鸡SREBF1、SREBF2基因的克隆、表达及其与屠体性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对正在选育的地方优质鸡新品系二郎山山地鸡进行了不同饲养方式的饲养试验,对其脂肪性状进行了记录和测定,探索不同饲养方式对鸡肉质的影响;同时对其固醇调控元件结合转录因子家族成员SREBF1和SREBF2基因进行了全编码区序列测定和相关生物信息学分析;对不同饲养方式下,不同时间点以及不同组织的SREBF1和SREBF2基因表达模式进行了探索;对SREBF2基因的SNP位点进行了扫描和屠体性状的关联性分析,试验结果如下:
     性能测定发现,8、10、13周龄的笼养、平养以及散养二郎山山地鸡的部分脂肪性状、血液生化指标和胸肌脂肪酸组成均存在显著或极显著(P<0.05或P<0.01)差异,提示这些性状或指标可能会因饲养方式的不同而受到影响。
     克隆获得了二郎山山地鸡固醇调控元件结合转录因子家族成员SREBF1和SREBF2基因的全编码区序列,并翻译获得其氨基酸序列(1115aa和952aa)。通过生物信息学分析表明:SREBP-1和SREBP-2蛋白都不是跨膜蛋白,但存在跨膜区,同时都具有bHLH转录因子家族典型的保守结构功能域,说明了SREBP-1和SREBP-2蛋白均属于核转录因子家族。
     采用SYBR green I定量PCR分析SREBF1和SREBF2基因表达时发现,同一种饲养方式下SREBF1和SREBF2基因在二郎山山地鸡的肝、腹脂、皮脂、胸肌、腿肌和尾脂腺中都有表达,而且不同基因在不同组织中表达的优势时间点不同。肝、尾脂腺和胸肌为SREBF1和SREBF2基因的优势表达组织。不同饲养方式下肝中的SREBF1基因表达量存在显著差异,散养鸡表现出较低的表达水平;SREBF2基因在腹脂和胸肌中的表达量存在显著差异,腹脂中散养鸡的表达水平较低,胸肌中散养鸡有较高水平的表达。
     本研究采用测序和PCR-SSCP的技术设计引物,扫描了二郎山山地鸡和四川大恒优质肉鸡共300个个体的SREBF2基因外显子序列和邻近内含子序列。结果显示:10个群体中发现10个单核苷酸突变位点,分别位于r1:51382660、rl:51382391、r1:51381392、r1:51376638、rl:51376226、r1:51375686、rl:51374255、r1:51373368、rl:51372941和r1:51370350,10个突变位点的优势等位基因依次为A、C、A、A、C、C、G、G、G和C。由于SNP6、SNP8、SNP9三个位点的优势等位基因和基因型极其显著,且PIC<0.1,故将其剔除不构建单倍型。其余7个SNP可构成30种单倍型,获得117种复合单倍型,其中单倍型H4(A-C-G-A-T-A-G)、H10(A-C-A-A-C-G-C).H13(A-C-A-A-T-G-C)和H16(A-C-A-G-C-G-C)为优势单倍型。标记-关联分析发现,SREBF2基因SNP1对全净膛重的遗传效应达到极显著水平(TypeⅢSS,F=5.605,P=0.004);SNP2对全净膛重的遗传效应达到显著水平(TypeⅢSS,F=3.418,P=0.034);SNP4对活重的遗传效应达到显著水平(TypeⅢSS,F=3.881,P=0.022),对屠体重、半净膛重、全净膛重、胸肌重和腿肌重的遗传效应达到极显著水平(Type III SS,F=5.805,P=0.003;TypeⅢSS,F.6.303,P=0.0002;TypeⅢSS,F=6.841, P=0.001; TypeⅢSS,F=4.987,P=0.007;TypeⅢSS,F=6.576,P=0.002); SNP3.SNP5.SNP7和SNP10对屠体性状的遗传效应均未达到显著水平(P>0.05)。而单倍型分析发现,单倍型对胸肌重的遗传效应达到极显著水平(TypeⅢSS,F=1.966,P=0.006),对其它屠体性状的遗传效应均没有达到显著水平(P>0.05)。单倍型H21 H21是活重、屠体重、半净膛重、全净膛重和腿肌重的优势单倍型,H13H21是胸肌重的优势单倍型,而H4H21是皮脂厚的劣势单倍型,提示单倍型H21(A-T-G-A-C-G-C)对于提高肉鸡的生产性能有正向作用。
In this research, we carried out different feed-style tests to a new line which breeds Erlang mountainous chickens, by recording and testing the production and the traits of meat quality, we explored the effect of different feed-styles. Meanwhile, we cloned the entire coding sequence of two members for SREBFs, which were SREBF1 and SREBF2 and the correlations of the bioinformatics analysis were done. For different feed-styles, we also tested and analyzed the expression pattern of SREBF1 and SREBF2 in different growth points and in different tissues using SYBR Green I qRT-PCR. We also detected the SNPs of SREBF2 genes using PCR-SSCP and sequence screening methods in six stains of Daheng high-quality chicken in Sichuan province and Erlang mountainous chickens, and related analysis was conducted, the results are as follows:
     Determination of properties found that at 8、10 and 13 weeks, the part of the fat traits、blood biochemical parameters and chest fatty acids, respectively, in caged feed chickens、indoor floor chickens and outdoor access chickens were significantly or extremely significantly (P<0.05 or P<0.01) different, suggested that these traits or indicators may be due to the different feed-styles.
     We successfully obtained the full coding sequence of SREBF1 and SREBF2. Based on these two cDNA sequences, their amino acid sequences were increased (1115aa and 952aa). By bioinformatics, we found SREBP-1 and SREBP-2 were not transmembrane protein but contain membrane region, and conservative structural functional domain of bHLH transcription factor family. It implied that they all belonged to the bHLH family.
     We used the real-time PCR (SYBR green I) method to test the expression level of SREBF1 and SREBF2 gene in different tissue including liver, abdomen fat, sebumcutaneum fat, breast muscle, leg muscle, and uropygial gland in at certain growth point of chicken with different feed-styles. The results indicated that SREBF1 and SREBF2 genes had expressed in all tissues at all growth points and there were growth points and tissues with higher expression level. We also found the expression in different feeding conditions was different. Liver, breast and uropygial gland are advantageous expressed tissues for SREBFl and SREBF2. In different feeding-styles, the expression level of SREBF1 in liver had significant differences (P<0.05), and free-range chicken had lower expression level. For SREBF2, there were significantly different expressions in abdomen fat and breast muscles (P<0.01), and the expression level in abdomen fat with outdoor access was lower, while in breast muscle the outdoor access had higher expression level.
     In this study, we screened part sequences of extrons and intron of SREBF2 gene by sequencing and PCR-SSCP method. Ten SNPs were identified, including rl: 51382660, r1:51382391, r1:51381392, r1:51376638, r1:51376226, r1:51375686, r1:51374255, r1:51373368, r1:51372941 and r1:51370350, respectively. And the superiority alleles were A, C, A, A, C, C, G, G, G and C, respectively. Because SNP6, SNP8 and SNP9 had the extremely significant superiority alleles and genotypes, and the PIC<O.1, so we deleted their haplotypes. Then 30 haplotypes were constructed to form by the other seven SNPs, and there were 117 composite haplotypes. H4 (A-C-G-A-T-A-G) H10 (A-C-A-A-C-G-C), H13 (A-C-A-A-T-G-C), and H16 (A-C-A-G-C-G-C) were advantageous haplotypes. By mark-associated analysis, we found SNP1 had extremely significant genetic effect on eviscerated weight (Type III SS, F=5.605, P=0.004), SNP2 had significant genetic effect on eviscerated weight (Type III SS, F=3.418, P=0.034). SNP4 had significant genetic effect on live-weight (Type III SS, F=3.881, P=0.022), and had extremely significant effect on carcass weight, semi-eviscerated weight, breast muscle weight and leg muscle weight (Type III SS, F=5.805, P=0.03; Type III SS, F=6.303, P=0.0002; Type III SS, F=6.841, P=0.001; Type III SS, F=4.987, P=0.007; Type III SS, F=6.576, P=0.002). SNP3, SNP5, SNP7 and SNP10 all had no significant genetic effect on carcass traits (P>0.05). Based on haplotype analysis, we found that haplotype had extremely significant genetic effect on breast muscle weight (Type III SS, F=1.966, P=0.006), but had no significant genetic effect on other carcass traits (P>0.05). H21H21 was superior haplotype of live-weight, carcass weight, semi-eviscerated weight, eviscerated weight, and leg muscle weight, H13H21 was for breast muscle weight, while H4H21 was inferior haplotype for skinfold thickness. So it can be concluded that H21 (A-T-G-A-C-G-C) may have positive effect on promoting the production performance for boiler chicken.
引文
1. 邱祥聘,嘉勇.优质肉鸡的内涵和改良之我见.第一届优质鸡研讨会论文集,1989.
    2. 吴常信.优质鸡育种特点及遗传标记辅助选择(MAS)的应用.第三届优质鸡的改良、生产及发展研讨会论文集,1994.
    3. 吴常信.优质鸡生产中杂种优势的利用.第五届优质鸡的改良、生产及发展研讨会论文集,1998.
    4. 吴常信.关于优质鸡育种与生产中几个问题的探讨.第七届优质鸡的改良、生产及发展研讨会论文集,2005.
    5. 苏毅,朱庆.优质鸡的定性及重要性状候选基因的研究进展.养禽与禽病防治,2005.12:p.2-4.
    6. XS J. and AF G. Chicken breeding with local breeds in China. Journal of Animal Science, 2000.13:p.1482-1498.
    7. Fernandez X., Monin G., Talmant A., et al. Influence of intramuscular fat content on the quality of pig meat-1. Composition of the lipid fraction and sensory characteristics of m. longissimus lumborum* 1. Meat Science,1999.53(1):p.59-65.
    8. Castellini C, Mugnai C, and Dal Bosco A. Effect of organic production system on broiler carcass and meat quality. Meat Science,2002.60(3):p.219-225.
    9. Zerehdaran S., Vereijken A., Van Arendonk J., et al. Estimation of genetic parameters for fat deposition and carcass traits in broilers. Poultry Science,2004.83(4):p.521-525.
    10. Chartrin P., Meteau K., Juin H., et al. Effects of intramuscular fat levels on sensory characteristics of duck breast meat. Poultry Science,2006.85(5):p.914-922.
    11. Ruiz J., Guerrero L., Arnau J., et al. Descriptive sensory analysis of meat from broilers fed diets containing vitamin E or beta-carotene as antioxidants and different supplemental fats. Poultry Science,2001.80(7):p.976-982.
    12. 武书庚,齐广海.肉品风味的形成及其影响因素.中国畜牧杂志,2001.3(53-55).
    13. 王清华,李辉,张德祥等.矮小型肉鸡血浆极低密度脂蛋白浓度与腹脂性状的相关性分析.中国畜牧杂志,2004.40(9):p.13-15.
    14. Boekholt H., Van Der Grinten P., Schreurs V., et al. Effect of dietary energy restriction on retention of protein, fat and energy in broiler chickens. British Poultry Science,1994. 35(4):p.603-614.
    15. Lee K., Flegal C., and Wolford J. Factors affecting liver fat accumulation and liver hemorrhages associated with fatty liver-hemorrhagic syndrome in laying chickens. Poultry Science,1975.54(2):p.374-380.
    16. 单安山,徐奇友.动物脂肪代谢与调控.东北农业大学学报,2004.35(2):p.129-134.
    17. Fanatico A., Pillai P., Cavitt L., et al. Evaluation of slower-growing broiler genotypes grown with and without outdoor access:Growth performance and carcass yield. Poultry Science,2005.84(8):p.337-343.
    18. McEachern M.G. and Willock J. Producers and consumers of organic meat:A focus on attitudes and motivations. British Food Journal,2004.106(7):p.534-552.
    19. Fanatico A., Pillai P., Cavitt L., et al. Evaluation of slower-growing broiler genotypes grown with and without outdoor access:Sensory attributes. Poultry Science,2006.85(2): p.337.
    20. Fanatico A., Pillai P., Emmert J., et al. Meat quality of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science,2007.86(10):p.2245-2255.
    21. Fanatico A., Pillai P., Hester P., et al. Performance, livability, and carcass yield of slow-and fast-growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poultry Science,2008.87(6):p.1012-1021.
    22. Ponte P., Rosado C., Crespo J., et al. Pasture intake improves the performance and meat sensory attributes of free-range broilers. Poultry Science,2008.87(1):p.71-79.
    23. Jahan K., Paterson A., and Piggott J.R. Sensory quality in retailed organic, free range and corn-fed chicken breast. Food Research International,2005.38(5):p.495-503.
    24. Jahan K. and Paterson A. Lipid composition of retailed organic, free?range and conventional chicken breasts. International Journal of Food Science & Technology,2007. 42(3):p.251-262.
    25. 韩剑众,桑雨周,周天琼.饲养方式和饲喂水平对鸡肉肌苷酸含量及肉质的影响.Hei long jiang Journal of Animal Science and Veterinary Medicin,2003.9:p.10-11.
    26. 郑云峰,高玉鹏,闵育娜.不同饲养方式对肉鸡胴体品质、脂肪代谢的影响.黑龙家畜牧兽医,2005.11:p.30-31.
    27. 孙桂荣,康相涛,李国喜等.不同饲养方式对固始鸡生产性能的影响[J].华北农学报,2006.21(4):p.118-122.
    28. 杨烨,文杰,陈继兰等.饲养方式对河田鸡脂肪代谢的影响.畜牧兽医学报,2008.39(8):p.1050-1055.
    29. 许美解,刘小飞,钟金凤等.湘黄鸡在不同饲养条件下肉质性状及经济效益的研究[J].广西农业生物科学,2008.27(2):p.122-125.
    30. 于向春,赵建国,吴丽丽.不同饲养方式对文昌鸡生产性能的影响.热带农业科学,2009.29(1):p.1-3.
    31. Krause B.R. and Hartman A.D. Adipose tissue and cholesterol metabolism. Journal of lipid research,1984.25(2):p.97.
    32. 金邦荃,陈杰.动物脂肪代谢与控制.动物科学与动物医学,2001.18(6):p.9-10.
    33. 赵小玲.鸡ADFP和PLIN基因与脂肪组织生长发育关系的遗传学研究[博士学位论文].四川农业大学,2008.
    34. Cahaner A., Nitsan Z., and Nir I. Reproductive performance of broiler lines divergently selected on abdominal fat. Poultry science (USA),1986.
    35. 吴华莉.鹅脂肪代谢基因多态性与屠宰性状的相关分析及其组织表达差异研究[博士学位论文].四川农业大学,2010.
    36. 朱金娈,邹晓庭.蛋鸡脂肪代谢及脂肪肝防治研究进展.黑龙家畜牧兽医,2002.11:p.46-47.
    37. Ijaz S., Yang W., Winslet M.C., et al. Impairment of hepatic microcirculation in fatty liver. Microcirculation,2003.10(6):p.447-456.
    38. Takai T., Yokoyama C., Wada K., et al. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. Journal of Biological Chemistry,1988. 263(6):p.2651-2657.
    39. Clarke S.D. Regulation of fatty acid synthase gene expression:an approach for reducing fat accumulation. Journal of Animal Science,1993.71(7):p.1957-1965.
    40. Ray H., Beylot M., Arner P., et al. The presence of a catalytically inactive form of hormone-sensitive lipase is associated with decreased lipolysis in abdominal subcutaneous adipose tissue of obese subjects. Diabetes,2003.52(6):p.1417.
    41. Merkel M., Eckel R.H., and Goldberg I.J. Lipoprotein lipase:genetics, lipid uptake and regulation. The Journal of Lipid Research,2002.43:p.1997.
    42. Sato K., Akiba Y., Chida Y., et al. Lipoprotein hydrolysis and fat accumulation in chicken adipose tissues are reduced by chronic administration of lipoprotein lipase monoclonal antibodies. Poultry Science,1999.78(9):p.1286-1291.
    43. Sato K. and Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens. Poultry Science,2002. 81(6):p.846-852.
    44. 刘梅芳,徐国恒.PAT家族蛋白在细胞内脂滴代谢过程中的作用.生理科学进展,2006.37(2):p.103-107.
    45. Descalzi Cancedda F., Dozin B., Zerega B., et al. Ex-FABP:a fatty acid binding lipocalin developmentally regulated in chicken endochondral bone formation and myogenesis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2000.1482(1-2):p.127-135.
    46. Wang Q., Li H., Leng L., et al. Polymorphism of Heart Fatty Acid-Binding Protein Gene Associatied with Fatness Traits in the Chicken. Animal Biotechnology,2007.18(2):p. 91-99.
    47. Wang Q., Li H., Li N., et al. Identification of single nucleotide polymorphism of adipocyte fatty acid-binding protein gene and its association with fatness traits in the chicken. Poultry Science,2006.85(3):p.429-434.
    48. Desvergne B., Michalik L., and Wahli W. Transcriptional regulation of metabolism. Physiological Reviews,2006.86(2):p.465.
    49. 王彦.鸡FATP1/FATP4基因的克隆、表达及其与屠体性状的关联分析[博士学位论文].四川农业大学,2009.
    50. 罗涓.FATP1和FATP4基因在浙东白鹅和朗德鹅中的发育性表达研究[硕士学位论文].四川农业大学,2010.
    51. Dekkers J. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science,2004.82:p.313-328.
    52. Chendrimada T., Freeman M., and Davis A. Dietary nitrogen intake regulates hepatic malic enzyme messenger ribonucleic acid expression. Poultry Science,2007.86(9):p. 1980-1987.
    53. 李龙江,余瑜.脂代谢的信号转导途径.儿科药学杂志,2005.11(1):p.7-9.
    54. Wang Y, Mu Y., Li H., et al. Peroxisome proliferator-activated receptor-{gamma} gene:A key regulator of adipocyte differentiation in chickens. Poultry Science,2008.87(2):p. 226.
    55. Meng H., Wang G., Wang Q., et al. Studies of single nucleotide polymorphism of PPAR gene and its associations with fattiness trait in chicken. Yi chuan xue bao= Acta genetica Sinica,2002.29(2):p.119.
    56. Berge K.E., Tian H., Graf G.A., et al. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science,2000. 290(5497):p.1771.
    57. Joseph S.B., Laffitte B.A., Patel P.H., et al. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. Journal of Biological Chemistry,2002.277(13):p.11019.
    58. Stoeckman A.K. and Towle H.C. The role of SREBP-lc in nutritional regulation of lipogenic enzyme gene expression. Journal of Biological Chemistry,2002.277(30):p. 27029-27035.
    59. Shimano H. Sterol regulatory element-binding proteins (SREBPs):transcriptional regulators of lipid synthetic genes. Progress in lipid research,2001.40(6):p.439-452.
    60. Yokoyama C., Wang X., Briggs M.R., et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell, 1993.75 (1):p.187-197.
    61. Hua X., Yokoyama C., Wu J., et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proceedings of the National Academy of Sciences of the United States of America,1993. 90(24):p.11603-11607.
    62. Briggs M., Yokoyama C., Wang X., et al. Nuclear protein that binds sterol regulatory element of low density lipoprotein receptor promoter. I. Identification of the protein and delineation of its target nucleotide sequence. Journal of Biological Chemistry,1993. 268(19):p.14490-14496.
    63. Brown M.S. and Goldstein J.L. The SREBP Pathway:Regulation Review of Cholesterol Metabolism by Proteolysis of a Membrane-Bound Transcription Factor. Cell,1997.89:p. 331-340.
    64. 卓伟华,王继文,蒋立.固醇调节元件结合蛋白在动物脂肪代谢中的研究进展,中国畜牧杂志,2005.41(2):p.39-41.
    65. Hua X., Wu J., Goldstein J.L., et al. Structure of the human gene encoding sterol regulatory element binding protein-1 (SREBF1) and localization of SREBF1 and SREBF2 to chromosomes 17p 11.2 and 22q13. Genomics,1995.25(3):p.667-673.
    66. Shimano H., Shimomura I., Hammer R.E., et al. Elevated levels of SREBP-2 and cholesterol synthesis in livers of mice homozygous for a targeted disruption of the SREBP-1 gene. Journal of Clinical Investigation,1997.100(8):p.2115-2124.
    67. 邓正德,连林生.动物脂肪细胞定向和分化因子1的研究进展.上海畜牧兽医通讯,2009.4:p.12-13.
    68. Assaf S., Hazard D., Pitel F., et al. Cloning of cDNA encoding the nuclear form of chicken sterol response element binding protein-2 (SREBP-2), chromosomal localization, and tissue expression of chicken SREBP-1 and-2 genes. Poultry Science,2003.82(1):p. 54-61.
    69. Horton J.D., Goldstein J.L., and Brown M.S. SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. Journal of Clinical Investigation,2002.109(9):p.1125-1131.
    70. 蒋越,高运臻,潘玉春等.固醇调节元件结合蛋白及其靶基因在脂肪代谢中的研究进展猪业科学,2009.11:p.94-98.
    71. Felder T.K., Klein K., Patsch W., et al. A novel SREBP-1 splice variant:tissue abundance and transactivation potency. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2005.1731(1):p.41-47.
    72. Wang H., San Agustin J.T., Witman G.B., et al. Novel role for a sterol response element binding protein in directing spermatogenic cell-specific gene expression. Molecular and cellular biology,2004.24(24):p.10681-10688.
    73. Horton J. Sterol regulatory element-binding proteins:transcriptional activators of lipid synthesis. Biochemical Society Transactions,2002.30:p.1091-1095.
    74. McPherson R. and Gauthier A. Molecular regulation of SREBP function:the Insig-SCAP connection and isoform-specific modulation of lipid synthesis. Biochemistry and Cell Biology,2004.82(1):p.201-211.
    75. Pai J., Guryev O., Brown M.S., et al. Differential stimulation of cholesterol and unsaturated fatty acid biosynthesis in cells expressing individual nuclear sterol regulatory element-binding proteins. Journal of Biological Chemistry,1998.273(40) : p. 26138-26148.
    76. Nohturfft A., Brown M.S., and Goldstein J.L. Topology of SREBP cleavage-activating protein, a polytopic membrane protein with a sterol-sensing domain. Journal of Biological Chemistry,1998.273(27):p.17243-17250.
    77. Gimpl G., Burger K., and Fahrenholz F. A closer look at the cholesterol sensor. Trends in biochemical sciences,2002.27(12):p.596-599.
    78. 唐韬,李燕.固醇调节元件结合蛋白与脂质代谢.生理科学进展,2005.36(1):p.29-34.
    79. 卓伟华,王继文,蒋立.固醇调节元件结合蛋白的研究进展.生物学通报,2004.39(12):p.1-3.
    80. Bennett M.K. and Osborne T.F. Nutrient regulation of gene expression by the sterol regulatory element binding proteins:increased recruitment of gene-specific coregulatory factors and selective hyperacetylation of histone H3 in vivo. Proceedings of the National Academy of Sciences of the United States of America,2000.97(12):p.6340-6344.
    81. Shea-Eaton W., Lopez D., and McLean M.P. Yin yang 1 protein negatively regulates high-density lipoprotein receptor gene transcription by disrupting binding of sterol regulatory element binding protein to the sterol regulatory element. Endocrinology,2001. 142(1):p.49-58.
    82. Amemiya-Kudo M., Shimano H., Hasty A.H., et al. Transcriptional activities of nuclear SREBP-la,-lc, and-2 to different target promoters of lipogenic and cholesterogenic genes. The Journal of Lipid Research,2002.43(8):p.1220-1235.
    83. 樊丹君,许国强.固醇调节元件结合蛋白与脂质代谢的研究进展.国际内科学杂志,2007.34(3):p.152-173.
    84. Tontonoz P. and Mangelsdorf D.J. Liver X receptor signaling pathways in cardiovascular disease. Molecular Endocrinology,2003.17(6):p.985-993.
    85. Yahagi N., Shimano H., Hasty A.H., et al. A crucial role of sterol regulatory element-binding protein-1 in the regulation of lipogenic gene expression by polyunsaturated fatty acids. Journal of Biological Chemistry,1999.274(50):p. 35840-35844.
    86. Xu J., Cho H., O'Malley S., et al. Dietary polyunsaturated fats regulate rat liver sterol regulatory element binding proteins-1 and-2 in three distinct stages and by different mechanisms. Journal of Nutrition,2002.132(11):p.3333-3339.
    87. Eberle D., Hegarty B., Bossard P., et al. SREBP transcription factors:master regulators of lipid homeostasis. Biochimie,2004.86(11):p.839-848.
    88. Guillet-Deniau I., Pichard A.L., KON A., et al. Glucose induces de novo lipogenesis in rat muscle satellite cells through a sterol-regulatory-element-binding-protein-lc-dependent pathway. Journal of cell science,2004.117:p.1937-1944.
    89. Watanabe M., Houten S.M., Wang L., et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation,2004. 113(10):p.1408-1418.
    90. Soukas A., Cohen P., Socci N.D., et al. Leptin-specific patterns of gene expression in white adipose tissue. Genes & development,2000.14(8):p.963-980.
    91. Gondret F., Ferre P., and Dugail I. ADD-1/SREBP-1 is a major determinant of tissue differential lipogenic capacity in mammalian and avian species. Journal of lipid research, 2001.42(1):p.106-113.
    92. Edwards P.A., Tabor D., Kast H.R., et al. Regulation of gene expression by SREBP and SCAP. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2000.1529(1-3):p.103-113.
    93. Horton J.D., Shimano H., Hamilton R.L., et al. Disruption of LDL receptor gene in transgenic SREBP-la mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. Journal of Clinical Investigation,1999.103(7):p.1067-1076.
    94. 孙楠,刘金泉,冯凭.固醇调节元件结合蛋白与脂代谢的基因调控.国外医学内分泌学分册,2004.5(24):p.13-16.
    95. Horton J.D., Shah N.A., Warrington J.A., et al. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proceedings of the National Academy of Sciences of the United States of America,2003. 100(21):p.12027-12032.
    96. Maxwell K.N., Soccio R.E., Duncan E.M., et al. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. Journal of lipid research,2003.44(11):p.2109-2119.
    97. 陈杰,赵茹茜,杨晓静等.ADD1基因PCR-SSCPs标记与猪肌内脂肪含量及背膘厚的关系.南京农业大学学报,2004.27(3):p.66-69.
    98. 李长龙,潘玉春,孟和等.H-FABP, MC4R, ADD1基因多态性在3个猪群中分布及其与肌内脂肪和背膘的相关研究.遗传,2006.28(2):p.159-164.
    99. Seol H.S., Sato K., Matsubara Y., et al. Modulation of sterol regulatory element binding protein-2 in response to rapid follicle development in chickens. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2007.147(4): p.698-703.
    100. 朱吉,杨仕柳,欧阳叙向等.山羊ADD1基因部分序列的克隆与分析.畜牧兽医学报,2008.39(2):p.150-157.
    101. 刘世强,陈赞谋.猪ADD1基因Earn 11041酶切位点多态性及其与肉质、胴体性状关系的研究.养猪,2008.2:p.66-69.
    102. Chen J., Yang X., Xia D., et al. Sterol regulatory element binding transcription factor 1 expression and genetic polymorphism significantly affect intramuscular fat deposition in the longissimus muscle of Erhualian and Sutai pigs. Journal of Animal Science,2008. 86(1):p.57-63.
    103. Bionaz M. and Loor J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC genomics,2008.9(1):p.366.
    104. 韩春春,王继文.鹅固醇调节元件结合蛋白1基因的克隆及生物信息学分析.畜牧兽医学报,2008.39(7):p.994-999.
    105. Wang P.H., Ko Y.H., Chin H.J., et al. The effect of feed restriction on expression of hepatic lipogenic genes in broiler chickens and the function of SREBP 1. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2009.153(4): p.327-331.
    106. Wang H., Maechler P., Antinozzi P.A., et al. The transcription factor SREBP-lc is instrumental in the development of β-cell dysfunction. Journal of Biological Chemistry, 2003.278(19):p.16622-16629.
    107. 童国玉,李果.固醇调节元件结合蛋白-1c的研究进展.国外医学内分泌分册,2002.22:p.328-331.
    108. Shimano H. Sterol regulatory element-binding protein family as global regulators of lipid synthetic genes in energy metabolism. Vitamins & Hormones,2002.65:p.167-194.
    109. Taniguchi C.M., Ueki K., and Kahn C.R. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. Journal of Clinical Investigation,2005.115(3):p. 718-727.
    110. Ide T., Shimano H., Yahagi N., et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nature cell biology,2004.6(4):p.351-357.
    111. You M., Fischer M., Deeg M.A., et al. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). Journal of Biological Chemistry,2002.277(32):p.29342-29347.
    112. You M. and Crabb D.W. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol,2004.34(1):p.39-43.
    113. Mehta K., Thiel D.H., Shah N., et al. Nonalcoholic fatty liver disease:pathogenesis and the role of antioxidants. Nutrition reviews,2002.60(9):p.289-293.
    114. Ascencio C., Torres N., Isoard-Acosta F., et al. Soy protein affects serum insulin and hepatic SREBP-1 mRNA and reduces fatty liver in rats. Journal of Nutrition,2004.134(3): p.522-529.
    115. Valasek M.A. and Repa J.J. The power of real-time PCR. Advances in physiology education,2005.29(3):p.151-159.
    116. Gachon C., Mingam A., and Charrier B. Real-time PCR:what relevance to plant studies? Journal of Experimental Botany,2004.55(402):p.1445-1545.
    117. Freeman W.M., Walker S.J., and Vrana K.E. Quantitative RT-PCR:pitfalls and potential. Biotechniques,1999.26:p.112-125.
    118. Bustin S. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. Journal of molecular endocrinology,2000.25(2):p. 169-193.
    119. Bustin S. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. Journal of molecular endocrinology,2002.29(1):p.23-39.
    120. 高均伟,郭延锋,王三虎等.荧光定量PCR方法的原理及其在研究病毒在动物体内分布规律的应用.中国畜牧兽医,2010.37(4):p.63-65.
    121. Reischl U., Wittwer C., and Cockerill F. Rapid Cycle Real-time PCR:Methods and Applications; Microbiology and Food Analysis.2002:Springer.
    122. Bago B., Zipfel W., Williams R.M., et al. Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiology,2002.128(1):p.108-124.
    123. Heid C.A., Stevens J., Livak K.J., et al. Real time quantitative PCR. Genome research, 1996.6(10):p.986-994.
    124. Wilson I.G. Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology,1997.63(10):p.3741-3751.
    125. Bustin S.A. and Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. Journal of biomolecular techniques:JBT,2004.15(3):p. 155-166.
    126. Legoff J., Bouhlal H., Gresenguet G., et al. Real-time PCR quantification of genital shedding of herpes simplex virus (HSV) and human immunodeficiency virus (HIV) in women coinfected with HSV and HIV. Journal of clinical microbiology,2006.44(2):p. 423-432.
    127. Espy M.J., Teo R., Ross T.K., et al. Diagnosis of varicella-zoster virus infections in the clinical laboratory by LightCycler PCR. Journal of clinical microbiology,2000.38(9):p. 3187-3189.
    128. Schmutzhard J., Merete Riedel H., Zweygberg Wirgart B., et al. Detection of herpes simplex virus type 1, herpes simplex virus type 2 and varicella-zoster virus in skin lesions. Comparison of real-time PCR, nested PCR and virus isolation. Journal of Clinical Virology,2004.29(2):p.120-126.
    129. Van Doomum G., Guldemeester J., Osterhaus A., et al. Diagnosing herpesvirus infections by real-time amplification and rapid culture. Journal of clinical microbiology,2003.41(2): p.576-580.
    130. Mackay I.M. Real?time PCR in the microbiology laboratory. Clinical Microbiology and Infection,2004.10(3):p.190-212.
    131. Ballard A., Fry N., Chan L., et al. Detection of Legionella pneumophila using a real-time PCR hybridization assay. Journal of clinical microbiology,2000.38(11):p.4215-4218.
    132. Cleary T.J., Roudel G., Casillas O., et al. Rapid and specific detection of Mycobacterium tuberculosis by using the Smart Cycler instrument and a specific fluorogenic probe. Journal of clinical microbiology,2003.41(10):p.4783-4786.
    133. Lunge V., Miller B., Livak K., et al. Factors affecting the performance of 5'nuclease PCR assays for Listeria monocytogenes detection. Journal of microbiological methods,2002. 51(3):p.361-368.
    134. Alaoui-Jamali M.A. and Xu Y. Proteomic technology for biomarker profiling in cancer: an update. Journal of Zhejiang University-Science B,2006.7(6):p.411-420.
    135. Liefers G.J. and Tollenaar R. Cancer genetics and their application to individualised medicine. European Journal of Cancer,2002.38(7):p.872-879.
    136. Khanna C. and Helman L.J. Molecular Approaches in Pediatric Oncology* Medicine, 2006.57(1):p.83-97.
    137. Stahlberg A., Zoric N., Aman P., et al. Quantitative real-time PCR for cancer detection: the lymphoma case. Expert review of molecular diagnostics,2005.5(2):p.221-230.
    138. Ginzinger D.G., Godfrey T.E., Nigro J., et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis. Cancer research,2000.60(19):p. 54055409.
    139. Ohnmacht G.A., Wang E., Mocellin S., et al. Short-term kinetics of tumor antigen expression in response to vaccination. The Journal of Immunology,2001.167(3):p. 1809-1820.
    140. Pitt J. Toxigenic fungi and mycotoxins. British medical bulletin,2000.56(1):p.184-192.
    141. Malomy B., Tassios P.T., R dstr m P., et al. Standardization of diagnostic PCR for the detection of foodborne pathogens. International journal of food microbiology,2003.83(1): p.39-48.
    142. Pang X.L., Lee B., Boroumand N., et al. Increased detection of rotavirus using a real time reverse transcription?polymerase chain reaction (RT?PCR) assay in stool specimens from children with diarrhea. Journal of medical virology,2004.72(3):p.496-501.
    143. Chen R., Huang W., Lin Z., et al. Development of a novel real-time RT-PCR assay with LUX primer for the detection of swine transmissible gastroenteritis virus. Journal of virological methods,2004.122(1):p.57-61.
    144. Bovenhuis H. and Weller J. Mapping and analysis of dairy cattle quantitative trait loci by maximum likelihood methodology using milk protein genes as genetic markers. Genetics, 1994.137(1):p.267-275.
    145. Mackay T.F.C. and Langley C. Molecular and phenotypic variation in the achaete-scute region of Drosophila melanogaster. Nature,1990.348(6296):p.64-66.
    146. Rothschild M., Jacobson C., Vaske D., et al. A major gene for litter size in pigs.1994: Guelph.
    147. Stengard J.H., Zerba K.E., Pekkanen J., et al. Apolipoprotein E polymorphism predicts death from coronary heart disease in a longitudinal study of elderly Finnish men. Circulation,1995.91(2):p.265-269.
    148. Firouzi M. and Groenewegen W. Gene polymorphisms and cardiac arrhythmias. Europace, 2003.5(3):p.235-242.
    149. Liu Z. and Cordes J. Erratum to DNA marker technologies and their applications in aquaculture genetic (Aquaculture 238 (2004) 37). Aquaculture,2005.242(1):p.735-736.
    150. Useche F.J., Gao G., Hanafey M., et al. High-throughput identification, database storage and analysis of SNPs in EST sequences. Genome Informatics Series,2001:p.194-203.
    151. Vignal A., Milan D., SanCristobal M., et al. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution,2002. 34(3):p.275-305.
    152. Landegren U., Nilsson M., and Kwok P.Y. Reading bits of genetic information:methods for single-nucleotide polymorphism analysis. Genome research,1998.8(8):p.769-776.
    153. 张增荣.鸡CAPNK、CAPN2、CAPN3和CAST基因的克隆、表达及其在肉质中的遗传效应分析[博士学位论文].四川农业大学,2009.
    154. 李建军.鸡肉风味特性研究[博士学位论文].中国农业科学院研究生院,2003.
    155. 李文娟.鸡肉品质相关脂肪代谢功能基因的帅选及营养调控研究[博士学位论文].中国农业科学院研究生院,2008.
    156. Pohle K. and Cheng H.W. Furnished cage system and hen well-being:Comparative effects of furnished cages and battery cages on behavioral exhibitions in White Leghom chickens. Poultry Science,2009.88(8):p.1559-1564.
    157. Bou R., Guardiola F., Grau A., et al. Influence of dietary fat source, alpha-tocopherol, and ascorbic acid supplementation on sensory quality of dark chicken meat. Poultry Science, 2001.80(6):p.800-807.
    158. Jahan K., Paterson A., Piggott J., et al. Chemometric modeling to relate antioxidants, neutral lipid fatty acids, and flavor components in chicken breasts. Poultry Science,2005. 84(1):p.158-166.
    159. Lebret B. and Guillard A.S. Outdoor rearing of cull sows:Effects on carcass, tissue composition and meat quality. Meat Science,2005.70(2):p.247-257.
    160. Husak R., Sebranek J., and Bregendahl K. A survey of commercially available broilers marketed as organic, free-range, and conventional broilers for cooked meat yields, meat composition, and relative value. Poultry Science,2008.87(11):p.2367-2376.
    161. 陈冬梅,周材权,苏学辉.不同饲养方式对肉用土鸡生长性能和屠宰性能的影响.中 国畜牧杂志,2004.80:p.44-45.
    162. 陆俊贤,王克华,童海兵等.鸡种与饲养方式对屠宰性能的影响.中国禽业导刊,2002.19(23):p.40.
    163. 张丽英主编.饲料分析及饲料检测技术.中国农业大学出版社,2007年.第三版.
    164. 王述柏.鸡肉肌苷酸沉积规律及营养调控研究.北京:中国农业科学院研究生院,2004:p.89-93,
    165. Milo evi N., Peri L., and Supi B. Raising chickens on a free range system:1. Evalution of carcass quality. Vol.28.2003.
    166. 侯永生,李绍标.日粮能量、蛋白质水平对肉仔鸡体重及腹脂率的影响.中国畜牧杂志,1991.27(5):p.6-9.
    167. Gondret F. and Lebret B. Feeding intensity and dietary protein level affect adipocyte cellularity and lipogenic capacity of muscle homogenates in growing pigs, without modification of the expression of sterol regulatory element binding protein. Journal of Animal Science,2002.80(12):p.3184-3193.
    168. Lewis P., Perry G., Farmer L., et al. Responses of two genotypes of chicken to the diets and stocking densities typical of UK and [] Label Rouge'production systems:1. Performance, behaviour and carcass composition. Meat Science,1997.45(4):p.501-516.
    169. 徐铁山,刘慧清,周汉林等.海南黑山羊血液生化指标与其肌间脂肪含量及肌纤维直径的相关分析.家畜生态学报,2009.30(6):p.50-54.
    170. 马虹,张根华,赵茹茜等.10日龄肉鸡和蛋鸡血清甲状腺激素和胰岛素水平的比较.中国应用生理学杂志,1997.13(3):p.271-273.
    171. Flier J.S. What's in a name? In search of leptin's physiologic role. Journal of Clinical Endocrinology & Metabolism,1998.83(5):p.1407-1413.
    172. Prins J.B., Niesler C.U., Winterford C.M., et al. Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes,1997.46(12):p.1939-1944.
    173. 张明涛,杨永青,鞠大鹏等.瘦素(Leptin)对猪脂肪细胞脂滴相关蛋白和脂肪生成相关酶mRNA表达的影响.浙江大学学报(农业与生命科学版),2009.35(5):p.509-515.
    174. Moller N., O'Brien P., and Nair K.S. Disruption of the relationship between fat content and leptin levels with aging in humans. Journal of Clinical Endocrinology & Metabolism, 1998.83(3):p.931-934.
    175. Prins J. and O'RAHILLY S. Regulation of adipose cell number in man. Clinical science, 1997.92(1):p.3-11.
    176. 郭新胜,王俐,刘福喜等.单纯肥胖症儿童血清瘦素、肿瘤坏死因子-α测定的意义实用儿科临床杂志,2003.18(9):p.715-717.
    177. Sink J. Lipid-soluble components of meat flavors/odors and their biochemical origin. Journal of the American Oil Chemists'Society,1973.50(11):p.470-474.
    178. Ramarathnam N., Rubin L.J., and Diosady L.L. Studies on meat flavor.4. Fractionation, characterization, and quantitation of volatiles from uncured and cured beef and chicken. Journal of Agricultural and Food Chemistry,1993.41(6):p.939-945.
    179. Monov G. and Miteva E. Fatty acid content in the lipid fraction of pork. Veterinarno-meditsinski nauki,1980.17(3):p.56-59.
    180. Cameron N. and Enser M. Fatty acid composition of lipid in longissimus dorsi muscle of Duroc and British Landrace pigs and its relationship with eating quality. Meat Science, 1991.29(4):p.295-307.
    181. 蔡传江,车向荣,赵克斌等.亚麻油对育肥猪肉品质及脂肪组织脂肪酸组成的影响.畜牧兽医学报,2009.40(12):p.1755-1760.
    182. 颜新春,汪以真,许梓荣等.日粮中多不饱和脂肪酸(PUFA)对动物基因表达和脂肪细胞分化的调节.饲料研究,2001.5(2):p.4-5.
    183. 卢耀增主编.实验动物学.北京:北京医科大学、中国协和医科大学联合出版社,1995.
    184. 冷超,韩凌霞,于海波等.不同周龄BWEL-SPF种鸡生理生化指标的测定.中国比较医学杂志,2007.17(12):p.697-701.
    185. Blom N., Gammeltoft S., and Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sitesl. Journal of Molecular Biology,1999.294(5):p. 1351-1362.
    186. Kyte J. and Doolittle R.F. A simple method for displaying the hydropathic character of a protein* 1. Journal of Molecular Biology,1982.157(1):p.105-132.
    187. Gupta R. and Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function.2002:Citeseer.
    188. Gupta R., Jung E., and Brunak S. Prediction of N-glycosylation sites in human proteins. preparation. The web tool is located at http://www.cbs.dtu.dk/services/NetNGlyc,2002.
    189. Julenius K., Molgaard A., Gupta R., et al. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology,2005. 15(2):p.153-164.
    190. Marchler-Bauer A., Anderson J.B., Cherukuri P.F., et al. CDD:a Conserved Domain Database for protein classification. Nucleic acids research,2005.33:p.192-196.
    191. 张成岗,贺福初.生物信息学方法与实践.北京,科学出版社,2002.
    192. 米塞诺,克拉维茨.生物信息学方法指南.北京,科学出版社,2005:p.117-233.
    193. Sewter C., Berger D., Considine R.V., et al. Human obesity and type 2 diabetes are associated with alterations in SREBP1 isoform expression that are reproduced ex vivo by tumor necrosis factor-α. Diabetes,2002.51(4):p.1035.
    194. DeBose-Boyd R.A., Ou J., Goldstein J.L., et al. Expression of sterol regulatory element-binding protein 1c (SREBP-1c) mRNA in rat hepatoma cells requires endogenous LXR ligands. Proceedings of the National Academy of Sciences of the United States of America,2001.98(4):p.1477-1482.
    195. Ou J., Tu H., Shan B., et al. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proceedings of the National Academy of Sciences of the United States of America,2001.98(11):p.6027-6032.
    196. Osborne T.F. Sterol regulatory element-binding proteins (SREBPs):key regulators of nutritional homeostasis and insulin action. Journal of Biological Chemistry,2000.275(42): p.32379-32382.
    197. Xu J., Teran-Garcia M., Park J.H.Y., et al. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein-1 expression by accelerating transcript decay. Journal of Biological Chemistry,2001.276(13):p.9800-9807.
    198. Fan Y.M., Karhunen P.J., Levula M., et al. Expression of sterol regulatory element-binding transcription factor(SREBF) 2 and SREBF cleavage-activating protein(SCAP) in human atheroma and the association of their allelic variants with sudden cardiac death. Thrombosis Journal,2008.6(1):p.17.
    199. Chen Z., Ding Z., Ma G., et al. Sterol regulatory element-binding transcription factor (SREBF)-2, SREBF cleavage-activating protein (SCAP), and premature coronary artery disease in a Chinese population. Molecular Biology Reports:p.1-7.
    200. Rance K., McEntee G., and McDevitt R. Genetic and phenotypic relationships between and within support and demand tissues in a single line of broiler chicken. British Poultry Science,2002.43(4):p.518-527.
    201. Zhang X., Jiang X., Liu Y., et al. Identification of AvaI polymorphisms in the third intron of GH gene and their associations with abdominal fat in chickens. Poultry Science,2007. 86(6):p.1079-1083.
    202. Laaksonen R., Thelen K.M., P iv H., et al. Genetic variant of the SREBF-1 gene is significantly related to cholesterol synthesis in man. Atherosclerosis,2006.185(1):p. 206-209.
    203. S rensen T.I.A., Boutin P., Taylor M.A., et al. Genetic polymorphisms and weight loss in obesity: a randomised trial of hypo-energetic high-versus low-fat diets. PLoS Clinical Trials,2006.12(2):p.1-14.
    204. Harding A.H., Loos R.J.F., Luan J., et al. Polymorphisms in the gene encoding sterol regulatory element-binding factor-lc are associated with type 2 diabetes. Diabetologia, 2006.49(11):p.2642-2648.
    205. Vaxillaire M., Veslot J., Dina C., et al. Impact of common type 2 diabetes risk polymorphisms in the DESIR prospective study. Diabetes,2008.57(1):p.244.
    206. Eberle D., Clement K., Meyre D., et al. SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes,2004. 53(8):p.2153.
    207. Lee H.J., Choi S.J., Hong J., et al. Association of a Polymorphism in the Intron 7 of the SREBF1 Gene with Osteonecrosis of the Femoral Head in Koreans. Annals of Human Genetics,2009.73(1):p.34-41.
    208. Le Hellard S., Muhleisen T., Djurovic S., et al. Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling celluiar lipogenesis, are associated with schizophrenia in German and Scandinavian samples. Molecular Psychiatry,2008.15(5):p.463-472.
    209. Duan X.,. Zhu W., Zhang Z., et al. The 1784 G> C polymorphism of sterol regulatory element binding protein-2 gene:prevalence and effect on serum lipid concentrations in hyperlipidemic individuals from China. The Journal of Lipid Research,2004.11:p. 252-257.
    210. Miserez A.R., Muller P.Y., Barella L., et al. Sterol-regulatory element-binding protein (SREBP)-2 contributes to polygenic hypercholesterolaemia. Atherosclerosis,2002.164(1): p.15-26.
    211. Yaju D., Ruixing Y., Yiyang L., et al. Polymorphism of the Sterol Regulatory Element-Binding Protein-2 Gene and Its Association With Serum Lipid Levels in the Guangxi Hei Yi Zhuang and Han Populations. The American journal of the medical sciences,2009.337(1):p.14-22.
    212. Muller P. and Miserez A. Identification of mutations in the gene encoding sterol regulatory element binding protein (SREBP)-2 in hypercholesterolaemic subjects. Journal of medical genetics,2002.39(4):p.271-275.
    213. Robinet P., Vedie B., Chironi G., et al. Characterization of polymorphic structure of SREBP-2 gene: role in atherosclerosis. Atherosclerosis,2003.168(2):p.381-387.
    214.黄培堂(译).分子克隆实验指南.北京,科学出版社,2003.
    215.孟祥军.丝羽乌骨鸡微卫星位点多态性及其与蛋品质性状的相关分析[硕士学位论文].四川农业大学,2004.
    216. Stephens M., Smith N.J., and Donnelly P. A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics,2001. 68(4):p.978-989.
    217. Lalouel J.M. and Rohrwasser A. Power and replication in case-control studies. American journal of hypertension,2002.15(2):p.201-205.
    218. Long A.D. and Langley C.H. The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome research,1999.9(8):p. 720-731.
    219. Risch N.J. Searching for genetic determinants in the new millennium. Nature,2000. 405(6788):p.847-856.
    220. Home B.D. and Camp N.J. Principal component analysis for selection of optimal SNP sets that capture intragenic genetic variation. Genetic epidemiology,2004.26(1):p. 11-21.
    221. Morris R.W. and Kaplan N.L. On the advantage of haplotype analysis in the presence of multiple disease susceptibility alleles. Genetic epidemiology,2002.23(3):p.221-233.
    222. Clark A.G. The role of haplotypes in candidate gene studies. Genetic epidemiology,2004. 27(4):p.321-333.