大型循环流化床锅炉物料平衡与热平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,循环流化床(CFB)锅炉以其与煤粉锅炉相当的燃烧效率、低廉的脱硫成本、极低的氮氧化物排放水平以及广泛的燃料适应性而得到迅猛发展,并正向超临界参数迈进。超临界参数可以进一步提高现有循环流化床锅炉的发电效率,使低成本燃煤污染物控制与高效发电结合,促进循环流化床燃烧技术在发电领域中发挥更重要的作用。
     由于现阶段在国际范围内尚无超临界CFB锅炉的大量成熟经验可循,因此只能依靠自主研发,这就需要对现有大型CFB锅炉的关键参数或运行特性如物料平衡和热平衡等进行深入研究,从而为超临界CFB锅炉的设计优化运行提供借鉴和参考。
     本文受国家“十一五”科技支撑计划支持,主要以白马电厂引进300MW CFB锅炉为研究对象,通过数学建模、冷态试验和实炉试验等方法对大型CFB锅炉的物料平衡和热平衡特性进行研究,主要研究内容及创新点包括:
     ①大型CFB锅炉物料平衡整体数学模型:
     在前人研究成果基础上,通过对个别子模型经验表达式进行调整,重构了物料平衡数学模型,模型采用Fortran编程计算,通过实炉试验对模型结果进行验证校核,并结合计算结果分析了现有大型CFB锅炉的物料平衡特性和今后超临界CFB锅炉在物料平衡方面可能面临的一些问题,并提出相应建议。
     ②分离器入口烟道内颗粒流动特性研究:
     引进300MW CFB锅炉的分离器入口烟道采用独特结构,可能会改变其内部颗粒的流动特性从而影响分离器性能以调整炉内物料平衡。为此,通过冷态试验,应用高速摄像技术,研究了新结构和传统结构的分离器入口烟道内颗粒的气固流动特性及其对分离器性能的影响。
     ③物料平衡特性对一、二次风机选型参数影响:
     循环流化床锅炉炉内存有大量物料,使一、二次风因拖曳物料所克服的阻力较大,对一、二次风的管网特性有着明显影响。首次从锅炉循环系统的物料平衡和压力平衡角度,对现有大型CFB锅炉一、二次风机的选型进行分析,并提出建议。
     ④引进300MW CFB锅炉热平衡试验研究:
     按我国DL/T964—2005标准,采用VB软件编程,计算分析了引进300MWCFB锅炉的热效率和各项热损失。通过实炉试验,计算了不同技术流派锅炉的散热损失,并给出了简易计算方法。该方法在较为客观地反映实际情况同时,大幅节省了试验工作量,可作为现有标准的补充,用于类似锅炉的性能试验计算中。
     ⑤引进300MW CFB锅炉外循环回路燃烧特性实炉试验研究:
     在该锅炉现场加装测点,并利用自制的取样装置对锅炉外循环回路的烟气成分和颗粒进行取样分析,首次研究了300MW级CFB锅炉外循环回路中旋风分离器和外置式换热器的燃烧特性。试验结果可为今后更大容量CFB锅炉的设计优化运行提供参考。
For the past few years, circulating fluidized bed (CFB) combustion technology,which is unique in its combustion efficiency comparing with the pulverized-coal boiler,realization of direct desulphurization in combustion process, low emissions of nitrogenoxides and its wide fuel flexibility, has obtained a great achievement in its developmentwhich is moving in the direction of boilers with supercritical parameter as well. CFBtechnology with supercritical parameter can further increase the power generationefficiency of the existing CFB technology and combine low cost of pollution control incoal combustion with high power electricity generation, as well as promote theapplication of CFB in the power generation industry.
     Until now, there are not enough mature experiences of supercritical CFBtechnologies among the world, therefore the independent research and developmentbecomes an inevitable choice. As a result, it is necessary to study the key parameters indepth, such as the particle population balance and the heat balance of the existing largescale CFB boilers, so as to provide reference on boiler design or optimization operationfor supercritical CFB boilers.
     By sponsor of the Key Project in the National Science&Technology PillarProgram during the Eleventh Five-Year Plan Projects, in this paper, both laboratory andfield experimental study and numerical simulation research work about the particlepopulation balance and heat balance characteristics mainly on Baima’s300MW CFBboiler were carried out. The main research content and innovation points of this paperinclude:
     ①Overall modeling of particle population balance on large-scale CFB boiler
     Based on previous studies and by adjusting several expressions according to thefield test results, an overall particle population balance model was reconstructed usingFORTRAN programming along with field test as verification. Combined with thecalculation results, analysis of the potential problems about material balancecharacteristics on both the existing large CFB boilers and supercritical CFB boilers aregiven attempts to provide some suggestions.
     ②Cold tests on gas solid flow characteristics in two cyclone inlet ducts:
     The imported300MW CFB boiler applied a unique cyclone duct that made abreakthrough compared with the previous designs of its inlet duct of cyclone. The new design adopts a long inlet duct to help particles obtain enough high acceleration andpre-separation, which improves separation efficiency greatly and reduces carbon contentof fly ash in flue gas and therefore may influence the particle population balance. In thiscase cold test including the pressure drop and the acceleration performance of particlephases in the two inlet ducts were implemented.
     ③Influence on primary and secondary air fan selection principle of particle populationbalance:
     Due to the huge amount of bed materials in the furnace, the residence of primaryand secondary air would be greatly different from those on a pulverized-coal boiler.The pipeline characteristics of both the primary and secondary air and the selectionprinciples of the primary and secondary air fans were studied for the first time in thelight of analyzing the particle population balance, together with several operating datafrom commercial CFB boilers.
     ④Experimental study on heat balance of the imported300MW CFB boiler:
     According to DL/T964—2005test code, the performance of imported300MWCFB boiler was studied by VB programming. Experimental studies of dissipation heatloss were conducted on two types of300MW CFB boilers for the first time. In order toreduce the large amount of measurements, a simplified method with objective result wasintroduced and could be seen as the complement of the existing standards for similarboiler performance test calculation.
     ⑤Combustion characteristics of the external circulation loop on Baima's300MWcirculating fluidized bed boiler:
     Local measurements of gas concentrations and particles were sampled from theimported300MW CFB boiler’s external circulation loop using custom-made probes tostudy the combustion characteristics of hot cyclones and fluidized bed heat exchangersfor the first time. The experimental results may provide information for adjusting anddesigning the heat-surface arrangement and lay a foundation for modeling the flowstructure, combustion and heat transfer in similar large-scale CFB boilers.
引文
[1] Enerdata. Global Energy Statistical Year book2011-Total energy consumption[EB/OL]. http://yearbook.enerdata.net/2010-energy-consumption-data.html.
    [2]中华人民共和国国家统计局.中国统计年鉴(2001~2010)[M].北京:中国统计出版社,2001-2010.
    [3]李瑞忠,郗凤云,杨宁,等.2010年世界能源供需分析——《BP世界能源统计2011》解读[J].当代石油化工,2011(7):30-37.
    [4]中华人民共和国国务院.国家中长期科学与技术发展规划纲要[EB/OL].http://www.gov.cn/jrzg/2006-02/09/content_183787.htm,2006-02-09.
    [5] Enerdata.Global Energy Statistical Year book2011-Coal and lignite domestic consumption[EB/OL]. http://yearbook.enerdata.net/2010-energy-consumption-data.html#/coal-and-lignite-world-consumption-in-2010.html.
    [6]李金晶.大型循环流化床动态特性研究[D].清华大学博士论文,清华大学热能工程系,2009.
    [7]国际能源署(IEA).中国洁净煤战略(中文版)[M].法国巴黎:国际能源署图书,2009.
    [8]俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社,2004.
    [9]冯俊凯,岳光溪,吕俊复.循环流化床燃烧锅炉[M].北京:中国电力出版社,2003.
    [10]卢啸风.大型循环流化床锅炉设备与运行[M].北京:中国电力出版社,2006.
    [11]岳光溪.循环流化床燃煤技术在我国的发展与前景[J].电力设备,2008,9(5):104-106.
    [12]吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].北京:中国水利水电出版社,2004.
    [13]孙献斌,黄中.大型循环流化床锅炉技术与工程应用[M].北京:中国电力出版社,2009.
    [14] Steve. Integration of the Benson Vertical OUT technology and the compact CFBboiler[C].USA:Orlando,2000.
    [15]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论、设计与运行[M].北京:中国电力出版社,1997.
    [16]左振欧.循环流化床锅炉开发应用[J].天津电力技术,1996,1:23-25.
    [17]田晨.炉膛结构对循环流化床气固流动特性影响的影响[D].浙江大学博士论文,浙江大学能源工程学系,2011.
    [18] Lienhard H.,刘国海,徐振刚.鲁奇循环流化床燃烧与气化[J].煤炭转化,1987,2:2-10.
    [19] Hotta A..Foster Wheeler’s Solutions for large scale CFB Boiler Technology Features andOperational Performance of agiza460MW CFB Boiler[C]. Proceedings of the20thInternational Conference on Fluidized Bed Combustion,China:Xi’an,2009.
    [20]骆仲泱,何宏舟,王勤辉,等.循环流化床锅炉技术的现状及发展前景[J].动力工程,2004,24(6):761-767.
    [21] Koornneef J.,Junginger M.,Faaij A..Development of fluidized bed combustion—An overviewof trends,performance and cost[J].Progress in Energy and Combustion Science,2007,33(1):19-55.
    [22]蒋敏华,肖平.大型循环流化床锅炉技术[M].北京:中国电力出版社,2009.
    [23] Johnsson F.,Leckner B..Vertical distribution of solids in a CFB-furnace [C].Proceedings of the13th International Conference on Fluidized Bed Combustion,USA:Orlando,1995.
    [24] Belin F..Update of operating experience of B&W IR-CFB coal-fired boilers[C].Proceedings ofthe15th International Conference on Fluidized Bed Combustion,USA:New York,1999.
    [25] Nowak W..Design and operation experience of230MWe CFB boiler at Turow Power Plant inPoland[C].Proceedings of the15th International Conference on Fluidized Bed Combustion,USA:New York,1999.
    [26] Belin F.,Maryamchik M.,Walker D. J.,et al.The Babcock and Wilcox CFB boilers-designand experience[C].Proceedings of the16th International Conference on Fluidized BedCombustion,USA:New York,2001.
    [27] Kandassamy K., Natarajan E., Renganarayanan S.. Producer Gas CleaningTechniques[C]. Proceedings of the17th International Conference on Fluidized BedCombustion,USA:Florida,2003.
    [28] Huenchen H.,Pahcmayer L.,Malerius O..Design and commissioning of the largest and thesmallest fluidized bed incinerator ever built by Lurgi[C].Proceedings of the17th InternationalConference on Fluidized Bed Combustion,USA:Florida,2003.
    [29] Thierry L.G.. Fuel flexibility and petroleum coke combustion at Provence250MWeCFB[C].Proceedings of the17th International Conference on Fluidized Bed Combustion,USA:Florida,2003.
    [30] Glen J.,Greg L.,Nsakala ya N.,et al.An Alstom vision of future CFB technology based powerplant concepts[C]. Proceedings of the18th International Conference on Fluidized BedCombustion,Canada:Toronto,2005.
    [31] Goidich S. J.,Hyppanen T.,Kauppinen K..CFB boiler design and operation using theINTREXTM heat exchanger[C].Proceedings of the6th International Conference on CirculatingFluidized Beds,Germay:Wurzburg,1999.
    [32] Nowak W..Clean coal fluidized bed technology in Poland[J].Applied Energy,2003(74):130-134.
    [33] Werther J.. Fluid dynamics, temperature and concentration fields in large-scale CFBcombustors[C].Proceedings of the8th International Conference on Circulating Fluidized Beds,China:Hangzhou,2005.
    [34] Ven l ìnen I., Psik R..460MWe supercritical CFB boiler design for Lagisza powerplant[C].Presented at PowerGen Europe Cologen,Austria:Vienna,2006.
    [35] Jantti T.,Sundqvist K.,Psik R..Lagisza460MWe superctitical CFB-design, start-up and initialoperation experience[C].Germany:Hamburg,2009.
    [36] Gauvillé P.,Semedard J.-C.,Darling S..Experience from the300MWe CFB demonstrationplant in China[C].Proceedings of the20th International Conference on Fluidized BedCombustion,China:Xi’an,2009.
    [37] James Utt,Arto Hotta,Stephen Goidich.Utility CFB goes “Supercritical”-Foster Wheeler’sLagisza460MWe operating experience and600-800MWe Designs[C].Proceedings of theCoal-Gen Conference&Exhibition,USA:North Carolina,2009.
    [38] Yue G. X., Yang H. R., Lu J. F., et al. Latest development of CFB boilers inChina[C].Proceedings of the20th International Conference on Fluidized Bed Combustion,China:Xi’an,2009.
    [39]王达三,张亚夫,潘忠刚,等.2.8MW循环流化床燃烧装置[J].工程热物理学报,1986,7(3):266-269.
    [40]王达三,汤伟声,张亚夫,等.10吨/时循环流化床锅炉[J].工程热物理学报,1986,10(4):459-461.
    [41]吕俊复,张建胜,刘青,等.平面流分离器循环流化床锅炉改造及其运行[J].清华大学学报(自然科学版),2003,43(6):775-778.
    [42]王达三,张亚夫,潘忠刚,等.循环流化床燃烧——一项实用洁净燃煤技术[J].燃烧科学与技术,2003,1(1):49-53.
    [43]林志杰,陈汉平,刘德昌.下排气中温分离器型循环流化床锅炉的研究与设计[J].华中理工大学学报,1994,22(3):16-20.
    [44]何伟才,张子栋,王怀彬,等.低倍率循环流化床槽型惯性分离器的试验研究[J].热能动力工程,1993,8(3):143-146.
    [45]《四川白马300MW循环流化床示范工程总结》编委会.四川白马300MW循环流化床示范工程总结[M].北京:中国电力出版社,2007.
    [46]马怀新.从国情出发,适应节能减排大势,自主创新研发我国超临界600MWe循环流化床锅炉[C].循环流化床锅炉技术2010年会论文集,长沙,2010.
    [47]陈干锦.循环流化床锅炉在我国的发展[J].锅炉技术,2002,33(7):1-6.
    [48]刘德昌,吴正舜,张世红,等.我国循环流化床锅炉的发展现状及建议[J].动力工程,2003,23(3):2377-79.
    [49]吕俊复,岳光溪.水冷异型分离循环流化床燃烧技术[J].洁净煤技术,1998,4(4):31-35.
    [50]钟辉,王晓严.循环流化床燃烧技术的发展[J].发电设备,2005,19(2):130-134.
    [51]牛天况,顾凯棣,朱国桢,等.上海锅炉厂有限公司循环流化床锅炉技术发展的现状[J].锅炉技术,2000,31(6):1-6.
    [52]于龙.哈锅循环流化床锅炉的发展历程[J].锅炉制造,2005(3):1-2.
    [53] Jantti T.,Lampenius H.,Russkanen M.,et al.Supercritical OTU CFB projects–Lagisza460MW and Novocherkasskaya330MW [EB/OL]. http://www.fwci.com/publications/tech_papers/files/TP_CFB_09_10.pdf,2009-4-28.
    [54] F.W. Global Power Group. Samcheok green power project-A new era in clean coaltechnology[EB/OL]. http://www.fwc.com/publications/pdf/FactSheets/Samcheok_Modified_071111.pdf,2011-11-30.
    [55] Rajaram S..Next generation CFBC[J].Chemical Engineering Science,1999,54:5565-5571.
    [56]刘静,王勤辉,骆仲泱,等.600MW超临界循环流化床的设计研究[J].动力工程,2003,23(1):2179-2184.
    [57] Robertson A., Goidich S., Fan Z..1300F800MW USC CFB Boiler DesignStudy[C].Proceedings of the20th International Conference on Fluidized Bed Combustion,China:Xi’an,2009.
    [58] Jukkola G.,LiljedahG.,Nsakala N.,et al.An Alstom Vision of Future CFB Technology BasedPower Plant Concepts[C].Proceedings of the18International Conference on Fluidized BedCombustion,Canada:Toronto,2005.
    [59] Bursi J.M.,Lafanechere L.,Jestin L..Circulating Fluidized Technology[M].Germany:Würzhning,1999.
    [60] Prabir H..Further Studies into the Designs of Supercritical Pressure Circulating Fluidized BedBoilers[C].Proceeding of16th International Conference on Fluidized Bed Combustion,USA:Nevada,2001.
    [61]吕俊复,岳光溪,张建胜,等.超临界循环流化床锅炉的可行性[J].锅炉制造,2002,4:23-26.
    [62]刘青,吕俊复,辛建,等.600MWe超临界循环流化床锅炉水冷壁温度[J].锅炉技术,2003,34(3):34-38.
    [63]吕俊复.超临界循环流化床锅炉水冷壁热负荷及水动力研究[D].清华大学博士论文,清华大学热能工程系,2004.
    [64]杨海瑞.循环流化床锅炉物料平衡研究[D].清华大学博士论文,清华大学热能工程系,2003.
    [65]刘佳.循环流化床锅炉二次风射流特性的冷态试验研究与数值模拟[D].重庆大学硕士论文,重庆大学动力工程学院,2007.
    [66] Martin M.P.,Turlier P,Bernard J.R.,Wild G..Gas and solid behavior in cracking circulatingfluidized beds[J].Powder Technology,1992,70:249-258.
    [67]刘石,潘忠刚,严桂章,等.应用电容层析成像和压差对比法对流化床内固体颗粒浓度分布的测量研究[J].工程热物理学报,2000,21(6):759-763.
    [68] Zhang H.,Johnston P.J.,Zhu J.X..A novel calibration procedure for a fiber optic solidsconcentration probe [J].Powder Technology,1998,100(2):260-272.
    [69]石慧娴.循环流化床流动特性PIV测试和数值模拟[D].浙江大学博士论文,浙江大学,2003.
    [70] Yang Y.L.,Jin Y,Yu Z.Q.,et al.Local slip behavior in the circulating fluidized bed[J].AICHESymp,1993,296(89):81-90.
    [71] May W. G..Fluidized bed reactor studies [J].Chemical Engineering Progress,1959,55(12):49-56.
    [72] Werther J..Scale-up modeling for fluidized beds [J].Chemical Engineering Science,1992,47(9-11):2457-2462.
    [73] Glicksman L. R..Scaling relationship for fluidized beds[J].Chemical Engineering Science,1988,43(6):1419-1421.
    [74] Horio M.,Nonaka A.,Sawa Y.,et al.New similarity rule for fluidized bed scale-up [J].AIChEJournal,1986,32(9):1466-1482.
    [75] Edwards M, Avidan A. Conversion model aids scale-up of mobil’s fluid-bed MTGprocess[J].Chemical Engineering Science,1986,41(4):829-835.
    [76] Di Felice R.,Rapagna S.,Foscolo P. U.,et al.Cold modeling studies of fluidized bed reactors[J].Chemical Engineering Science,1992,47(9-11):2233-2238.
    [77] Hugi E.,Reh L..Focus on solids strand formation improves separation performance of highlyloaded circulating fluidized bed recycle cyclones[J].Chemical Engineering and Processing,2000,39(3):263–273.
    [78] Redemann K,Hartge E-U,Werther J..A particle population balancing model for a refusederived fuel fired circulating fluidized bed[J].Powder Technology,2009,191(3):78-90.
    [79] Wen C.Y., Chen L.H.. Fluidized bed freeboard phenomena: entrainment andelutriation[J].AIChE Journal,1982,28(1):117-128.
    [80] Rhodes M.J.,Geldart D..A model for the circulating fluidized bed[J].Powder Technology,1987,53(3):155-162.
    [81]李政.循环流化床锅炉通用整体数学模型、仿真与性能预测[D].清华大学博士论文,清华大学热能工程系,1994.
    [82]高建强.大型循环流化床锅炉实时仿真模型与运行特性研究[D].华北电力大学博士论文,华北电力大学能源与动力工程学院,2005.
    [83]刘汉周,卢啸风,唐家毅.300MW循环流化床锅炉分离器入口烟道气固流动特性研究[J].中国电机工程学报,2009,29(32):6-11.
    [84]尹刚,鲁佳易,刘汉周,卢啸风.300MW循环流化床锅炉热平衡特性研究[J].锅炉技术,2008,39(6):31-35.
    [85]金晓钟.循环流划船锅炉热量释放规律的试验及模型研究[D].清华大学博士论文,清华大学热能工程系,1999.
    [86] Kaewklum R.,Kuprianov V. I..Experimental studies on a novel swirling fluidized-bedcombustor using an annular spiral air distributor[J].Fuel,2010,89(8):43–52.
    [87] Hartge E-U,Fehr M.,Werther J.,et al.Gas concentration measurements in the combustionchamber of the235MW circulating fluidized bed boiler Turow No.3[C].18th InternationalConference on Fluidized Bed Combustion,Toronto,Canada,2005.
    [88] Wischnewski R.,Ratschow L.,Hartge E-U,et al.Reactive gas–solids flows in largevolumes—3D modeling of industrial circulating fluidized bed combustors [J].Particuology,2010,53(8):67–77.
    [89]杨晨.大型循环流化床锅炉整体数学模型的建模与仿真方法研究[D].重庆大学博士论文,重庆大学动力工程学院,1999.
    [90]王勤辉.循环流化床锅炉整体数学模型及试验[D].浙江大学博士论文,浙江大学,1997.
    [91]中华人民共和国机械电子工业部.GB/10184—1988[S].电站锅炉性能试验规程,1988.
    [92] Li S. H.,Yang H.R.,Zhang H.,et al.Post Combustion and Its Influences in135MW CFBBoilers [J].Energy Fuels,2009,23(9):4311–4317.
    [93] Luecke K.,Hartge E-U.,Werther J..A3D Model of Combustion in Large-Scale CirculatingFluidized Bed Boilers[J].International Journal of Chemical Reactor Engineering,2004,(2):1-49.
    [94] David J..Hydrodynamic modeling of circulating fluidized bed boilers[D].Thesis for the Degreeof Master of Science,Chalmers University of Technology,1999.
    [95]华玉龙.循环流化床锅炉流动、传热和燃烧模型[D].华中科技大学博士论文,华中科技大学,2005.
    [96] Zheng Q. Y.,Zhang H..Fluidization VIII [M].USA:New York,1995.
    [97] Johnsson F.,Vrager A.,Leckner B..Solids flow pattern in the exit region of a CFB-furnaceinfluence of exit geometry[C].Proceedings of the15th International Conference on FluidizedBed Combustion,Georgia:Savannah,1999.
    [98] Wen C. Y.,Yu Y. H..A generalized method for predicting the minimum fluidizationvelocity[J].AIChE Journal,1966,12:610-612.
    [99] Grace J. R..Contacting modes and behaviour classification of gas-solid and other two-phasesuspensions[J].Canada Journal Chemical Engineering,1986,64:353-363.
    [100] Ergun S..Fluid flow through packed columns[J].Chemical Engineering Progress,1952,48:89–94.
    [101] Darton R.C.,LaNauze R. D.,Davidson J. F.,et al.Bubble-growth due to coalescence influidized beds [J].Transactions of the Institution of Chemical Engineers,1977,55(4):274–80.
    [102] Clift R.,Grace J.R..Continuous bubbling and slugging[M].USA:Engineering Fluidization,1985.
    [103] Davidson J.F.,Harrison D..Fluidised particles[M].USA:Cambridge University Press,1973.
    [104] Toomey R.D.,Johnstone H.F..Gaseous fluidization of solid particles[J].Chemical EngineeringProgress,1952,48(5):220-226.
    [105] Grace J.R.,Clift R..On the two-phase theory of fluidization[J].Chemical EngineeringScience,1974,141(70):53–62.
    [106] Werther J.. Influence of the bed diameter on the hydrodynamics of gas fluidizedbeds[J].Handbook of Fluidization and Fluid-Particle Systems,1974,70(141):53–62.
    [107] Shen L.,Johnsson F.,Leckner B.Digital image analysis of hydrodynamics two-dimensionalbubbling fluidized beds [J].Chemical Engineering Science,2004,59(13):2607–17.
    [108] Olowson P.A.,Almstedt A.E.Influence of pressure and fluidization velocity on the bubblebehaviour and gas flow distribution in a fluidized bed [J].Chemical Engineering Science,1990,45(7):1733–41.
    [109] Sit S.P.,Grace J.R..Effect of bubble interaction on interphase mass transfer in gas fluidizedbeds [J].Chemical Engineering Science,1981,36(2):327–35.
    [110] Werther J.,Wein J..Expansion of gas fluidized beds in the turbulent regime[J].AIChEJournal,1994,90:31–44.
    [111] Johnsson F., Andersson S., Leckner B.. Expansion of a freely bubbling fluidizedbed[J].Powder Technology,1991,68(2):117-123.
    [112] Harris B.J.,Davidson J.F.,Xue Y..Axial and radial variation of flow in circulating fluidizedbed risers [C].Proceedings of the fourth international conference on circulating fluidizedbeds,USA:Pennsylvania,1993.
    [113] Johnsson F.,Leckner B..Vertical distribution of solids in a CFB-furnace[C].Proceedings ofthe13th international conference on fluidized bed combustion,USA:NewYork,1995.
    [114] Johnsson F.,Vrager A.,Tiikma T.,et al.Solids flow pattern in the exit region of a CFB-furnace.Influence of geometry[C].Proceedings of the15th international conference on fluidized bedcombustion,USA:Savannah,1999.
    [115] Haider A.,Levenspiel O..Drag coefficient and terminal velocity of spherical and nonsphericalparticles[J].Powder Technology,1989,58(1):63–70.
    [116] Win K.,Nowak W.,Matsuda H.,et al.Transport velocity of coarse particles in multi-solidfluidized bed [J].Journal of Chemical Engineering of Japan,1995,28(5):535.
    [117] Palchonok G.I.,Breitholtz C.,Thunman H.,et al.Impact of heat and mass transfer oncombustion of a fuel particle in CFB boilers[C].Procedings of the14th internationalconference on FBC,USA:NewYork,1997.
    [118] Redemann K..Ash management in circulating fluidized bed combustors [M].Aachen:ShakerVerlag,2008.
    [119] Zhang W.,Johnsson F.,Leckner B..Fluid-dynamic boundary layers in CFB boilers[J].Chemical Engineering Science,1995,50(2):201-210.
    [120] Pallarés D.,Johnsson F..Fluiddynamic modeling of large CFB units[C].Proceedings of theseventh international conference on circulating fluidized beds,Canada:Niagara,2002.
    [121] Werther J..Circulating Fluidized Bed Technology IV[M].USA:Pergamon Press,1993.
    [122] Johansson A.,Johnsson F.,Leckner B.,et al.Solids back-mixing in CFB furnaces[C].Proceedings of the eighth international conference on circulating fluidized beds,China:Hangzhou,2005.
    [123] Wen C.Y., Chen L.H.. Fluidized bed freeboard phenomena: entrainment andelutriation[J].American Institute of Chemical Engineers Journal,1982(28):117-128.
    [124] Kunii D.,Levenspiel O..Entrainment and elutriation from fluidized beds[J].Journal ofChemical Engineering of Japan,1969,2:84-88.
    [125] Kunii D.,Levenspiel O..Entrainment of solids from fluidized beds[J].Powder Technology,1990,61(2):193–206.
    [126] Adanez J.,Gayan P.,Garcia-Labiano F.,et al.Axial voidage profiles in fast fluidized beds[J].Powder Technology,1994,81(3):259–68.
    [127] Diego L.F.,Gayan P.,Adanez J..Modelling of the flow structure in circulating fluidizedbeds[J].Powder Technology,1995,85(1):19–27.
    [128] Lei H., Horio M.. A comprehensive pressure balance model of circulating fluidizedbeds[J].Journal of Chemical Engineering of Japan,1998,31(1):83–94.
    [129] Walsh P.M.,Mayo J.E.,Beer J.M..Refluxing particles in the freeboard of a fluidizedbed[J].AICHE Symposium Series,1984:119–128.
    [130] Pallarés D.,Johnsson F..Macroscopic modelling of fluid dynamics in large-scale circulatingfluidized beds[J].Progress in Energy and Combustion Science,2006,32(5):539–569.
    [131] Zhang W.,Johnsson F.,Leckner B..Momentum probe and sampling probe for measurementof particle flow properties in CFB boilers[J].Chemical Engineering Science,1997,52(4):497-509.
    [132] Davidson J.F..Circulating fluidised bed hydrodynamics[J].Powder Technology,2000,113(3):249–260.
    [133] Cho Y.J.,Namkung W.,Kim S.D..Effect of secondary injection on axial solid holdupdistribution in a circulating fluidized bed[J].Journal of Chemical Engineering of Japan,27(2):158-164.
    [134]房德山.循环流化床锅炉整体动态数学模型及运行特性分析[D].东南大学博士论文,东南大学,2002.
    [135] Kim S.W.,Kim S.D.,Lee D.H..Pressure Balance Model for Circulating fluidized beds witha Loop-seal[J].Industrial&Engineering Chemistry Research,2002,41(20):4949-4956.
    [136] Schouten J.C.,Zijerveld R. C.,Bleek C. M..Scale-up of bottom-bed dynamics and axialsolids-distribution in circulating fuidized beds of Geldart-B[J].Particles Chemical EngineeringScience,1999,54(8):2103-2112.
    [137] Cho Y. J.,Namkung W.,Kim S. D.,et al.Effect of secondary air injection on axial solidholdup distribution in a circulating fluidized bed [J].Journal of Chemical Engineering ofJapan,1994,27(2):158-164.
    [138]陈继辉.大型CFB锅炉气固流动关键技术研究[D].重庆:重庆大学博士学位论文,2008.
    [139] Lackermeier U.,Werther J.Flow phenomena in the exit zone of a circulating fluidized bed[J].Chemical Engineering and Processing,2002,41(9):771-783.
    [140] Muschelknautz U.,Muschelknautz E..Special design of inserts and short entrance ducts torecirculating cyclones.[C].Proceedings of the fourth international confrence on circulatingfluidized beds,USA:Pennsylvania,1993.
    [141]杨成禹.大型CFB锅炉旋风分离器的冷模试验研究[D].重庆大学硕士学位论文,重庆大学动力工程学院,2006.
    [142]刘汉周,卢啸风,唐家毅.300MW循环流化床锅炉分离器入口烟道气固流动特性研究[J].中国电机工程学报,2009,29(32):6-11.
    [143] VDI Heat Atlas[M].Berlin:Springer-Verlag,2006.
    [144]霍夫曼,斯坦因,等.旋风分离器—原理、设计和工程应用[M].北京:化学工业出版社,2004.
    [145] Rogers R.S.C..A Classification Function for Vibrating screens[J].Powder technology,1982,31:135-137.
    [146] Wen-Ching Y.. Fluidization, Solids Handling, and Processing—IndustrialApplications[M].USA:Noyes Publications,1998.
    [147] Hartge E-U.,Klett C.,WertherJ..Dynamic simulation of the particle size distribution in acirculating fluidized bed combustor[J].Chemical Engineering Science,2007,62(1-2):281-293.
    [148] Klett C.,Hartge E.-U.,Werther J..Time-dependent behavior of the ash particle sizedistribution in a circulating fluidized bed system[J].Proceedings of the Combustion Institute,2005,30(2):2947-2954.
    [149] Werther J.,Xi W..Jet attrition of catalyst particles in gas fluidized beds [J].PowderTechnology,1993,76(1):39–46.
    [150] Klett C.,Hartge E.-U.,Werther J..Time-Dependent Behavior of a Catalyst in a FluidizedBed/Cyclone Circulation System[J].AIChE Journal,2007,53(4):769–779.
    [151] Reppenhagen J.,Werther J..Catalyst attrition in cyclones[J].Powder Technology,2000,113(1-2):55-69.
    [152]尹刚,陈继辉,卢啸风,等.引进300MW循环流化床锅炉的技术特点分析[J].锅炉技术,2007,38(3):29-33.
    [153] Tang J. Y.,Lu X. F.,Lai J.,et al.Experimental study of gas solid flow characteristic in cycloneinlet ducts of a300MW CFB boiler [C].Proceedings of the20th International Conference onFluidized Bed Combustion,China:Xi’an,2009.
    [154]蒋茂庆,孙献斌.我国首台引进的300MW循环流化床锅炉及其关键技术[J].热力发电,2004,(9):1-3.
    [155] Jean. X...Recent ALSTOM POWER Large CFB and Scale up aspects including steps toSupercritical [C].47th International Energy Agency Workshop on Large Scale CFB,Poland:Zlotnicki,2003.
    [156]苏建民.基于流态重构的循环流化床锅炉节能燃烧技术的应用实践[J].动力工程学报,2011,31(3):170-175.
    [157] Yang H. R.,Zhang H.,Yang S.,et al.Effect of Bed Pressure Drop on Performance of a CFBBoiler [J].Energy Fuels,2009,23(9):2886–2890.
    [158] Yang H R,Yue G. X.,Xiao X. B.,et al.1D modeling on the material balance in CFB boiler[J].Chemical Engineering Science,2005,60(20):5603-5611.
    [159]尹刚.白马电厂1025t/hCFB锅炉热平衡和物料平衡的试验研究[D].重庆大学硕士论文,重庆大学动力工程学院,2007.
    [160] Marzocchella A.,Aren U..Hydrodynamics of a circulating fluidized bed operated withdifferent secondary air injection devices[J].Powder Technology,1996,87(20):185-191.
    [161] Yang D.,Pan J.,Bi Q. C.,et al.Research on the Hydraullc Characteristics of a600MWSupercritical Pressure CFB Boiler[C].Proceedings of the20th International Conference onFluidized Bed Combustion,China:Xi’an,2009.
    [162]刘静,王勤辉,骆仲泱,等.600MW超临界循环流化床锅炉的设计研究[J].动力工程,2003,23(1):2179–2184.
    [163] Hirschberg B.,Werther J..Factors Affecting Solids Segregation in Circulating Fluidized-BedRiser[J].AIChE Journal,1998,44(1):25–34.
    [164] Bing Zeng,Xiaofeng Lu,Lu Gan,et al.Development of a novel fluidized bed ash cooler forcirculating fluidized bed boilers: Experimental study and application[J].Powder Technology,2011,212(1):151-160.
    [165]曾兵,卢啸风,赵鹏,等.复合式流化床冷渣器的试验研究及工业应用[J].中国电机工程学报,2011,31(29):27-34.
    [166]卢啸风,曾兵,舒茂龙,等.复合式冷渣装置[P].中国,ZL200710092413.7,2010-1-20.
    [167]卢啸风,曾兵,舒陈.一种排渣分选装置[P].中国,ZL201010188349.4,2011-12-21.
    [168]舒茂龙.大型循环流化床锅炉混流式流化床冷渣器研制[D].重庆大学硕士学位论文,重庆大学动力工程学院,2007.
    [169]刘双科,徐旭常,邓国强,等.高速摄像技术在循环流化床锅炉出口区域运动测量中的应用[J].流体力学实验与测量,2001,3:62-66.
    [170]王殿常,禹明忠,王兴奎.明槽水流中颗粒运动特性的试验研究[J].应用基础与工程科学学报,2000,8:301-309.
    [171]张缦,别如山.1025t/h等级循环流化床锅炉一次风机参数确定[J].中国电力,2009,42(3):44-47.
    [172]刘家钰,孙献斌.国产化300MW机组CFB锅炉一次风机选型研究[J].中国电力,2005,38(8):74-76.
    [173]杨诗成,王喜魁.泵与风机[M].北京:中国电力出版社,2006.
    [174] Bayomi N. N.,Abdel H. A.,Osman A M.Effect of inlet straighteners on centrifugal fanperformance [J].Energy Conversion and Management,2006,47(18):3307–3318.
    [175] Li C. X.,Wang S. L.,Jia Y. K..The performance of a centrifugal fan with enlargedimpeller[J].Energy Conversion and Management,2011,52(8):2902–2910.
    [176] Qi D. T.,Mao Y. J.,Liu X. L.,et al.Experimental study on the noise reduction of an industrialforward-curved blades centrifugal fan [J].Applied Acoustics,2009,70(8):1041–1050.
    [177] Kazempour-Liacy H.,Mehdizadeh M.,Akbari-Garakani M,et al.Corrosion and fatigue failureanalysis of a forced draft fan blade [J].Engineering Failure Analysis,2011,18(4):1193–1202.
    [178]郑毅,付祥卫.循环流化床锅炉风机选型探讨[J].东北电力大学学报,2007,27(6):96-100.
    [179]李前宇,赵凯,梅东升,等.300MW CFB锅炉一次风机选型原则探讨[J].热力发电,2010,39(2):56-58.
    [180]西安热工所有限公司.DL/T964-2005[S].循环流化床锅炉性能试验规程,2005.
    [181] American society of mechanical engineers.ASME PTC4—1998[S].Fired steam generatorsperformance test code,1998.
    [182] VDI Code of practice.DIN1942[S].Acceptance testing of steam generators,1994.
    [183] Electric power research institute.EPRI GS-7164[S].Atmospheric fluidized-bed combustionguidelines,1991.
    [184]田正渠等译.锅炉设备热工试验[M].北京:电力工业出版社,1982.
    [185]刘振琪,刘琦.电站锅炉性能考核试验技术简介[J].锅炉技术,2003,7:58—62.
    [186]黄伟,李文军,熊蔚立.GB/10184—88和ASME PTC4.1标准锅炉热效率计算方法分析[J].湖南电力,2005,1:12—14.
    [187]孟勇,吴生来.ASME PTC4.1计算循环流化床锅炉效率的基本方法[J].热力发电,2003(10):53—55.
    [188]吕俊复,张守玉,刘青,等.循环流化床锅炉的飞灰含碳量问题[J].动力工程,2004,24(2):170-174.
    [189] Zeng B.,Lu X. F.,Liu H. Z..Influence of CFB (circulating fluidized bed) boiler bottom ashheat recovery mode on thermal economy of units[J].Energy,2010,35(9):3863-69.
    [190] Lundqvist R. G..Designing Large-scale Circulating Fluidized Bed Boilers [J].PowerTechnology,2003,83(10):41-47.
    [191]熊天柱,田子平,李俊,等.循环流化床锅炉的大型化[J].锅炉技术,2004,35(2):1-6.
    [192]樊旭,张炳,赵泽光.循环流化床大型化的若干问题及解决方案的优劣比较[J].锅炉制造,2004,27(4):32-33.
    [193] Chakrabarti B. K..Investigations on heat loss through the kiln shell in magnetite dead burningprocess:a case study[J].Applied thermal engineering,2002,(22):1339-1345.
    [194]四川电力试验研究院.四川白马循环流化床示范电站1×300MW循环流化床锅炉性能考核试验介绍[R].2005.
    [195]广州粤能电力科技开发有限公司.梅县荷树园电厂3号机组锅炉散热测试报告[R].2009.
    [196]逯恩华.670t/h锅炉散热强度数理统计及误差估计[J].热力发电,1984,2:14-26.
    [197]胡鸣.环境温度和风速对加热炉外壁温度及散热损失的影响[J].石油化工设备技术,2005,26(1):5-7.
    [198]李诗媛,吕清刚,矫维红,等.生物质成型燃料循环流化床燃烧试验研究[J].燃烧科学与技术,2009,15(1):54-58.
    [199] Vladimir I. K.,Rachadaporn K.,Songpol C..Effects of operating conditions and fuelproperties on emission performance and combustion efficiency of a swirling fluidized-bedcombustor fired with a biomass fuel[J].Energy,2011,36(4):2038–2048.
    [200] Lu J. F.,Zhang J. S.,Zhang H.,ea al.Performance evaluation of a220t/h CFB boiler withwater-cooled square cyclones[J].Fuel Processing Technology,2007,88(2):129-135.
    [201] Liu H. L.,Zhang G. B.,Bie R. S.,ea al.A coal combustion model for circulating fluidizedbed boilers[J].Fuel,2000,79(2):165-172.
    [202] Li S. H.,Yang H. R.,Zhang H.,ea al.Measurements of solid concentration and particlevelocity distributions near the wall of a cyclone[J].Chemical Engineering Journal,2009,150(1):168-173.
    [203]姜秀民,秦裕琨,刘德昌,等.油页岩循环流化床燃烧室稀相区流动结构与燃烧特性[J].中国电机工程学报,2001,21(11):53-59.
    [204] Mahmoud A. Y.,Seddik S. W.,Maher A. M.,et al.Experimental study on Egyptian biomasscombustion in circulating fluidized bed [J].Applied Energy,2009,86(12):2644-2650.
    [205]雍玉梅.循环流化床锅炉大型化的数值模拟[D].中国科学院博士论文,中国科学院工程热物理研究所,2004.
    [206] Werther J.,Hartge E-U.,Ratschow L..Simulation-supported measurements in large circulatingfluidized bed combustors[J].Particuology,2009,7(4):324–331.
    [207] Yue G.X., Yang H.R., Zhang H.. Post Combustion in Circulating Fluidized BedBoilers[C].19th International Conference on Fluidized Bed Combustion,Vienna,Austria,2006.
    [208]孙献斌,李志伟,时正海,等.首台国产210MW循环流化床锅炉运行问题及改进措施[J].电力设备,2008,9(10):1-3.
    [209]肖峰,高子瑜,沈引根.循环流化床锅炉分离器后燃现象的分析及处理[C].第八届锅炉专业委员会第二次学术交流会议,上海,中国,2005.
    [210]李文广,杨建华,屈卫东,等.两起CFB锅炉旋风分离器中心筒故障的分析与处理[J].锅炉技术,2008,39(6):46-49.
    [211] Stenberg J., mand L. E.,Hernberg R.,et al.Measurement of Gas Concentrations in aFluidized Bed Using Laser-Induced Photoacoustic Spectroscopy and Zirconia Cell Probes[J].Combustion and Flame,1998,113(4):477-486.
    [212] Fernández M. J.,Kassman H.,Lyngfelt A..Methods for Measuring the Concentrations of SO2and of Gaseous Reduced Sulphur Compounds in the Combustion Chamber of a CirculatingFluidized Bed Boiler [J].Canadian Journal of Chemical Engineering,2000,78(6):1138-1144.
    [213] Fernández M.J.,Lyngfelt A..Concentration of Sulphur Compounds in the CombustionChamber of a Circulating Fluidized-Bed boiler [J].Fuel,2001,80(3):321-326.
    [214] Zhang W. N.,Johnsson F.,Leckner B..Fluid-Dynamic Boundary Layers in CFB Boilers[J].Chemical Engineering Science,1995,50(2):201-210.
    [215]王启民,王玉召,吕俊复,等.烧失量法测量循环流化床锅炉飞灰碳的系统误差[J].热能动力工程,2006,21(6):585-589.
    [216] Lackermeier U.,Werther J..Flow phenomena in the exit zone of a circulating fluidized bed[J].Chemical Engineering and Processing,2002,41(9):771-783.
    [217] Ferna ndez M. J.,Lyngfelt A..Concentration of sulphur compounds in the combustionchamber of a circulating fluidized-bed boiler [J].Fuel,2001,80(3):321-326.
    [218] Gungor A., Eskin N.. Analysis of environmental benefits of CFB combustors viaone-dimensional model [J].Chemical Engineering Journal,2007,131(13):301–317.
    [219] Lu J. Y.,Lu X. F.,Yin G.,et al.Heat Balance Analysis of Baima’s300MW CFB Boiler inChina[C].20th International Conference on Fluidized Bed Combustion,Xi’an,China,2009.
    [220]侯祥松.循环流化床锅炉NO和N2O脱除的试验[D].清华大学博士论文,清华大学热能工程系,2007.
    [221] Cheng L M,Luo Z Y,Shi Z H.Combustion Behavior and SO2,NOXEmissions of anAnthracite Coal in a Circulating Fluidized Bed [C].Proceedings of the18th InternationalConference on Fluidized Bed Combustion,2005.
    [222] Kim M. Y.,Kim J. W.,Lee C. S.,et al.Effect of Compression Ratio and Spray InjectionAngle on HCCI Combustion in a Small DI Diesel Engine [J].Energy&Fuels,2006,20(1):138-141.
    [223] Johnsson J. E.. Formation and reduction of nitrogen oxides in fluidized-bedcombustion[J].Fuel,1994,73(9):1398–1415.
    [224]岑可法,姚强,骆仲泱,等.高等燃烧学[M].杭州:浙江大学出版社,2002:553-608.
    [225]周志军,周宁,陈瑶姬,等.低挥发分煤燃烧特性及NOx生成规律的试验研究[J].中国电机工程学报,2010,30(29):55-61.
    [226] Bratek K.,Bratek W.,et al.Properties and structure of different rank anthracite [J].Fuel,2002,81(1):97-108.
    [227] Chen J.H.,Lu X.F.,Liu H.Z.,et al.Effect of the bottom-contracted and edge-sloped vent-pipeon the cyclone separator performance [J].Chemical Engineering Journal,2007,129(13):85–90.
    [228] Molina A.,Eddings E. G.,Pershing D. W.,et al.Char nitrogen conversion: implications toemissions from coal-fired utility boilers[J].Progress in energy and combustion science,2000,26:507–531.
    [229]任维.焦炭流化床燃烧条件下氧化亚氮生成机理的实验研究[D].北京:清华大学,2003.
    [230]陈瑶姬.W型火焰锅炉燃用无烟煤低NOX燃烧技术机理和模化试验研究[D].浙江大学博士论文,浙江大学能源工程学系,2011.
    [231] Jantti T.,Sundqvist K.,Psik R..Lagisza460MWe superctitical CFB-design, start-up andinitial operation experience[C].Presented at Power Gen Europe Cologen,Germany,2009.