苯酚在固定态TiO_2上光电催化降解的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以涂覆法制备了固定态TiO_2薄膜,并对其进行了XRD、SEM和电化学阻抗等表征。以250W高压汞灯(365nm)为侧光源,该固定态TiO_2薄膜为工作电极,铜片为对电极,饱和甘汞电极为参比电极,建立了三电极的光电催化体系,选择具有代表性的难降解芳香族有机污染物之一—苯酚作为降解对象,对其在固定态TiO_2上的光电催化降解进行了研究。考察了外加电压,溶液的初始pH值,光强,苯酚溶液的初始浓度,TiO_2薄膜厚度等因素对苯酚降解速率的影响。并探索了苯酚光电催化降解后可能的中间产物以及O_2和金属离子(Fe~(3+)和Cu~(2+))作为电子受体在光电催化过程中的作用。
     本文采用分光光度法测定苯酚降解过程的浓度;采用总碳分析仪来测定溶液的TOC值,以衡量苯酚溶液的矿化
    
     太原理工大学硕士学位论文
    程度;通过UV一VIS测定了苯酚的光电催化降解反应性能;
    并通过GC一MC测定了苯酚降解后可能的中间产物。结果表
    明:
     与传统的TIOZ固定化方法相比,此涂覆法具有工艺简
    单,廉价,易控制催化剂晶型等优点,制得的薄膜中的Ti认
    均为锐钦矿晶型,具有良好的光电催化性能,可以有效的
    降解水溶液中的苯酚。
     苯酚在固定态TIOZ上的光电催化降解以及光催化降解
    都服从准一级反应动力学方程。其中苯酚光电催化降解速
    率优于光催化降解速率,更优于光氧化降解速率。
     外加阳极偏压时苯酚的降解速率优于外加阴极偏压时
    苯酚的降解速率,并且提高外加阳极偏压,光强,苯酚的
    初始浓度,以及增加薄膜厚度都有利于苯酚的光电催化降
    解,但上述因素都存在最佳值。
     苯酚光电催化降解适宜的初始pH值为3。
     苯酚光电催化降解过程中可能的中间产物有丙烯,丁
    烯,丙烷,乙二酸,丁二酸等。
     02作为电子受体可以大大提高苯酚的光电催化降解速
    率。Fe3+和Cu2+由于具有较正的还原电位,也可以作为电子
     II
    
     太原理工大学硕士学位论文
    受体参加反应,有利于苯酚的光电催化降解,同时Fe3+和
    Cu2+的浓度也降低了,这种光电催化法对于既含有有机污染
    物又含有无机污染物的废水的处理将具有深远的意义。
     但在Fe3沐口CuZ‘作为电子受体时苯酚的降解速率不如仇
    作为电子受体时的降解速率快,这与02还原后生成的·OH
    具有强氧化性有关。
In this paper, immobilized TiO2 thin film was prepared by coating technique and was characterized by XRXK SEM and electrochemical impedence. A 250W UV lamp (365nm) was used as light source. The photoelectrochemical system consisted of three electrodes: immobilized TiOa thin film was used as the working electrode, Cu plate as the counter electrode and saturated calomel electrode as the reference electrode. One of the most typical and difficultly degradated aromatic compounds?phenol was the objective substance. The photoelectrocatalytic degradation of phenol on the immobilized TiO2 thin film was studied. The effects of some factors such as bias, initial pH value of solution, light intensity, initial concentration of phenol, thickness of thin film on the degradation rate of phenol were also investigated. The possible intermediates and the effects of O2 and metal ions (Fe3+ and Cu2+) as electron acceptors respectively were also studied. In this paper, the concentration of phenol was determined by a spectrophoto
    meter; the
    
    
    
    TOC value (mineralization of phenol) was determined by TC analyzer; the photoelectrocatalytic degradation characteristic of phenol was analysed by UV-VIS and the possible intermediates in the degradation process were determined by GC-MS. The results indicated :
    Compared with traditional immobilized TiO2, the advantages of the coating technique are: simpler technology, lower-priced and easier to control the crystal phase and so on. The TiOi in the thin film is anatase. An excellent photoelectrocatalytic property is investigated, which could degradate phenol in aqueous solution effectively.
    In our experimental conditions, the photocatalytic and photoelectrocatalytic degradations follow apparent first-order reaction kinetics. The rate of photoelectrocatalysis is quicker than that of photocatalysis, which is much quicker than that of photoxidation.
    The phenol degradation rate with anodic bias is quicker than that with cathodic bias. With the increasing anodic bias, light intensity, initial concentration of phenol in solution and thickness of film, the rates of photoelectrocatalytic degradation increase. But there exist the optimal conditions. The optimal initial pH value of photoelectrocatalytic degradation is 3.
    The possible intermediates in the photoelectrocatalytic degradation arepropene, butene, propane, ethanedioic acid, butanedioic acid etc.
    With O2 as the electron acceptor the reaction rate of degradation is improved greatly. Due to Fe3+ and Cu2+ have more positive reduction potential, they can also capture photoelectron and improve the degradation rate, while the concentration of Fe3+ and Cu2+ in solution
    
    decrease. This conclusion is very important for the treatment of wastewater not only containing organic pollutants but also containing inorganic ones.
    However the reaction rate with Fe3+ and Cu2+ as electron acceptors are slower than that with O2 as electron acceptor. This result is related to the great oxidative capability of ?OH from the reduction of O2.
引文
(1) Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1) : 69-96
    (2) Vinodgopal K, Hotchandani S, Kamat P V.Electrochemically assisted photocatalytic degradation of 4-chlorophenol [J]. J. Phys. Chem, 1993, 97(8) :9040-9044
    (3) Marta I. Litter. Heterogeneous photocatalysis transition metal in photocatalytic system [J]. Applied Catalysis B:Enviornmental, 1999, 23(15) :89-114
    (4) Gratian R. Bamwenda, Takashi Uesigi, Yoshimoto Abe et al. The photocatalytic oxidation of water to O2 over pure CeO2, WO3, and TiO2 using Fe3+ and Ce4+ as electron acceptors[J]. Applied Catalysis A:General 2001, 205(8) :117-128
    (5) J.Rodriguez, M. Gomez, S.E Lindquist et al. Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films [J] . Thin Solide Films , 2000, 360(5) :250-255
    (6) X. Z. Li. , F. B. Li. , C. M. Fan. et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode [J] . Water Research, 2002, 36, (9) :2215-2224
    (7) Wen-Yuan Lin, Norma R. de Tacconi, Russell L. Smith et al. Manifestation of photocatalysis process variables in a titanium dioxide-based slurry photoelectrochemical cell[J]. Journal of
    
    Electrochemistry of Society, 1997, 144(2): 497~502
    (8) 魏子栋,殷菲,谭君等.TiO_2光催化氧化研究进展[J].化学通报.2001,2:76~80
    (9) Dong Hyun Kim, A. Anderson. Photoelectrocaatalytic degradation of formic acid using a porous TiO_2 thin-film electrode[J]. Enviorn. Sci. Technol. 1994, 28(5): 479~483
    (10) 罗菊仙,赵中一.半导体多相光催化氧化技术在环境保护中的应用研究进展[J].地球科学—中国地质大学学报.2000,25(5):536~540
    (11) 辛梅华,徐金瑞,陈东.反相高效液相色谱分离—安培法检测酚类化合物[J].分析化学,1994,22(5):505~508
    (12) 胡春,王怡中,汤鸿宵.TiO_2光催化氧化苯酚动力学研究[J].环境科学,1997,18(7):1~4
    (13) 高廷耀,魏宏斌,徐迪民.二氧化钛光催化氧化苯酚的影响因素研究(二)[J].中国给水排水.1999,15(4):14~16
    (14) 魏宏斌,徐迪民,严煦世.二氧化钛光催化氧化苯酚的动力学规律研究[J].中国给水排水,1999,15(2):14~17
    (15) 支正良,汪信,环境中有机污染物的半导体光催化降解研究进展[J].环境污染与防治,1998,20(1):42~44
    (16) 朱雅杰,汪战林.催化氧化法在工业废水处理中的应用[J].兰化科技,1997,15(1):63~68
    (17) H. Gerischer. A mechanism of electron hole pair separation in illuminated semiconductor particles [J]. J. Phys. Chem. 1984, 88(20): 6096~6097
    (18) J. Anthony Byrne, Brian R. Eggins, William Byers et al. Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metal from waste waters[J].
    
    Applied Catalysis B:Environmental, 1999, 20(5):L85~L89
    (19) Okamoto K, Yamamato Y, Tanaka H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO_2 power[J]. Bull. Chem. Soc. Jpn., 1985, 58 (7): 2015~2022
    (20) J. Rodriguez, M. Gomez, S. E Lindquist et al. Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films[J]. Thin Solide Films, 2000, 360(5):250~255
    (21) 葛飞,戴友芝,罗卫玲.TiO_2光催化氧化技术在环保领域的研究新进展[J].化工进展,2001,12(15):20~22
    (22) Janet M. Kesselman, Nathan S. Lewis, Michael R. Hoffmann. Photoelectrchemical degradation of 4-chlorovatechol at TiO_2electrodes:comparison between sorption and photoeactivity[J]. Environ. Sci. Technol. 1997, 31(8):2298~2302
    (23) Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(6):37~38
    (24) 冷文华,童少平,成少安等.附载型二氧化钛光电催化降解苯胺机理[J].环境科学学报,2000,20(6):781~785
    (25) Dong Hyun Kim, Anderson A. Photoelectrocaatalytic degradation of formic acid using a porous TiO_2 thin-film electrode[J]. Enviorn. Sci. Technol., 1994, 28(10):479~483
    (26) Ю.Я.古列维奇,Ю.В.波利斯科夫.半导体光电化学(M).北京:科学出版社,1989
    (27) 藤鸟昭,相泽益男,井上辙[日]著,陈震,姚建年译.电化学测定方法(M).北京:北京大学出版社。1995
    (28) 吴海宝.太阳能-TiO_2光催化氧化有机物在水处理上的应用[J].太阳能
    
    学报,1996,17(3):288~292
    (29) 吴辉煌.电极学原理(M).厦门:厦门大学出版社.1991
    (30) 胡春,王怡中,汤鸿宵.多相光催化氧化的理论与实践进展[J].环境科学进展,1995,3(1):55~60
    (31) Okamoto K, Yamamato Y, Tanaka H, et al. Heterogeneous photocatalytic decomposition of phenol over TiO_2 power[J]. Bull. Chem. Soc. Jpn., 1985, 58 (7): 2015~2022
    (32) 李晓娥,祖庸.纳米TiO_2光催化氧化机理及应用[J].化工进展,1999,55(4):35~37
    (33) Matthews R W, McEvoy S R. Photocatalytic degradation of phenol in the presence of near UV illuminated titanium dioxide[J]. J. Photochem. Photobiol., A: Chem. 1992, 64(6): 231~246
    (34) Chunmei Zhu, Liangyan Wang, Linren Kong et. al. Photocatalytic degradation of AZO dyes by supported TiO_2+UV in aqueous solution[J]. Chemosphere, 2000, 41(7):303~309
    (35) 李桂云,马江权,栗洪道等.在薄膜TiO_2/r—Al_2O_3和粉末TiO_2上光催化降解苯酚的研究[J].高校化学工程学报,2001,15(2):187~190
    (36) Katherine Shaw, Paul Christensen, Andrew Hamnett. Photoelectrochemical oxidation of organics on single-crystal TiO_2: an in situ FTIR study[J]. Electrochimica Acta. 1996, 41(5):719~728
    (37) P.A. Christensen, J. Eameaim, A. Hamnett. In situ FTIR studies of the photo-electrochemical behaviour of thermal TiO_2 films as a function of temperature[J]. Phys. Chem. Chem. Phys., 1999, 40(1):5315~5321
    (38) 符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学,1997,14(8):77~79
    
    
    (39) 樊邦棠,岳林海.半导体复合体系光催化降解水溶性染料研究[J].环境污染与防治,1994,16(4):2~5
    (40) 陈士夫,赵梦月,陶跃武.光催化降解有机磷农药废水的研究[J].工业水处理,1996,16(1):17~19
    (41) 王怡中,胡春,汤鸿霄.在TiO_2催化剂上苯酚光催化氧化反应研究1.降解产物分布及反应途径[J].环境科学学报,1995,15(4):472~478
    (42) 刘鸿,冷文华,吴合进等.光电催化降解磺基水杨酸的研究[J].催化学报,2000,21(3):209~212
    (43) 冷文华,张昭,成少安等.光电催化降解苯胺的研究—单槽与双槽光反应器对比[J].环境科学学报,2002,22(1):40~44
    (44) 姚清照,刘正宝.光电催化降解染料废水[J].工业水处理.1999,19(6):15~16
    (45) 韩兆慧,赵化桥.半导体多相光催化应用研究进展[J].化学进展.1999,11(1):51~60
    (46) J. Anthony Byrne, Brian R. Eggins, William Byers et al. Photoelectrochemical cell for the combined photocatalytic oxidation of organic pollutants and the recovery of metal from waste waters[J]. Applied Catalysis B:Environmental 1999, 20(3):L85~L89
    (47) J. Anthony Byrne, Brian R. Eggins. Photoelectrochemistry of oxalate on particulate TiO_2 electrodea [J]. Journal of Electroanalytical Chemistry. 1998, 457(3):61~72
    (48) 符小荣,张校刚,宋世庚等.TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解[J].应用化学,1997,14(5):77~79(Miyaka M, Yoneyama, Tamura H. Denki Kagaku, 1977, 45: 411~415)
    
    
    (49) 樊彩梅,孙彦平.苯酚的TiO_2薄膜光电催化降解及反应产物的分布[J].太原理工大学学报.2000,31(5):525~527
    (50) 张彭义,余刚,蒋展鹏.光活性二氧化钛膜的制备与应用[J].环境科学进展,1998,6(5):50~56
    (51) 徐灵戈,黎甜楷,王淑琴等.溶胶凝胶法制备掺杂二氧化钛薄膜及其光电性能研究[J].感光科学与光化学,1995,13(2):154~159
    (52) 孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光催化活性的关系[J].催化学报,1999,19(3):229~233
    (53) 李芳柏.金离子掺杂对二氧化钛光催化性能的影响[J].化学学报,2001,59(9):1072~1077
    (54) 钱延龙,陈新滋,金属有机化学与催化[M].北京:化学工业出版社,1997
    (55) 罗瑾,周静,祖延兵等.电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究[J].高等化学学报,1998,19(9):1484~1487
    (56) Sopyan I, Watanabe M, Murasawa S, et al. A film-type photocatalyst incorporating highly active TiO_2 power and fluororesin binder: photocatalytic activity and long-term stability[J]. J. Electroanalytical Chem., 1996, 415 (1-2): 183~186
    (57) Meizer R. A., Philip B., J. WO963736(1996)
    (58) 冷文华,张昭,成少安等.光电催化降解苯胺的研究—外加电压的影响[J].环境科学学报,2001,21(6):710~714
    (59) 安太成,何春,朱锡海等.三维电极电助光催化降解直接湖蓝水溶液的研究[J].催化学报.,2001,22(2):193~197
    (60) 刘鸿,冷文华,吴合进等.光电催化降解磺基水杨酸的研究[J].催化学报,2000,21,(3):209~212(Sun Y, Pignatello J. Environ Sci
    
    Technol, 1995, 29(8): 2065)
    (61) 刘鸿,冷文华,吴合进等.光电催化降解磺基水杨酸的研究[J].催化学报,2000,21,(3):209~212(Kesselman J M, Lewis N S, Hoffmann M R. Environ Sci Technol, 1997, 31(8): 2298)
    (62) 符小荣,宋世庚,王学燕等.纳米TiO_2/Si薄膜的制备与光催化性能的研究[J].感光科学光化学,1997,15(3):234~240
    (63) Bard A J. Heterogeneous photocatalytic decomposition of saturated carboxylic acids on TiO_2 power decarboxylation route to Alkanes[J]. J. Am. Chem. Soc., 1978, 100(15):5985~5992
    (64) Matthews R W. Purification of water with near-UV Illuminated suspension of titanium dioxide[J]. Water Research, 1990, 24(6):653-660
    (65) K. Vinodgopal, Ulick Stafford, Kimberly A. Gray, et al. Electrochemically assisted photocatalysis. 2. the role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO_2 particulate films[J]. J. Phys. Chem., 1994, 98(27):6797~6803
    (66) 高廷耀,魏宏斌,徐迪民.二氧化钛膜光催化氧化苯酚的影响因素研究[J].中国给水排水,1998,14(4):14~16
    (67) 闵延琴.苯酚在TiO_2/ACF上的吸附及光催化降解的研究.太原理工大学硕士学位论文,2000.(Pelizzetti E. Comments Inorg. Chem., 1994, 15(5, 6): 297~337)
    (68) 沈淑娟.波谱分析法(M).上海:华东化工学院出版社.1994
    (69) 张芳西,金承基,周淑芬等.含酚废水的处理与利用[M].北京:化学工业出版社,1983.
    (70) 张铭,魏炜,高玉华.含酚工业废水处理的探讨[J].环境保护科学,
    
    1999,25(2):25~28
    (71) 李培红,张克峰,王永胜.工业废水处理与回收利用[J].北京:化学工业出版社,2001
    (72) 孙福侠,吴鸣,王红等.纳米TiO_2光催化降解苯酚的动力学研究[J].催化学报,1999,20(3):301~304
    (73) 戴清,郭妍,袁春伟等.二氧化钛多孔薄膜对含氯苯酚的电助光催化降解[J].催化学报,1999,20(3):317~320
    (74) 王怡中,胡春,汤鸿霄.在TiO_2催化剂上苯酚光催化氧化反应研究1.降解产物分布及反应途径[J].环境科学学报,1995,15(4):472~478
    (75) 刘明.水和废水检测分析方法[M].北京:中国环境出版社,1985.
    (76) 德国耶拿公司TOC分析仪操作手册[M].北京:2000
    (77) Hisao Hidaka, Yuichi Asai, Jincai Zhao. et al. Photoelectrochemical decomposition of surfactants on a TiO_2/TCO paniculate film electrodes assembly[J]. J. Phys. Chem., 1995, 99(20): 8244~8248
    (78) I.M. Butterfield, P.A. Christensen, A. Hamnett. et. al. Applied studies on immobilized titanium dioxide films as catalysts fof the photoelectrochemical detoxification of water[J]. Journal of applied electrochemistry, 1997, 27(3):385~395
    (79) By Roberto J. Candal, Walter A. Zeltner, Mare A. Anderson. Titanium-supported titania photoelectrodes made by sol-gel processes[J]. Journal of environmental engineering, 1999, 10(5):906~912
    (80) Vinodgopal K, Hotchandani S, Kamat P V. Electrochemically assisted photocatalytic degradation of 4-chlorophenol [J]. J. Phys. Chem, 1993, 97(10):9040~9044
    (81) Dong Hyun Kim, A. Anderson. Photoelectrocaatalytic degradation of
    
    formic acid using a porous TiO_2 thin-film electrode[J]. Enviorn. Sci. Technol., 1994, 28(6):479~483
    (82) 冷文华,成少安,张鉴清等.光电催化和光产生过氧化氢联合降解苯胺.环境科学学报,2001,21(5):625~627
    (83) Daniel M. Blake, John Webb, Craig Turchi, Kimberly Magrini. Kinetic and mechanistic of TiO_2-photocatalyzed oxidation reactions in aqueous solution. Solar Energy Materials, 1991, 24(12):584~593
    (84) Janet M. Kesselman, Gary A. Shreve, Michael R. Hoffmann. Flux-matching condition at TiO_2 photoelectrodes: Is interfacial electron transfer to O_2 rate-limiting in the TiO_2-catalyzed photochemical degradation of organics[J]. J. Phys. Chem. 1994, 98(50):13385~13395
    (85) K. Vinodgopal, Ulick Stafford, Kimberly A. Gray, et al. Electrochemically assisted photocatalysis. 2. the role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized TiO_2 particulate films[J]. J. Phys. Chem., 1994, 98(27):6797~6803
    (86) 冷文华,张昭,成少安等.光电催化降解苯胺的研究—外加电压的影响[J].环境科学学报.2001,21(6):710~714
    (87) 郭向丹,樊彩梅,郝晓刚等.涂覆法制备TiO_2薄膜光电极及催化性能研究[J].太原理工大学学报,2002,33(6):578~581
    (88) Sun Yanping, Fan Caimei. Effect of calcium ion on the adsorption of dissolved humic acid onto TiO_2 particles in water [J]. Progress in Natural Science. 2001,11 (10):760~765