枯草芽孢杆菌NCD-2解磷相关基因的克隆及抑菌物质的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NCD-2菌株是从棉花根际分离筛选到的一株枯草芽孢杆菌(Bacillus subtilis),对其作用机理研究发现该菌株不仅能够通过分泌抑菌物质对棉花黄萎菌等植物病原真菌起到抑制作用,同时还具有降解有机磷的能力。
     通过电击转化将含有转座子mini-Tn10的质粒pHV1249转入NCD-2菌株中,并构建了NCD-2菌株的突变子库。从3000多个突变子中筛选到3株丧失解磷能力的突变子,Southern杂交实验证明突变株中转座子均为单拷贝插入,并且具有相同大小的杂交片断,因此认为这三个突变子可能具有相同的遗传背景。对其中一个突变子M216进行了以下研究。运用巢氏PCR技术对突变株M216中转座子插入位点基因的侧翼序列进行克隆和序列分析,结果表明丧失解磷能力突变株中转座子插入基因与B. subtilis 168菌株中phoR基因的相似率达到98%。将phoR基因克隆到pHY300PLK质粒上构建重组载体电击转化M216进行功能互补验证,互补菌株部分恢复了解磷能力,以上结果表明NCD-2菌株中phoR基因与其降解卵磷脂能力具有相关性。
     本试验同时对NCD-2菌株产生的抑菌物质进行了分离和鉴定。利用盐酸沉淀、甲醇溶解的方法提取NCD-2菌株的脂肽类抗生素。双层培养基法测定提取物对棉花黄萎病菌、番茄灰霉病菌具有拮抗活性,进一步研究表明,抑菌物质能够影响真菌菌丝生长及孢子萌发。脂肽提取物经HPLC分析,获得3组主要的物质峰,其中组分Ⅱ具有抑菌活性。采用MALDI-TOF MS对组分Ⅱ进行质谱分析,确定组分Ⅱ中含有两组分子量相差14Da(CH2)的代谢同系物,一组物质的分子量依次为1446.801,1460.813,1474.830,1488.852,与脂肽类抗生素C15-C18Fengycin A对应分子量相差2Da,推测为Fengycin A的一种异构体,其脂肪酸碳链上具有一个双键;另一组同系物的分子量依次为1462.798,1476.817,1490.839,1504.855,1518.867,鉴定为脂肽类抗生素C14-C18 Fengycin B。
Bacillus subtilis strain NCD-2 was isolated from the rhizosphere of cotton, and showed antagonism to Verticillium dahliae by secreting antifungal active compounds. This strain also showed lecithin-solubilizing ability.
     Plasmid pHV1249 which carrying transposon mini-Tn10 was transferred into strain NCD-2 by electrotransformation, and the transposon library of NCD-2 was constructed. Three mutants with defective of lecithin-solubilizing ability were selected from more than 3000 mini-Tn10 inserted mutants. Southern hybridization with mini-Tn10 fragment as a probe showed that all these mutants contained single copy transposon insertion, which possibly localized at the same chromosomal location. One mutant M216 was used for further study. The flanking sequence of insertion site was cloned from mutant M216 by Nest PCR. Sequence analysis showed that the inserted gene has of 98% identity with phoR in B. subtilis strain 168. Genetic complementation was conducted by cloning phoR gene into plasmid pHY300PLK and the recombinant plasmid was transferred into mutant M216. The lecithin-solubilizing ability of mutant M216 was restored. Results suggested that the lecithin-solubilizing ability of NCD-2 was related with phoR gene.
     Purification and identification of antifungal lipopeptides produced by B. subtilis NCD-2 was also studied in this experiment. Crude lipopeptides were extracted with methanol from the precipitate, which was obtained by adding 6mol/L HC1 to the cell-free culture broth and then stored at 4℃overnight. The crude extract showed antifungal activities against V. dahliae and Botrytis cinerea on the double layer medium. Three mainly peak groups were obtained by HPLC analysis, and only the second compound had inhibitory activity against V. dahliae and B. cinerea. The second compound was analysised by MALDI-TOF MS and two groups of homologues with a difference of 14 Da in molecular weights were identified. In the first group, there were 4 kinds of homologues with the molecular weights of 1446.801,1460.813, 1474.830,1488.852Da, respectively, which were estimated as the isomer of Fengycin A(C15-18). In the second group, the molecular weights of 5 kinds of homologues were 1462.798,1476.817,1490.839,1504.855,1518.867Da, respectively, which were identified as lipopeptide antibiotics Fengycin B(C14-18).
引文
[1]黄海婵,裘娟萍.枯草芽孢杆菌防治植物病害的研究进展[J].浙江农业科学,2005(3):213-215.
    [2]Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis B213 and A1/3[J]. ChemBiol,1999,6:31-41.
    [3]Emmert E A B, Handelsman J. Biocontrol of plant disease:a Gram-positive perspective[J]. FEMS Microbiology Letters,1999,171(1):1-9.
    [4]Tang W H. Advances in biological control of plant disease:proceeding of the international workshop on biological control of plant disease[C]. Beijing:China Agricultural University Press,1996.
    [5]李社增,鹿秀云,马平,等.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J].植物病理学报,2005,35(5):451-455.
    [6]张学君,凌宏通,李洪连,等.生物农药麦丰宁B-3对小麦纹枯病菌的抑制作用[J].植物病理学报,2009,24(4):361-366.
    [7]程洪斌,刘哓桥,陈红漫.枯草芽孢杆菌防治植物真菌病害研究进展[J].上海农业学报,2006,22(1):109-112.
    [8]Shoda M. Bacterial control of plant diseases[J]. Journal of bioscience and bioengineering,2000,89(6): 515-521.
    [9]何红,邱思鑫,蔡学清,等.辣椒内生细菌BS-1和BS-2在植物体内的定殖及鉴定[J].微生物学报,2004,44(1):13-18.
    [10]Charles W B, Ida E Yates, Dorothy M H, et al. Biological Control of Fusarium moniliforme in Maize[J]. Environmental Health Perspectives,2001,109 (S2):325-332.
    [11]Johnson F H, Campbell D H. The retardation of protein denaturation by hydrostatic pressure[J]. J Cell Comp Physiol,1945,26:43-46.
    [12]Francoise Peypoux, Micheline Guinand, George Michel, et al. Structure of Iturine A, a peptidolipid antibiotiotic from Bacillu subtilis[J]. Biochemisty,1978,17(19):3992-3996.
    [13]Tang W H, Advances in biological control of plant disease:proceeding of the international workshop on biological control of plant disease[C]. Beijing:China Agricultural University Press,1996.
    [14]Niran Roongsawang, Jiraporn Thaniyavarn, Suthep Thaniyavarn, et al. Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides:bacillyomycin L, plipastatin, and surfactin[J]. Extremophiles,2002,6:499-506.
    [15]Siegmund Lang. Biological amphiphiles(microbial biosurfactants)[M]. Current opinion in Colloid & Interface Science,2002,7:12-20.
    [16]Harsh Pal Bais, Ray Fall, Jorge M Vivanco. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production[J]. Plant Physiology,2004,134:307-319.
    [17]Lin T P, Chen C L, Chang L K, et al. Functional and transcriptional analysis of a fengycin synthetase gene,fenC, from Bacillu subtilis[J]. J Bacterial,181(11):13294-13299.
    [18]Toure Y, Ongena M, Jacques P, et al. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple[J].Appl Microbiology,2004,96: 1151-1160.
    [19]陈中义,张杰,黄大昉.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):97-103.
    [20]胡小加,江木兰,张银波,等.枯草芽孢杆菌Tu-100对几种作物的促生效果[J].中国油料作物学报,2005,27(4):92-94.
    [21]蔡学清,何红,胡方平.内生菌BS-2对辣椒苗的促生作用及对内源激素的影响[J].亚热带农业研究,2005,1(4):49-52.
    [22]Hill D S. Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease[J]. Appl. Environ. Microl.1994, 60(1):78-85.
    [23]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005,42(2):286-294.
    [24]Kucey R M, Janzen H H, Legett M E. Microbially mediated increases in plant-available phosphorus[J]. Adv. Agron,1989,42:199-228.
    [25]Neeru Narula, Vivek Kumar, Rishi K Behl, et al. Effect of P-solubilizing Azotobacter chroococcum on N, P, K uptake in P-responsive wheat genotypes grown under greenhouse conditions[J]. Journal of plant nutrition and soil science,2000,163(4):393-398.
    [26]夏琪,姜卫红.细菌磷代谢的分子调控[J].微生物学通报,1998,25(5):281-283.
    [27]JiangW, Metealf W W, Lee K S, et al.Molecular cloning, mapping, and regulation of Pho regulaon genes for phosphnoate breakdown by the phosphonatase pathway of Salmonella typhimuriun[J].J Bacteriol,1995,177(22):6411-6421.
    [28]Chabot R, Antoun H, Cescas M P. Growth promotion of maize and lettuce by phosphate-solubilizing Rhizobium leguminosarum biovar[J]. phaseoli, Plant and soil,1996,184:311-321.
    [29]Datta M, Banik S, Gupta R K. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland[J]. Plant and Soil, 1982,69:365-373.
    [30]RMN Kucey, Janzen H H, Legett M E. Microbially mediated increase in plant-available phosphorus[J]. Adv. Agron.,1989,42:199-228.
    [31]Barea JM, Navarro E, Montoya E. Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria[J]. J. Appl. Bact.,1976,40:129-134.
    [32]RMN Kucey. Effect of Penilillium bilagi on the solubility and uptake of P and micronutrients from soil by wheat[J]. Can. J. Soil Sci.,1988,68:261-270.
    [33]Steinmetz M, Richter R Easy. Cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome[J]. J Bacteriol,1994,176:1761-1763.
    [34]James A, Baum. Tn540, a new class Ⅱ transposable element from Bacillus thuringiensis[J]. J Bacteriol,1994,176:2835-2845.
    [35]Krispin O, Allmansberger R. The Bacillus subtilis AraE protein displays a broad substrate specificity for severl different sugars[J]. J Bacteriol,1998,180:3250-3252.
    [36]Petit M A, Bruand C, Jannier L, et al. Tn-10-derived transposon active in Bacillus subtilis[J]. J Bacteriol,1990,172:6736-6740.
    [37]孙会刚,蒋继志,李社增,等.生防细菌NCD-2突变体构建及抑菌功能基因的防病作用[J].棉花学报,2006,18(3):131-134.
    [38]Paulsen I T, Chauvaux S, Choi P, et al. Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis:identification of a novel hexose H+ symporter[J]. J Bacteriol, 1998,180:498-504.
    [39]Gominet M, Slamti L, Nathalie Gilois, et al. Oligopeptide permease is required for expression of the Bacillus thuingiensis p1cR regulation and for virulence[J]. Molecular Microbiology,2002,40: 963-975.
    [40]Kenji Tsuge, Yuichiro Ohata, Makoto Shoda. Gene yerP, involved in surfactin self-resistance in Bacillus Subtilis[J]. Antimicrobial Agents and Chemotherapy,2001,45(12):3566-3573.
    [41]Liras P, Asturias J A, Martn J F. Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis[J]. Trends Biotechnol,1990,8:184-189.
    [42]Kazuo K, Ogura M, Yamaguchi H, et al. Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems[J]. J Bacteriol,2001,183 (24):7365-7370.
    [43]Eldakak A, Hulett F M. Cys303 in the histidine kinase PhoR is crucial for the phosphotransfer reaction in the PhoPR two-component system in Bacillus subtilis[J]. J Bacteriol,2007,189(2):410-421.
    [44]Pragai Z, Eschevins C, Bron S, et al. Bacillus subtilis NhaC, an Na+/H+ antipoter, influences expression of the phoPR operon and production of alkaline phosphatases[J]. J Bacteriol,2001,183: 2505-2515.
    [45]Zoltan Pragai, Nicholas E E, Nicola O'Connor, et al. Transcriptional regulation of the phoRP operon in Bacillus subtilis[J].J Bacteriol,2004,186(4):1182-1190.
    [46]Xue G P, Johnson J S, Dalrymple B P. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis[J]. J. Microbiol. Methods, 1999,34:183-191.
    [47]吕静.细菌Ⅱ型分泌途径控制产碱假单胞杆菌(Pseudomonas alcaligens)S2中卵磷脂酶的分泌[D].北京:中国农业大学,博士学位论文,2005.
    [48]Hulett F M, Booksten C, Jensen K. Evidence for two structural genes for alkaline phosphatases in Bacillus subtilis[J]. J. Bacteriol,1990,172(2):735-740.
    [49]Hoi Le T, Voigt B, Jurgen B, et al. The phosphate-starvation response of Bacillus licheniformis[J]. Proteomics,2006,6(12):3582-3601.
    [50]Antelmann H, Scharf C, Hecker M. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis[J]. J. Bacteriol,2000,182(16):4478-4490.
    [51]Yamane K, Maruo B. Purification and characterization of extracellular soluble and membrane-bound insoluble alkaline phosphatases possessing phosphodiesterase activities in Bacillus subtilis[J]. J. Bacteriol,1978,134(1):100-107.
    [52]Le Hegarat J C, Anagnostopoulos C. Purification, subunit structure and properties of two repressible phosphohydrolases of Bacillus subtilis[J]. Eur. J. of Biochem,1973,39:525-539.
    [53]Hulett F M, Jensen K. Critical roles of spoOA and spoOH in vegetative alkaline phosphatase production in Bacillus subtilis[J]. J. Bacteriol,1988,170(8):3765-3768.
    [54]Miki T, Minami Z, Ikeda Y. The genetics of alkaline phosphatase formation in Bacillus subtilis[J]. Genetics,1965,52(5):1093-1100.
    [55]高学文,姚仕义,Huong Pham,等.基因工程菌枯草芽孢杆菌GEB3产生的脂肽类抗生素及其生物活性研究[J].中国农业科学,2003,36(12):1496-1501.
    [56]孟立花,李社增,郭庆港,等.枯草芽孢杆菌NCD-2菌株抗菌蛋白初步分析[J].华北农学报,2008,23(1):189-193.
    [57]鲁小城.一株枯草芽孢杆菌抗植物病原真菌活性物质的研究[D].浙江:浙江大学,硕士学位论文,2006.
    [58]Moyne A L, Cleveland T E, Tuzun S. Molecular characterization andanalysis of the operon encoding the antifungal lipopeptide bacillomycin D[J]. FEMS Microbiology Letters,2004,234:43-49.
    [59]Ahimou F, Jacques P, Deleu M. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity[J]. Enzyme and Microbial Technology,2000,27:749-754.
    [60]Cho S J, Lee S K, Cha B J, et al. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound inturin A from Bacillus subtilis srain KS03[J]. FEMS Microbiology Letters,2002,223:47-51.
    [61]Tamehiro N, Okamoto Hosoya Y, Okamoto S, et al. Bacilysosin, a novel phospholipids antibiotic produced by Bacillus subtilis 168[J]. Antimicrobial agents and chemotherapy,2002,46:315-320.
    [62]孔健,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究Ⅲ.影响抗菌物质产生和积累的主要因素[J].中国生物防治,2000,16(2):65-68.
    [63]别小妹,吕凤霞,陆兆新.Bacillus. subtilis fmbR脂肽类抗菌物质的分离和鉴定[J].生物工程学报,2006,22(4):644-649.
    [64]鲁小城,赵宇华,方萍.枯草芽孢杆菌F-2抗植物病原真菌活性物质的研究[J].浙江大学学报,2007,33(1):34-39.
    [65]Hu L B, Shi Z Q, Zhang T, et al. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932[J]. FEMS Microbiology letter,2007,272:91-98.
    [66]Diego R, Antonio de V, Rivo H R, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca[J]. Molecular plant-microbe interactions,2007,20:430-440.
    [67]Ongema M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopetides in the multifaced biocontrol potential of Bacillus subtilis[J]. Applied microbiology and biotechnology,2005,69:29-38
    [68]Wu C Y, Chen C L, Lee Y H, et al. Nonribosomal synthesis of fengycin on an enzyme complex formed by fengycin synthetases[J]. Journal of biological chemistry,2007,282:5608-5616.
    [69]Ongema M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol[J]. Trends in microbiology,2007,16:115-125.