,吴隆,吴晓薇,李力等.磨削区温度场的理论分析与计算.金刚石与磨料磨具工程,1996.1(91):25-28
    [14]高航,李剑等.磨削温度场通式及其计算机仿真分析.东北大学学报(自然科学版),2004.25(6):574-577
    [15]孟庆国,李文卓.磨削温度场的数值计算.机械工艺师,1996.10:25-27
    [16]高航,屈力刚,兰雄侯.断续磨削温度场的计算机模拟.东北大学学报(自然科学版),2002.5:466-469
    [17]范敏霞,张飞虎,崔玲丽.用有限元法进行低温磨削铁合金温度场的研究.金刚石与磨料磨具工程,2002.4:20-23
    [18]孟庆国,李文卓.磨削温度场的数值计算.机械工程师,1996.6:78-80
    [19]徐鸿钧,徐西鹏,许鸿昌,张幼桢等.缓磨时工件表层温度分布的计算机仿真研究.应用科学学报,1996.13(2):199-207
    [20]郭秀云,林梦霞等.硬质合金磨削温度的实验研究.硬质合金,1997.1:40-44
    [21]柳大伟,徐鸿钧,徐西鹏.磨抛花岗石过程中温度的测量与分析.金刚与磨料磨具工程,2000.6:17-19
    [22]徐西鹏,徐鸿钧.磨削弧区温度在线监测技术研究.制造技术与机床,1998.2:2421-2426
    [23]Jihong Hwang,Sridha Kompella,Srinivasan Chandrasekar,Thomas N.张鸿雁译.平面磨削中温度场的直接测量.金刚石与磨料磨具工程,2003.137(5):48-51
    [24]王西彬,任敬心.磨削温度及热电偶测量的动态分析.中国机械工程,1997.6:77-80
    [25]郭秀云,于思远,林滨.硬质合金磨削温度场的实验研究.硬质合金,1999.1:34-37
    [26]王西彬,师汉民,任敬心.结构陶瓷的磨削温度.华中理工大学学报,1996.4:14-18
    [27]张勇.轴类零件在磨削加工中温度影响的研究.合肥工业大学学报,2004.27(10):1269-1273
    [28]周赵凤,许雪峰.磨削温度对刀剪刃口的影响.工具技术,2005(39):43-45
    [29]王致坚.影响磨削加工质量的常见因素及分析.机床与液压,2004.6:177-178
    [30]张磊,葛培琪,程建辉,王珉.磨削淬火技术的温度场分析和材料相变研究.2004.38(10):15-19
    [31]葛培琪,孙建国,刘镇昌.磨削淬硬-磨削加工与表面淬火集成制造技术.工具技术,2001(1):7-10
    [32]李长河,赵亮,蔡光起.利用磨削热进行表面热处理新工艺技术研究.煤矿机械,2005(1):61-64
    [33]刘镇昌.砂轮的孔穴率及其测量方法.磨料磨具与磨削,1983(16):18-23
    [34]刘镇昌.选择砂轮的新标准.磨料磨具与磨削,1983(18):16-21
    [35]徐昌齐.砂轮硬度对磨削性能的影响.磨料磨具与磨削,1986(32):18-24
    [36]宋贵亮,蔡光起.浅谈高速及超高速砂轮设计中的几个问题.磨床与磨削,2000(2):25-27
    [37]宋贵亮,刘文志,蔡光起.高效深磨的最新发展与技术分析.机械制造,1996(9):6-8
    [38]冯宝富,赵恒华,蔡光起,金滩.高速单颗磨粒磨削机理的研究.东北大学学报(自然科学版),2002.5(50):470-473
    [39]冯宝富,蔡光起.磨削中摩擦的一些研究.金刚石与磨料磨具工程,2002.1:46-48
    [40]B.F.Feng,G.Q.Cai.Experimental Study on the Single-Grit Grinding Titanium Alloy TC4and Super-Alloy GH4169.Key Engineering Materials,2001(202):115-120
    [41]葛培琪,程建辉,栾之云,王霖,刘镇昌.磨削液磨削加工特性的研究.润滑与密封,2003(4):9-11
    [42]张磊,葛培琪,孟剑峰,程建辉,王珉等.磨削液对磨削加工热量分配比的影响.润滑与密封,2005.170(4):47-49
    [43]宋贵亮,刘文志,蔡光起.CBN超高速磨削中磨削液的选择与应用.磨床与磨削,1997(2):66-69
    [44]Gunther Werner.高效磨削时冷却润滑液的应用.制造技术,1998.208(1):30-34
    [45]李伟.钛合金切削磨削冷却润滑理论与技术研究[博士学位论文].南京航空学院,1992.9
    [46]刘贵杰.磨床砂轮智能检测及修整系统.机械制造,2003(464):57-59
    [47]巩亚东,吕洋,王宛山,朱晓锋.基于多传感器融合的磨削砂轮敦化的智能监测.东北大学学报(自然科学版),2003.3(3):248-251
    [48]袁军,王敏,黄心汉,陈锦江.智能系统多传感器信息实力研究进展.控制理论与应用.1994.11(5):513-519
    [49]梁建成,李圣恰,温熙森,杨叔子.机床智能加工的体系结构.国防科技大学学报,1994.16(2):24-28
    [50]李培生,李劲松,桂修文,杨克冲,杨叔子.螺纹智能磨削的研究.机械工程学报,1992.28(1):14-9
    [51]冯宝富,蔡光起,邱长伍.超高速磨削的发展及关键技术.机械工程师,2000.1:5-9
    [52]刘文志,蔡光起.国内外高速磨削技术的发展与分析.机械制造,1995.(1):4-6
    [53]蔡光起.冯宝富,赵恒华.磨削技术的最新进展.WMEM,2003.2:16-19
    [54]王西彬,解丽静.超高速成切削技术及其新进展.中国机械工程.2000.1:1-2
    [55]李长河,修世超,蔡光起.高速超高速磨削工艺及其实现技术.金刚石与磨料磨具工程, 2004.4:16-20
    [56]周志雄,邓朝晖,陈根余.磨削技术的发展及关键技术.中国机械工程,2002.2:186-189
    [57]蔡光起,赵恒华,高兴军.高速高效速磨削加工及其关键技术.制造技术与机床,2004(11):42-45
    [58]邹济林.强力磨削的关键技术.磨床与磨削,1997(4):61-62
    [59]邹济林.高速磨削及其相关技术.磨床与磨削,1998(4):50-52
    [60]宋贵亮,刘文志,蔡光起.高效深磨的最新发展与技术分析.机械制造,1996(9):6-8
    [61]张伯霖.高速加工技术在美国的最新发展.制造技术与机床,1999(4):5-6
    [62]J.Webster,M.Tricard.Innovations in Abrasive Products for Precision Grinding.Annals of the CIRP,2004.53(2):597-617
    [63]Schphenson D.J.,Jin Corbett,Jr.High Efficiency Deep Grinding of Low Alloy Steel with Plated CBN Wheels.Annals of the CIRP,2002.51(1):94-97
    [64]Zheng H.W.,H.Gao.A General Thermal Model for Grinding with Slotted or Segmented Wheel.Annals of the CIRP,1994.43(1):287-290
    [65]T.Aoyama,I.Inasaki.Suppression of Temperature Rise in Creep Feed Grinding.In Proceedings of the 5th International Conference on Production Engineering Tokyo,1984.4:46-51
    [66]C.Guo,S.Malkin,J.A.Kovach.Computer Simulation of Below-Center and Above-Center Centerless Grinding.Machining Science and Technology,1998.1(2):235-249
    [67]C.C.Chang,A.Z.Szeri.A thermal analysis of grinding.Wear,1998.216:77-86
    [68]P.N.Moulik,H.T.Y.Yang,S.Chandrasekar.Simulation of Thermal Stress Due to Grinding.International Journal of Mechanical Science,2001.43:134-140
    [69]C.Guo,S.Malkin.Inverse Heat Transfer Analysis of Grinding,Part 2:Applications.Journal of Engineering for Industry,1996.118:143-149
    [70]Guo C.,S.Malkin.Analysis of Energy Partition in Grinding.ASME Journal of Engineering for Industry,1995.117:55-61
    [71]W.B.Rowe,M.N.Morgan,D.R.Allanson.An Advance in the Modeling of Thermal Effects in Grinding.Annals of the CIRP,1991.40(1):339-342
    [72]E.Brinksmeier,T.Brokhoff.Utilization of Grinding Heat As a New Heat Treatment Process.Annals of the CIRP,1996.45(1):283-286
    [73]N.K.Kim,C.Guo,S.Malkon.Heat flux distribution and energy partition in creep-feed grinding.Annals of the CIRP,1997.46(1):227-231
    [74]W.B.Rowe.Thermal Analysis of High Efficiency Deep Grinding.International Journal Tool & Manufacture,2001.41:1-19
    [75]Rowe W.B.,Morgan M.N..A Simplified Approach to Control of Thermal Damage in Grinding.Annals of the CIRP,1996.45(1):289-302
    [76]Z.C.Lin,A.Satoshi.The Influence of Grinding Oil Viscosity on Grinding Heat and Bum Damage in Greep-Feed Grinding.Lubrication Engineering,1995.8:647-651
    [77]I.Zaarudi.Modeling the Structure Changes in Quenchable Steel Subjected to Grinding.Journal of Materials Science,2002.37:4333-4341
    [78]MofidMahdi,LiangChi Zhang.Applied Mechanics in Grinding Ⅳ:The Mechanism of Grinding Induced Phase Transformation.International Journal of Machine Tools &Manufacture,1995.35(10):1397-1409
    [79]I.Zarudi,L.C.Zhng.Mechanical Property Improvement of Quenchable Steel by Grinding.Journal of Materials Science,2002.37:3935-3943
    [80]F.Klocke,and E.Briksmeier,C.Evans,T.Howes,et al.High Speed Grinding-Fundamentals and State of the Art in Europe,Japan and the USA.Annals of the CIRP,1997.46(2):715-724
    [81]杉山和久.线速度达200m/s的高速磨床.制造技术与机床,2005(2):25-26
    [82]张伯霖,李锻能,马平,肖章林.高速加工对机床传动与结构的影响.制造技术与机床,1998(11):5-8
    [83]Jackson,M.J.,Davis,C.J.Hitchiner,M.P.,et al.High-Speed Grinding with CBN Grinding Wheels-Applications and Future Technology.Journal of Materials processing Technology,2001.111(1):78-88
    [84]郑焕文,蔡光起.国内外高速磨削技术的现状与主要发展方向.汽车工艺与材料,1996(5):1-5
    [85]I.Inasaki,H.K.Tonshoff,T.D.Howes.Abrasive Machining in The Future.Annals of the CIRP,1993.42(2):723-732
    [86]H.K.Tonshoff,J.Peters,I.Inasaki,T.Paul.Modeling and Simulation of Grinding Process.Annals of the CIRP,1992.41(2):677-688
    [87]B.karpuschgwski,M Wehmeier,I.Inasaki.Grinding Monitoring System Based on Power and Acoustic Emission Sensor.Annals of the CIRP,2000.49(1):235-240
    [88]J.Wester,I.Marinescu,R.Bennett.Acoustic Emmission for Control and Monitoring of Surface Integrity during Grinding.Annals of the CIRP,1994.43(1):299-304
    [89]B.Varghese,S Parhare,R.Gao,et al.Development of A Sensor-Integrated "Intelligent"Grinding Wheel for in-Process Monitoring.Annals of the CIRP,2000.49(1):231-234
    [90]W.Hundt,D.Leuenberger,F.Rehsteiner.An Approach to Monitoring of the Grinding Process Using Acoustic Emission(AE)Technique.Annals of the CIRP,1994.43(1):295-298
    [91]P.Lezanski,J.Rafalowicz.An Intelligent Monitoring System for Cylindrical Grinding.Annals of the CIRP,1993.42(1):393-396
    [92]E.Brinksmeier,C.Heinzel,M.Wittmann.Friction,Cooling and Lubrication in Grinding.Annals of the CIRP,1999.48(2):581-598
    [93]T.D.Howes.Assessment of the cooling and Lubricative Properties of Grinding Fluids.Annals of the CIRP,1990.39(1):313-316
    [94]J.A.Webster,C.Cuo,R.B.Mindek Jr.Grinding Fluid Application System Design.Annals of the CIRP,1995.44(1):333-338
    [95]Paul S.,ChattoPadhyay A.B..Determination and Control of Grinding Zone Temperature under Cryogenic cooling.International Journal of Machine Tools & Manufacture,1996.36:209-223
    [96]冯宝富,蔡光起,潘贤君,盖全文.高速磨削冷却液的注入新方法.机床与液压,2002(2):173-175
    [97]王霖,刘延俊,秦勇,刘镇昌,葛培琪.磨削过程中低温磨削液及供液装置的开发及研究.机床与液压,2003(5):287-288
    [98]孙方宏,傅玉灿,徐鸿钧.缓慢进给磨削磨削液的加注方式.机械制造,1999(11):23-24
    [99]S.Ebbrell,N.H.Woolley,Y.D.Tridimas,D.R.Allanson,W.B.Rowe.The Effects of Cutting Fluid Application Methods on the Grinding Process.International Journal of Machine Tools & Manufacture,2000.40:209-223
    [100]F.Klocke,G Eisenbatter.Dry Cutting.Annal Annals of the CIRP,1997.46(2):519-526
    [101]P.M.Lonardo,H.Trumpold,et al.Progress in 3D Surface Micro-Topograph Characterization.Annal Annals of the CIRP,1996.45(2):589-598
    [102]S.Malkin and T.W.Hwang.Grinding Mechanisms for Ceramics.Annal Annals of the CIRP,1996.45(2):569-580
    [103]M.Ganesan,C.Gao,A.Ronen,and S.Malkin.Analysis of Hydrodynamic Forces in Grinding.Transactions of NAMRI/SME,1996(24):105-110
    [104]A.Ronen,S.Malkin,Wear Mechanisms of Abrasive Wear in Lubricated Contacts.Wear,1981(68):371-389
    [105]Y.P.Chang,M.Hanshimura,D.A.Domfeld.An Investigation of Material Removal Mechanisms in Lapping with Grain Size Transition.Journal of Manufacturing Science and Engineering,2000(122):413-419
    [106]V.Radhakrishnan.Functional Assessment of the Grinding Wheel Surface Characteristics by Turbulence Amplifier.Journal of Engineering for Industry,1981(103):99-102
    [107]J.Shibata.Characteristics of Air Flow Around a Grinding Wheel and Their Availability for Assessing the Wheel Wear.Annals of the CIRP,1982(31):233-240
    [108]Zheng Junyi,Jiang Zhengfeng,Zhaoliang.Specific Properties of Air Flow Field Within the Grinding Zone.Journal of Wuhan University of Technology,2006(28):307-309
    [109]李长河,原所先,李虎,蔡光起.磨削区内气流场速度和压力分布规律的研究进展.金刚石与磨料磨具工程,2004.6(3):31-34
    [110]C.Guo,S.Malkin.Inverse Heat Transfer Analysis of Grinding,Part1:Methods.Journal of Engineering for Industry,1996.(118):137-141
    [111]C.C.Chang,S.H.Wang,A.Z.Szeri.On the Mechanism of Fluid Transport Across the Grinding Zone.Journal of Manufacturing Science and Engineering,1996.118:332-338
    [112]Z.C.Lin,A.Satoshi.The Influence of Grinding Oil Viscosity on Grinding Heat and Bum Damage in Greep-Feed Grinding.Lubrication Engineering,1995(8):647-651
    [113]葛培琪,刘镇昌,隋庆华.磨削加工时磨削液的流体动压效应.润滑与密封,2000(1):26-28
    [114]F.Engineer,C.Guo,S.Malkin.Experimental Measurement of Fluid Flow Through the Grinding Zone.Journal of Engineering for Industry,1992.114:61-66
    [115]Bo Zhang,Akiyama,Nakajima.Hydrodynamic Fluid Pressure in Grinding Zone During Grinding with Metal-Bonded Diamond Wheel.Journal of Tribology,2000(122):603-607
    [116]M.R.Schumach,Jin-Bok Chung,W.W.Schultz.Analysis of Fluid Flow under a Grinding Wheel.Journal of Engineering for Industry,1991.113:190-197
    [117]P.Hryniewiez,A.Z.Szeri,S.Jahanmir.Application of Lubrication Theory to Fluid Flow in Grinding:Part Ⅰ -Flow Between Smooth Surfaces.Journal of Tribology,2001.2(123):94-100
    [118]C.Guo,S.Malkin,J.A.Kovach.Computer Simulation of Below-Center and Above-Center Centerless Grinding.Machining Science and Technology,1998.1(2):235-249
    [119]F.Klock,A.Bans,T.Beck.Coolant Induced Forces in CBN High Speed Grinding with Shoe Nozzles.Annals of the CIRP,2000.49(1):241-244
    [120]P.Hryniewicz,A.Z.Szeri,S.Jahanmir.Application of Lubrication Theory to Fluid Flow in Grinding:Part Ⅱ-Influence of Wheel and Workpiece Roughness.Journal of Tribology,2001.2(123):101-107
    [121]陆颖,王继先,高航.基于环保的“绿色”冷却技术的新进展.机械设计与制造,2000.5:65-66
    [122]谢峰,沈维蕾.磨削加工中的绿色制造.组合机床与自动化加工技术,2002(6):18-20
    [123]李长河,蔡光起,李琦,修世超等.砂轮约束磨粒喷射精密光整加工材料去除机理研究.机械工程学报,2005(23):2116-2120
    [124]R.X.Dai,Q.Dong,A,Z,Szeri.Approximations in Hydrodynamic Lubrication.Journal of Tribology,1992(114):14-25
    [125]K.Mistry,S.Biswas.A New Theoretical Model for Analysis of the Fluid Film in the Cavitation Zone of a Journal Bearing.Journal of Tribology,1997(119):741-746
    [126]高红,傅新.锥阀阀口气穴流场的数值模拟与实验研究.机械工程学报,2002.38(8):27-30
    [127]冀海峰,黄志尧,吴贤国,王保良等.小波分析技术在多相流系统中的应用.石油化工学报,2001.32(2):126-130
    [128]刘松林,李才良,郑海起,唐力伟.小波分析和曲线拟合法在柴油机声信号处理中的应用.内燃机工程学报,2002.23(5):19-22
    [129]胡洪波,马爱民.MATLAB神经网络的舰船磁场强度估算.活力与指挥控制学报,2007.32(2):77-79
    [130]陈超,徐建林,黄建龙.基于神经网络的刀具状态监测系统.机械工程学报,2002.38(8):135-139
    [131]刘义隆,郑群.计算流体力学.哈尔滨工程大学出版社,1988
    [132]阎超.计算流体力学方法及应用.北京航空航天大学出版社,2006
    [133]周光炯,严宗毅,许世雄,章克本.流体力学.高等教育出版社,2000
    [134]温诗铸.摩擦学原理.清华大学出版社,1990
    [135]陈学俊.两相流与传热.原子能出版社,1991
    [136]陈之航,曹柏林,赵在三.气液双相流动和传热.机械工业出版社,1983
    [137]孔珑.两相流体力学.高等教育出版社,2004
    [138]朱自强.应用计算流体力学.北京航空航天大学出版社,2001
    [139]傅德薰,马延文.计算流体力学.高等教育出版社,2002
    [140]张兆顺.湍流.国防工业出版社,2002
    [141]薛胜雄.高压水射流技术工程.合肥工业大学出版社,2006
    [142]颜大椿.实验流体力学.高等教育出版社,1992
    [143]彭玉华.小波变换与工程应用.科学出版社,2003
    [144]王永骥,涂健.神经元网络控制.机械工业出版社,1998
    [145]任敬心,华定安.磨削原理.西北工业大学出版社,1988
    [146]李伯民,赵波等.现代磨削技术.机械工业出版社,2003