天然软粘土的流变特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东南沿海地区广泛分布着深厚的软弱粘土层,随着经济社会的迅猛发展,越来越多大型的建(构)物选择修建于其上,这也为岩土工程界的设计和研究人员提出了更高地要求和挑战。天然软粘土的流变特性和循环剪切特性是决定软弱地基及其上部结构工后沉降和稳定性的主要因素,对其进行系统的研究将具有重要的工程实际意义,本文的研究和讨论也是围绕这一主题而展开的。
     论文首先总结了前人的工作,并采用室内土工试验的手段,对K_0固结原状温州粘土的流变性状展开研究,以期对天然软土的流变性状及机理有更为全面的认识。在此基础上,建立了一个能反映K_0固结软粘土流变性状的弹粘塑性本构模型,通过进一步细化分析粘塑性软土各向异性的演化,引入了与模型相匹配的旋转硬化规律,提高了模型的适用性。然后采用此流变模型,分析了粘土屈服性状和强度的应变率效应,给出了相关应变率效应参数的解析表达。最后对K_0固结原状温州粘土进行了不排水的循环剪切试验,考察了粘土的循环累积性状和强度弱化效应,并采用本文流变模型对其循环剪切性状进行了模拟。
     综上所述,本文在分析天然软粘土的流变性状的过程中,主要完成了以下一些工作:
     1.开展了针对原状软粘土流变性的试验研究。通过一系列针对性的一维和三轴室内试验,对原状温州粘土的蠕变性状以及压缩性和剪切性状的率相关性进行了系统的考察,补充完善了温州粘土工程性状的试验成果,同时为本文建立的弹粘塑性本构模型提供必要的计算参数。
     2.建立了K_0固结软粘土的弹粘塑性本构模型。借鉴过应力理论的建模思想,引入了对应于土体正常固结状态的参考面(f),在此基础上构建了一般应力条件下的弹粘塑性本构模型。考虑原位土体K_0固结历史诱发的各向异性影响,模型的加载面和参考面均为倾斜椭圆。通过与试验结果对比,验证了模型的有效性。
     3.研究了K_0固结粘塑性软土的旋转硬化规律。考虑到土体粘性的影响,在本文流变模型的基础上引入了与之相匹配的旋转硬化规律,并通过考察等向固结过程中土体的体积变形,推求了旋转硬化参数b的解析表达式。通过计算对比和参数b的敏感性分析,探讨了引入旋转硬化规律的必要性。
     4.分析了K_0固结软粘土的应变率效应。利用本文建立的弹粘塑性本构模型,定量考察了表观先期固结压力和三轴不排水强度的应变率效应,得到了各自的应变率效应参数的解析表达式。采用不同的强度取值标准,由本文模型分别获得了K_0固结软粘土的不排水压缩和拉伸强度的解析解。本文关系的计算结果与现有多数应变率效应试验结果均吻合较好。
     5.开展了针对原状软土循环剪切性状的试验研究。通过对K_0固结原状温州粘土进行不同幅值、不同频率条件下的三轴不排水循环剪切试验,系统分析了土体在循环剪切过程中的应变累积、残余孔压和动强度等特性,详细探讨了荷载频率对土体循环剪切性状的影响。同时对粘土在循环加载后的静力抗剪强度弱化进行了定量的试验研究,得到规律性的结论。
     6.对天然软土的循环剪切性状进行了流变学模拟。详细讨论了粘土不排水循环剪切的累积效应与静力蠕变特性的相似性,采用流变学思路,将其应力等效为蠕变过程来求解。利用反分析,得到了等效次固结系数(?)_α的计算式,并与本文弹粘塑性模型相结合,模拟分析了K_0固结原状温州粘土的不排水循环剪切的破坏性状和强度弱化,验证了本文流变等效计算方法的适用性。
Soft clays,which have been commonly encountered in real construction projects,are widely distributed in the coastal area of the southeast China.Rheological property and cyclic shearing behavior are the most important factors of natural clays that may lead to large settlements and unstability.Therefore,investigation of the effect of rheology and cyclic shearing on properties of natural clays is an important issue for understanding the behavior of clay and reliable design in practice,and this is just the object of this thesis.
     Based on the summary of related work,the rheological properties of K_0-consolidated natural Whenzhou clay are studied in detail from series of laboratory tests,and then an general elastic viscoplastic constitutive model is developed in this paper.The presented model is introduced to investigate the strain-rate dependency on yielding and strength behavior of clays,and the theoretical expressions of their strain rate parameters are obtained.Finally,the undrained cyclic shearing behavior of K_0-consolidated natural Whenzhou clay is observed in triaxial cyclic shear tests,and the results are fairly simulated by this rheologic constitutive model.
     In general,some developments for soft clays are involved in this dissertation as below:
     1.Experimental researches are conducted to study the rheological properties of natural Whenzhou clay.Creep and the strain rate dependency,which are the most two common behavior of clay rheology,are investigated systematically.Some features of the rheology of Whenzhou clay are obtained.The values of the model parameters can also be determined by parts of these experimental results.
     2.A new anisotropic elastic viscoplastic(EVP) constitutive model are presented for K_0-consolidated clays in general stress space.Just similar to the original overstress theory,two surfaces is assumed to exist for any loading history:loading surface f and reference surface(?),which are inclined ellipses in the p~'~q plane due to the effects of the stress induced anisotropy.Both of these two surfaces are constant curves of the flow functionφ, so the exact expression of flow fuctionφcan be established by the viscoplastic volumetric strain rate under one-dimensional condition.With comparisons between the simulations and the observed results of some representative clays,the validity and applicability of this model is verified.
     3.A rotational hardening law accounting for changes in anisotropy due to viscous strains is adopted into the presented model.By analyzing the soil's volumetric changes during isotropic loading,the expression of the new rotational parameter b is presented. Followed by comparisons with experimental data,the proposed model is capable of capturing key viscous features of soft clays,and the importance of the evolution of anisotropy is indicated.
     4.The strain rate dependent behavior of K_0-consolidated clays is investigated.Based on the developed anisotropic EVP model,the expressions of strain rate parameters of preconsolidation stress and undrained triaxial strength are presented,separately.The analytical solutions for undrained triaxial compression and extension strength of K_0-consolidation clays are deduced.The coincidence of the predicted and measured results shows the advantages of the new anisotropic EVP model.
     5.Experimental researches are conducted to study the undrained cyclic shearing behavior of natural Whenzhou clay.Considering the effects of anisotropy,all of the soil specimens are K_0-consolidated,which is very different from many existed tests.The deformation、pore pressure and cyclic strength behavior of natural clay is studied,and the effects of the loading frequency are analyzed.In addition,postcyclic degradation of strength is studied by another series of undrained triaxial tests,and some rewarding conclusions can be obtained.
     6.The cyclic shearing behavior is simulated by the presented rheological model.Based on their similarity,the accumulation during cyclic shearing is equivalent to a static creep process with the condition that the static incremental loadΔq=q_(cyc).Then,a simple expression of the equivalent secondary compression coefficient(?)_αis adopted into the presented model which is used to simulate the accumulated cyclic shearing behavior of clays.The predicted results indicate that the creep equivalent simplification with the presented anisotropic EVP model is suitable in practice,the accumulation behavior and the postcyclic degradation of strength of natural clays can be fairly simulated.
引文
1. Adachi T., Mimura M., Oka, F. Descriptive accuracy of several existing constitutive models for normally consolidated clays [C]. In Proceedings of the 5th International Conference on Numerical Methods of Geomechanics, Nagoya, Japan, 1985, 1: 259-266.
    2. Adachi T., Oka F, Mimura M. State of the art: modeling aspects associated with time dependent behavior of soils[M]. Measuring and modeling time dependent soil behavior, Geotechnical Special Publication No. 61, ASCE, Sheahan T.C. & Kaliakin V.N. (eds.), 1996: 61-95.
    3. Akai K., Adachi T., Ando N. Existence of a unique stress-strain-time relation of clays [J]. Soils and Foundations, 1975, 15(1): 1-16.
    4. Anandarajah A., Kuganenthira N., Zhao D. Variation of fabric anisotropy of kaolinite in triaxial loading [J]. Journal of Geotechnical Engineering, 1996, 122(8): 633-640.
    5. Andersen K.H. Cyclic clay data for foundation design of structures subjected to wave loading [C]. Invited Lecture of International Conference on Cyclic Behaviour of Soils and Liquefaction Phenomena, Bochum, Germany, 2004, 1-19.
    6. Andersen K.H., Pool J.H., Brown S.F., Rosenbrand W.F. Cyclic and static laboratory tests on Drammen clay [J]. Journal of the Geotechnical Engineering Division, 1980, 106(GT5): 499-529.
    7. Ansal A.M., Erken A. Undrained behavior of clay under cyclic shear stresses [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(7): 968-983.
    8. Arai K. Representation of soft clay behavior based on minimization of dissipated energy [C]. In Proceedings of the 5~(th) International Conference on Numerical Methods in Geomechanics, Nagoya, Japan, 1985, 1:277-284.
    9. Asaoka A., Nakano M., Noda T., Kaneda K. Delayed compression / consolidation of natural clay due to degradation of soil structure [J]. Soils and Foundations, 2000,40(3): 75-85.
    10. Atkinson J.H. Non-linear soil stiffness in routine design [J]. 40th Rankine Lecture, Geotechnique, 2000, 50(5): 487-508.
    11. Atkinson J.H., Richardson D., Robinson P.J. Compression and extension of K_0 normally consolidated Kaolin clay [J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(12): 1468-1482.
    12. Azzour A., Malek A.M., Baligh M.M. Cyclic behaviour of clays in undrained simple shear [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(5): 637-657.
    13. Berre T., Bjerrum L. Shear strength of normally consolidated clays [C]. In Proceedings of the 8~(th) International Conference on Soil Mechanics and Foundation Engineering, 1973,1: 39-49.
    14. Bjerrum L. Engineering geology of Norwegian normally consolidated marine clays as related to the settlement of buildings [J]. Geotechnique, 1967, 17(2): 81-118.
    15. Bjerrum L. Problems of soils mechanics and construction on soft clays and structurally unstable soils (collapsible, expensive and others) [C]. In Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Mockba, 1973,2: 109-159.
    16. Borja R.I., Kavazanjian, E. A constitutive model for the stress-strain-time behaviour of "wet" clays [J]. Geotechnique, 1985,35(3): 283-298.
    17. Bouckovalas G. Permanent displacement of sand with cyclic loading [J]. Journal of Geotechnical Engineering, ASCE, 1984.
    18. Burland J.B. On the shear strength and compressibility of natural clays [J]. 30th Rankine Lecture, Geotechnique, 1990,40(3): 329-335.
    19. Casagrande A., Wilson S.D. Effect of rate of loading on the strength of clays and shales at constant water content [J]. Geotechnique, 1951,2(3): 251-263.
    20. Chai J.C., Miura N. Traffic-load-induced permanent deformation of road on soft subsoil [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2002, 128(11): 907-916.
    21. Chang M.F., Teh C.I., Cao L.F. Critical state strength parameters of saturated clays from modified Cam clay model [J]. Canadian Geotechnical Journal, 1999, 36: 876-890.
    22. Chen Y.M., Ji M.X., Huang B. Effect of cyclic loading frequency on undrained behaviors of undisturbed marine clay [J]. China Ocean Engineering, 2004, 18(4): 643-651.
    23. Cheng C.M., Yin J.H. Strain-rate dependent stress-strain behavior of undisturbed Hong Kong marine deposits under oedometer and triaxial stress states [J]. Marine Georesources and Geotechnology, 2005, 23: 61-92.
    24. Crawford C.B. The resistance on soil structure to consolidation [J]. Canadian Geotechnical Journal, 1965, 2(2): 90-97.
    25. Dafalias Y.F. Bounding surface elastoplasticity-viscoplasticity for particulate cohesive media [C]. International Union of Theoretical and Applied Mechanics Conference on Deformation and Failure of Granular Materials, Vermeer P.A.& Luger H.J. (eds.), 1982, 97-107.
    26. Dafalias Y.F., Manzari M.T., Papadimitriou A.G. SANICLAY: simple anisotropic clay plasticity model [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231-1257.
    27. Díaz-Rodríguez J.A., Leroueil S., Alemán J.D. Yielding of Mexico City clay and other natural clays [J]. Journal of Geotechnical Engineering, 1992, 118(7): 981-995.
    28. Duncan J.M., Buchignani A.L. Failure of underwater slope in San Francisco [J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1973, 99(SM9): 687-703.
    29. Finno R.J. Harris W.W., Mooney M.A., Viggiani G. Shear band in plane strain compression of loose sand [J]. Geotechnique, 1997,47(1): 149-165.
    30. Gajo A., Wood M. A new approach anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001,25:207-241.
    31. Graham J., Crooks J.H.A., Bell A.L. Time effects on the stress-strain behaviour of natural soft clays [J]. Geotechnique, 1983a, 33(3): 327-340.
    32. Graham J., Noonan M.L., Lew K.V. Yield states and stress-strain relationships in a natural plastic clay[J]. Canadian Geotechnical Journal, 1983b, 20(3): 502-516.
    33. Hanzawa H., Tanaka H. Normalized undrained strength of clay in the normally consolidated state and in the field [J]. Soils and Foundations, 1992, 32(1): 132-148.
    34. Hashiguchi K., Chen Z.P. Elastoplastic constitutive equation of soils with the subloading surface and the rotational hardening [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998,22: 197-227.
    35. Head H.K. Manual of soil laboratory testing: Effective stress tests. London, Pentech Press, 1985, 3: 1129-1225.
    36. Hinchberger S.D., Rowe R.K. Evaluation of the predictive ability of two elastic-viscoplastic constitutive models [J]. Canadian Geotechnical Journal, 2005,42: 1675-1694.
    37. Holtzer T.L., Hoeg K., Arulanandan K. Excess pore pressures during undrained clay creep [J]. Canadian Geotechnical Journal, 1973, 10(1): 12-24.
    38. Hueckel T., Tutumluer E. Modeling of elastic anisotropy due to one-dimentional plastic consolidation of clays [J]. Computers and Geotechnics, 1994, 16: 311-349.
    39. Hyde A.F.L., Yasuhara K., Hirao K. Stability criteria for marine clay under one-way cyclic loading [J]. Journal of Geotechnical Engineering, ASCE, 1993, 119(11): 1771-1889.
    40. Hyodo M., Yamamoto Y., Sugiyama M. Undrained cyclic shear behavior of normally consolidated clay subjected to initial static shear stress [J]. Soils and Foundations, 1994, 34(4): 1-11.
    41. ldriss I.M., Dobry R., Singh R.D. Nonlinear behavior of soft clays during cyclic loading [J]. Journal of Soil Mechanics and Foundation, 1978, 104(12): 1427-1447.
    42. Jaky J. The coefficient of earth pressure at rest [J]. Journal of the Society of Hungarian Architects and Engineers, 1944, 7: 355-358.
    43. Jamiolkowski M., Ladd C.C., Germaine J.T., et al. New developments in field and laboratory testing of soils[C]. In Proceedings of the 11~(th) International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 1985, 1: 57-153.
    44. Kaliakin V. N., Dafalias Y. F. Theoretical aspects of the elastoplastic-viscoplastic bounding surface model for cohesive soils [J]. Soils and Foundations, 1990,30(3): 11-24.
    45. Katti D.R., Tang J.P., Yazdani S. Undrained response of clays to varying strain rate [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003,129(3): 278-282.
    46. Kavazanjian E., Mitchell J.K. A general stress-strain-time formulation for soils [C]. In Proceedings of the 9~(th) International Conference on Soil Mechanics and Foundation Engineering, 1977: 113-120.
    47. Kelln C., Sharma J., Hughes D., Graham J. An improved elastic-viscoplastic soil model [J]. Canadian Geotechnical Journal, 2008,45:1356-1376.
    48. Kobayashi I., Soga K., Iizuka A., Ohta H. Numerical Interpretation of a shape of yield surface obtained from stress probe tests [J]. Soils and Foundations, 2003,43(3): 93-103.
    49. Kulhawy F.H., Mayne P.W. Manual of estimating soil properties for foundation design [M]. Ithaca, NY, Cornell University, 1990.
    50. Kutter B.L., Sathialingam N. Elastic-viscoplastic modeling of the rate-dependent behavior of clays [J]. Geotechnique, 1992,42(3): 427-441.
    51. Lacerda W.A., Houston W.N. Stress relaxation in soils [C]. In Proceedings of the 8~(th) International Conference on Soil Mechanics and Foundation Engineering, Mockba, 1973, 2:221-227.
    52. Lee K., Choa V., Lee S.H., Quek S.H. Constant rate of strain consolidation of Singapore marine clay [J]. Geotechnique, 1993,43(3): 471-488.
    53. Lefebvre G., LeBoeuf D. Rate effects and cyclic loading of senstitive clays [J]. Journal of Geotechnical Engineering Division, ASCE, 1987, 113(5): 476-489.
    54. Leonard G. A., Altschaeffl A.G. Compressibility of clays [J]. Journal of Soil Mechanics and Foundation Division, 1964,90(SM5): 133-155.
    55. Leoni M., Karstunen M., Vermeer P.A. Anisotropic creep model for soft soils [J]. Geotechnique, 2008, 58(3): 215-226.
    56. Leroueil S. Compressibility of clays: fundamental and practical aspects[J]. Journal of Geotechnical Engineering, 1996, 122(7): 534-543.
    57. Leroueil S. Critical state soil mechanics and the behaviour of real soils [M]. Recent developments in soil and pavement mechanics. Rotterdam, Almeida, 1997:41-80.
    58. Leroueil S. The isotache approach. Where are we 50 years after its developments by professor Suklje?[C]. In Proceedings of the 13~(th) Danube European Conference. on Geotechnical Engineering, Ljubljana, 2006, 1:55-88.
    59. Leroueil S., Tavenas F. Preconsolidation pressure of Champlain clays, Part II : Laboratory determination [J]. Canadian Geotechnical Journal, 1983,20(4): 803-816.
    60. Leroueil S., Kabbaj M., Tavenas F., Bouchard R. Stress-strain-strain rate relation for the compressibility of sensitive clays [J]. Geotechnique, 1985, 35: 159-180.
    61. Leroueil S., Marques M.E.S. Importance of strain rate and temperature effects in geotechnical engineering [M]. Measuring and modeling time dependent soil behavior, Geotechnical Special Publication No. 61, ASCE, Sheahan T.C.(eds), New York, USA, 1996: 1-60.
    62. Marques M.E.S., Leroueil S., Almeida M.S.S. Viscous behaviour of St-Rouch-de-I'Achigan clay, Quebec [J]. Canadian Geotechnical Journal, 2004,41: 25-38.
    63. Matasovic N., Vucetic M. Generalized cyclic-degradation-pore-pressure generation model for clays [J]. Journal of Geotechnical Engineering, 1995, 121(1): 33-42.
    64. Matsui T., Ohara H., Ito T. Cyclic stress-strain history and shear characteristics of clay [J]. Journal of the Geotechnical Engineering Division, 1980, 106(GT10): 1101-1120.
    65. Mesri G., Godlewski P. M. Time and stress-compressibility interrelationship [J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(5): 417-430.
    66. Mesri G., Castro A. C_α /C_c concept and K_0 during secondary compression [J]. Journal of the Geotechnical Engineering, 1987, 113(3): 230-247.
    67. Mitachi T., Kitago S. The influence of stress history and stress system on the stress-strain-strength properties of saturated clay [J]. Soils and Foundations, 1979, 19(2): 45-61.
    68. Murayama S., Shibata T. Rheological properties of clays [C]. In Proceedings of the 5~(th) International Conference on Soil Mechanics and Foundation Engineering, 1961,1:269-274.
    69. Nakano M., Nakai K., Noda T., et al. Simulation of shear and one-dimentional compression behabior of naturally deposited clays by super/subloading yield surface Cam-clay model [J]. Soils and Foundations, 2005,45(1):141-151.
    70. Nakase A., Kamei T. Influence of strain rate on undrained shear characteristics of K_0 consolidated cohesive soils [J]. Soils and Foundations, 1986, 26(1): 85-95.
    71. Nash D.F.T., Sills G.C., Davison L.R. One-dimensional consolidation testing of soft clay from Bothkennar [J]. Geotechnique, 1992,42(2): 241-256.
    72. Nicholson P.G., Russell P.W., Fujii C.F. Soil creep and creep testing of highly weather tropical soils [M]. Measuring and Modelling Time Dependent Soil Behaviour, Geotechnical Special Publication No.61,ASCE,Sheahan T.C.(eds.),New York,USA, 1996: 195-312.
    73. Oda Y., Mitachi T. Stress relaxation characteristics of saturated clays [J]. Soils and Foundations, 1988, 28(4): 69-80.
    74. Ohara S., Mastusda H. Study on the settlement of saturated clay layer induced by cyclic shear [J]. Soils and Foundations, 1988,28(3).
    75. Ohta H, Nishihara A. Anisotropy of undrained shear strength of clays under axi-symmetric loading conditions [J]. Soils and Foundations, 1985,25(2):78-86.
    76. Parry R.H.G., Nadarajah V. Observation on laboratory prepared lightly overconsolidated specimens of Kaolin [J]. Geotechnique, 1973, 24(3): 345-358.
    77. Perzyna P. The constitutive equations for work-hardening and rate-sensitive plastic materials[C]. In Proceedings of Vibrational Problems, Warsaw, 1963,4(3): 281-290.
    78. Perzyna P. Fundamental problems in viscoplasticity [C]. Advances in applied mechanics, Academic, New York. 1966, 6: 244 - 368.
    79. Pestana J.M., Whittle A.J. Formulation of a unified constitutive model for clays and sands [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1215-1243.
    80. Prevost J.H. Mathematical modeling of monotonic and cyclic undrained clay behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, 1: 195-216.
    81. Procter D.C., Khaffaf J.H. Cyclic triaxial tests on remoulded clays [J]. Journal of Geotechnical Engineering, ASCE, 1984, 110(10): 1431-1445.
    82. Randolph M., Cassidy M., Gourvenec S., Erbrich C. Challenges of offshore geotechnical engineering [C]. In Proceedings of the 16~(th) International Conference on Soil Mechanics and Foundation Engineering, Osaka, Japan, 2005, 1: 123-176.
    83. Richardson A.M., Whitman R.V. Effect of strain rate upon undrained shear resistance of a saturated remoulded fat clay [J]. Geotechnique, 1963, 13(4): 310-324.
    84. Roscoe K.H., Burland J.B. One generalized stress-strain behavior of wet clay, In Engineering plasticity [M]. Heyman J. & Leckie F.A.(eds), Cambrige University Press, London, 1968, 535-609.
    85. Rowe R.K., Gnanendan C.T., Landva A.O., Valsangkar A.J. Calculated and observed behavior of reinforced embankment over soft compressible soil [J]. Canadian Geotechnical Journal, 1996, 33: 324-338.
    86. Saito M., Uezawa H. Failure of soil due to creep [C]. Proceedings of the 5~(th) International Conference on Soil Mechanics and Foundation Engineering, 1961, 1: 315-318.
    87. Satake M. Mechanics of granular materials [C]. In proceedings of the 12~(th) International Conference on Soil Mechanics and Foundation Engineering, 1989, 62-79.
    88. Schofield A. N., Wroth C.P. Critical state soil mechanics [M]. McGraw-Hill, London, 1968.
    89. Sekiguchi H., Ohta H. Induced anisotropy and time dependency in clays [C]. In proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Japan. 1977, 9: 229-238.
    90. Sekiguchi H. Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity [J]. Soils and Foundations, 1984, 24(1): 129-147.
    91. Sheahan T.C. Interpretation of undrained creep tests in terms of effective stresses [J]. Canadian Geotechnical Journal, 1995, 32: 373-379.
    92. Sheahan T.C., Ladd C.C., Germaine J.T. Time-dependent triaxial relaxation behavior of a resedimented clay [J]. Geotechnical Testing Journal, 1994, 17(4): 444-452.
    93. Sheahan T.C., Ladd C.C., Germaine J.T. Rate-dependent undrained shear behavior of saturated clay [J]. Journal of Geotechnical Engineering, 1996,22(2): 99-108.
    94. Silvestri V. Strain-rate effects in self-boring pressuremeter tests in clay [J]. Canadian Geotechnical Journal, 2006,43:915-927.
    95. Singh A., Mitchell J.K. General stress-strain-time function for soils [J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1968, 94(SM1): 21-46.
    96. Skempton A.W. Long-term stability of clay slopes [J]. Geotechnique, 1964,14(2): 77-101.
    97. Smith P.R., Hight D W. The yielding of Bothkennar clay [J].Geotechnique, 1992,42(2): 257-274.
    98. Tanaka H. Sample quality of cohesive soils: Lessons from three sites, Ariake, Bothkennar and Drammen [J]. Soils and Foundations, 2000,40(4): 57-74.
    99. Tanaka H., Locat J., Shibuya S., et al. Characterization of Singapore, Bangkok, and Ariake clays[J]. Canadian Geotechnical Journal, 2001a, 38(2): 378-400.
    100. Tanaka H., Shiwakoti D.R. Comparison of mechanical behavior of two overconsolidated clays: Yamashita and Louiseville clays [J]. Soils and Foundations, 2001b, 41(4): 73-87.
    101. Tarumi N., Sunaga M. Behaviours of Low Embankments on soft grounds during train passage [C]. Proc. JSCF, 1988, (400/III-10): 1-11.
    102. Tatsuoka F., Santucci M.F., et al. Some new aspects of time effects on the stress-strain behaviour of stiff geomaterials [M]. The Geotechnics of hard soils-soft rocks, Evangelista R. & Picarelli L.(eds.), Balkema, Rotterdam, The Netherlands, 2000,2: 1285-1371.
    103.Tavenas F., Leroueil S., Rochele P.L., Roy M. Creep behaviour of an undisturbed lightly over-consolidated clay [J]. Canadian Geotechnical Journal, 1978, 20(4): 645-660.
    104. Tian W.M., Silva A.J., Veyera G.E., Sadd M.H. Drained creep of undisturbed cohesive marine sediments [J]. Canadian Geotechnical Journal, 1994, 31: 841-855.
    105. Vaid Y.P., Campanella R.G. Time-dependent behaviour of undisturbed clays [J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT7): 693-709.
    106. Vermeer P.A., Neher H.P. A soft soil model that accounts for creep[C]. Proceedings of International Symposium "Beyond 2000 in Computational Geotechnics", Amsterdam, 1999: 249-261.
    107. Walker L. Undrained creep in a sensitive clay [J]. Geotechnique, 1969,19(4): 515-529.
    108. Wang J.H., Liu Y.F., Xing Y., Di H.M. Estimation of undrained bearing capacity for offshore soft foundations with cyclic load [J]. China Ocean Engineering, 1998, 12(2): 213-222.
    109. Wheeler S.J., Naatanen A, Karstunen M et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003,40:403-418.
    110. Whittle A.J. Evaluation of a constitutive model for overconsolidated clay [J]. Geotechnique, 1993, 43(2): 289-313.
    111. Wood D.M. Soil behavior and critical state soil mechanics [M]. Cambridge University Press, Cambridge, UK, 1990.
    112. Yamanouchi T., Yasuhara K. Settlement of clay subgrades after opening to traffic [C]. In Proceedings of the 2~(th) Australia and New Zealand Conference on Geomechanics, 1975, 1: 115-118.
    113. Yasuhara K., Yamanouchi T., Hirao K. Cyclic strength and deformation of normally consolidated clay [J]. Soils and Foundations, 1982,22(3): 77-91.
    114. Yasuhara K., Hirao K., Hyde A.F.L. Effects of cyclic loading on undrained strength and compressibility of clay [J]. Soils and Foundations, 1992, 32(1): 100-116.
    115. Yasuhara K., Murakami S., Song B.W., et al. Postcyclic degradation of strength and stiffness for low plasticity silt [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(8): 756-769.
    116. Yin J.H. Nonlinear creep of soils in oedometer tests [J]. Geotechnique, 1999,49(2): 699-707.
    117. Yin J.H., Cheng C.M. Comparison of strain-rate dependent stress-strain behavior from K_0-consolidated compression and extension tests on natural Hong Kong marine deposits [J]. Marine Georesources and Geotechnology, 2006,24:119-147.
    118. Yin J.H., Graham J. Equivalent times and one-dimensional elastic visco-plastic modeling of time-dependent stress-strain behaviour of clays [J]. Canadian Geotechnical Journal, 1994, 31: 42-52.
    119. Yin J.H., Zhu J.G. Measured and predicted time-dependent stress-strain behaviour of Hong Kong marine deposits [J]. Canadian Geotechnical Journal, 1999, 36: 760-766.
    120. Yin J.H., Zhu J.G., Graham J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: Theory and verification [J]. Canadian Geotechnical Journal, 2002,39(4): 157-173.
    121.Zentar R., Karstunen M., Wheeler S. Influence on anisotropy and destruction on undrained shearing of natural clays [C]. In Proceedings of Numerical Methods of Geotechnical Engineering, Paris, ENPC/LCPC Press, 2002.
    122. Zhou C., Yin J.H., Zhu J.G., Cheng C.M. Elastic anisotropic viscoplastic modeling of the strain-rate -dependent stress-strain behavior of K_0-consolidated natural marine clays in triaxial shear tests [J]. International Journal of Geomechanics, ASCE, 2005, 5(3): 218-232.
    123. Zhu J.G. Rheological behavior and elastic viscoplastic modeling of soil [M]. Science Press, Beijing, China, 2007.
    124. Zhu J.G., Yin J.H. strain-rate dependent stress-strain behaviour of overconsolidated Hong Kong marine clay. Canadian Geotechnical Journal, 2000,37(6): 1272-1282.
    125.白冰,周健.周期荷载作用下粘性土变形及强度特性述评[J].岩土力学,1999,20(3):84-90.
    126.陈晓平,朱鸿鹄,张芳枝,张波.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12):2142-2148.
    127.陈雅斌,贺育胜.软粘土次固结系数变化特性的试验研究[J].岩土工程界,2008,11(6):63-67.
    128.陈颖平.循环荷载作用下结构性软粘土特性的试验研究[博士学位论文].浙江杭州:浙江大学建筑工程学院,2007.
    129.陈宗基.Structure Mechanics of Clay[J].中国科学,1959,8(1):41-45.
    130.高广运,顾中华,杨宏明.循环荷载下饱和粘土不排水强度计算方法[J].岩土力学,2004,25(增刊2):379-382.
    131.高彦斌.一个软土各向异性弹塑-粘弹塑性本构模型[博士学位论文].上海,同济大学地下建筑与工程学院,2004.
    132.高彦斌,汪中为.应变速率对粘土不排水抗剪强度的影响[J].岩石力学与工程学报,2005,24(2):5779-5783.
    133.黄茂松,李进军,李兴照.饱和软粘土的不排水循环累积变形特性[J].岩土工程学报,2006,28(7):891-895.
    134.姜洪伟,赵锡宏.剪切速率对各向异性不排水剪强度影响分析[J].同济大学学报,1997,25(4):390-395.
    135.姜洪伟,赵锡宏.软土三维各向异性弹粘塑性本构关系[J].同济大学学报(自然科学版),1998,26(2):153-156.
    136.蒋军.循环荷载作用下粘土及含砂芯复合试件性状试验研究[博士学位论文].浙江杭州:浙江大学建筑工程学院,2000.
    137.雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385-389.
    138.李驰,王建华,刘振纹.软土地基单桶基础循环承载力研究[J].岩土工程学报,2005,27(9):1040-1044.
    139.李玲玲.结构性软土的性状研究及其应用[博士学位论文].浙江杭州,浙江大学建筑工程学院,2008.
    140.李涛,Meissner H.循环荷载作用下饱和粘性土的弹塑性双面模型[J].土木工程学报,2006,39(1):92-97.
    141.李松林.动三轴试验的原理与方法[M].地质出版社,1990.
    142.李兴照,黄茂松.循环荷载作用下流变性软粘土的边界面模型[J].岩土工程学报,2007,29(2):249-254.
    143.林永国,廖少明,刘国彬.地铁隧道纵向变形影响因素的探讨[J].地下空间,2000,20(4):264-289.
    144.凌建明,王伟,邬洪波.行车荷载作用下湿软路基残余变形的研究[J].同济大学学报,2002,30(11):1315-1320.
    145.刘用海.宁波软土工程特性及其本构模型应用研究[博士学位论文].浙江杭州,浙江大学建筑工程学院,2008.
    146.刘振纹,秦崇仁,王建华,赵晓艳.循环荷载作用下软粘土的累积变形[J].中国港湾建设,2004,133(6):31-34.
    147.缪林昌,张军辉,陈艺南.江苏海相软土压缩特性试验研究[J].岩土工程学报,2007,29(11):1711-1714.
    148.钱家欢,殷宗泽.土工原理与计算(第二版)[M].中国水利电力出版社,1996.
    149.沈恺伦.软粘土结构性、塑性各向异性及其演化[博士学位论文].浙江杭州,浙江大学建筑工程学院,2006.
    150.石学法.海洋粘土矿物的研究进展和发展趋势[J].海洋地质动态,1995,1:1-3.
    151.孙德安,姚仰平,殷宗泽.初始应力各向异性的弹塑性模型[J].岩土力学,2000,21(3):222-226.
    152.孙钧.岩土材料流变及其工程应用[M].中国建筑工业出版社,1999.
    153.腾军林,熊传详.基于土结构性的软土流变试验研究[J].长沙大学学报,2007,21(5):50-53.
    154.王常晶,陈云敏.交通荷载引起的静偏应力对饱和软粘土不排水循环性状影响的试验研究[J].岩土工程学报,2007,29(11):1742-1747.
    155.王建华,要明伦.软粘土不排水循环特性的弹塑性模拟[J].岩土工程学报,1996,18(3):11-18.
    156.王军,陈张林,蔡袁强,刘飞禹.考虑软化特性的软粘土动应力-应变关系研究[J].浙江大学学报(工学版),2007,41(1):23-28,70.
    157.王立忠,李玲玲,丁利.温州煤场软土结构性试验研究[J].土木工程学报,2002,35(1):88-92.106.
    158.王立忠,丁利,陈云敏,李玲玲等.结构性软土压缩特性研究[J].土木工程学报,2004,37(4):46-53.
    159.王立忠,叶盛华,沈恺伦,胡亚元.K_0固结软粘土不排水抗剪强度[J].岩土工程学报,2006, 28(8):970-977.
    160.王立忠,沈恺伦.K_0固结结构性软粘土的本构模型[J].岩土工程学报,2007,29(4):496-504.
    161.王立忠,沈恺伦.K_0固结结构性软粘土的旋转硬化规律研究[J].岩土工程学报,2008,30(6):863-872.
    162.谢定义.土动力学[M].西安交通大学出版社,1989.
    163.谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报.1996,24(3):233-237.
    164.熊玉春,房营光.循环荷载作用下饱和软粘土的损伤模型[J].岩土力学,2007,28(3):544-548.
    165.杨顺安,冯晓腊,张聪辰著.软土理论与工程[M].北京:地质出版社,2000.
    166.殷宗泽,张海波,朱俊高,李国维.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    167.尹振宇,张冬梅,Hicher P.Y.,黄宏伟.一个能够模拟软土时效特性的简单弹粘塑性模型[J].岩土工程学报,2008,30(6):880-888.
    168.余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报.2007,29(6):913-916.
    169.喻维选,杨长安.深圳湾软土的次固结变形特性[J].兰州铁道学院学报,1999,18(2):39-42.
    170.詹美礼,钱家欢,陈绪禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62.
    171.张超杰,王立忠,陈云敏.一维弹粘塑性固结模型研究[J].水利学报,2003,5:16-23.
    172.张军辉,缪林昌.连云港海相软土流变特性试验及双屈服面流变模型[J].岩土力学.2005,26(1):145-149.
    173.钟辉虹.软土结构性及蠕变特性理论研究[博士学位论文].上海,同济大学地下建筑与工程学院,2003.
    174.钟辉虹,黄茂松,吴世明.循环荷载作用下软粘土变形特性研究[J].岩土工程学报,2002,24(5):629-632.
    175.周建.循环荷载作用下饱和软粘土特性研究[博士学位论文].浙江杭州:浙江大学建筑工程学院,1998.
    176.周健,孙吉主,吴世明.往复荷载下的边界面广义弹塑性模型[J].岩石力学与工程学报,2002,21(2):210-214.
    177.朱登峰,黄宏伟,殷建华.饱和软粘土的循环蠕变特性[J].岩土工程学报,2005,27(9):1060-1064.