连续旋转爆震波结构、传播模态及自持机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续旋转爆震发动机在热循环效率方面比等压燃烧发动机具有明显优势,它点火后即可连续工作并能提供稳定的推力,具有非常广阔的应用前景。本文运用理论分析、实验研究、数值模拟等手段,重点对H_2/air连续旋转爆震波的结构、传播模态及自持传播机理进行了深入系统的研究。
     论文设计加工了两套不同喷注方式的模型发动机,并研制了具有两级收缩的热射流管用于发动机点火起爆。研究了点火时机、混合效果、点火方式对H_2/O2热射流生成过程的影响,并对所生成的热射流状态进行了测量。对比研究了热射流切向和垂直喷射、普通火花塞持续点火、高能火花塞单次点火四种起爆方案,结果表明热射流切向喷射方式的起爆效果最好,在较宽的热射流能量范围内,都可成功起爆模型发动机。
     实验共发现了两种爆震波传播模式:同向传播模式和对撞传播模式。
     同向传播模式的研究结果表明:燃烧室内存在单个或多个爆震波头,同一时刻所有爆震波头的传播方向相同。在部分实验过程中,爆震波传播方向会发生改变;爆震波头个数与混合气总流量相关,随总流量的增大而增多。与双波模态相比,单波模态时的爆震波高度更高、传播速度更大;实验过程中,不同周期内的爆震波瞬时传播速度和峰值压力存在一定的差异;时间平均后的流场参数沿圆周方向分布均匀。
     对撞传播模式的研究结果表明:燃烧室内存在两个爆震波头,它们传播方向相反,发生周期性对撞。在燃烧室顶部能否形成可燃气体层是实现该传播模式的关键;高频压力的振荡特性跟测压点与对撞点的夹角相关;双波对撞会产生高压力峰值,且所产生的推力沿圆周方向分布不均匀,应尽量避免该燃烧模式。
     论文针对同向模式下的爆震波传播过程开展了系统研究。发现存在一定的工况边界,在该工况边界外连续旋转爆震波无法维持传播;研究了连续旋转爆震燃烧对推进剂喷注过程的影响,提出了混合气实际当量比的计算方法。统计了连续旋转爆震波实验传播速度与理论速度间的亏损值,发现当速度亏损大于17%时,爆震波难以自持传播;详细研究了侧向膨胀因素对连续旋转爆震波传播速度亏损的影响,单、双波模态时估算的由侧向膨胀所引起的速度亏损分别为4.6%-12%和6%-15%。发现自持工况边界处的速度亏损理论估算值与实验值接近,这说明连续旋转爆震波的传播速度亏损主要由侧向膨胀引起。
     开展了连续旋转爆震发动机应用研究,验证了通过改变局部喷注压降实现推力矢量调节的可行性;对比研究了燃烧室长度、宽度、尾喷管等因素对发动机性能的影响。结果表明,燃烧室长度和宽度对发动机性能影响较小,而加装尾喷管能在一定程度上提高其比冲性能。
The thermodynamic efficiency of continuous rotating detonation engine (CRDE) islarger than that of conventional constant-pressure combustion engines. CRDE couldoperate continuously just with one initiation. Due to the high rotating frequency, CRDEcould produce a roughly stable thrust, so it has huge potential benefits. Using acombination of theoretical analysis, experimental observation and numerical simulation,the flow-field structure, rotating mode and lasting mechanism of H_2/air continuousrotating detonation wave have been studied.
     Based on the present CRDE research results, two continuous rotating detonationcombustors are desgined and constructed with different propellant injection methods,such as injector-injector and slot-injector collision methods. A hotshot tube is desginedand constructed too, which has two convergent sections. The H_2/O2hotshot jet formingprocess is studied, and the influences of ignition opportunity, H_2/O2mixing quality andignition method have been discussed. Through lots of tests, a reliable program is gained,and the intensity of the hotshot jet has been measured quantitatively. Four CRDEinitiation methods have been discussed, and H_2/O2hotshot jet tangential injectionmethod has the best reliability. Using this method, CRDE can be initiated successfullyat a wide range of hotshot jet intensity.
     Lots of tests have been carried out, and there are two detonation wave rotatingmodes, which are one-direction mode and two-wave collision mode.
     For the one-direction rotating mode, all the detonation waves propagate along thesame direction at the same time. But the propagation direction may change during thetest process under some experiment conditions. The number of detonation waves aremainly influenced by the total mass flow rate of the propallents. The values of heightand propagation velocity of detonation wave in one-wave mode are larger than that oftwo-wave mode. For experimental results, the detonation wave propagates unstably, andits propagation velocities and peak pressure values are different from one period toanother. Within several periods, the flow-field parameters are time averaged, and theaverage parameter values along the azimuthal direction are nearly the same.
     For the two-wave collision mode, there are two detonation waves propagatingalong opposite directions in the combustor, colliding with each other periodically. Torealize this rotating mode, there should be an annular zone of fresh H_2/air mixtureslocated at the top of the combustor. The oscillating characteristics of the PCB results areanalyzed, and it is mainly influenced by the azimuthal angle between the pressuremeasurement point and the detonation wave collision point. Two-wave collision canlead to high pressure values, and the average flow-field parameters along the azimuthaldirection are different from each other. So this rotating mode should be avoided in thedetonation engines.
     Through changing test conditions, lots of tests have been carried out, and thedetonation wave lasting condition boundaries are gained. During the test, the propellantinjection process has been influenced by the rotating detonation wave. Considering thisprocess, the actual equivalence ratio of the H_2/air mixture is calculated, and thedetonation wave propagation velocity deficits are studied. For CRDE tests, when thedetonation wave propagation velocity deficit is larger than17%, the detonation wavecould not propagate continuously. Influences of the lateral expansion on the detonationwave structure and propagation process are detailed, and the calculation method ofpropagation veloctiy deficit caused by lateral expansion is deduced. For one-wave mode,the velocity deficit calculated by this method is4.6%-12%, and the corresponding valueis6%-15%for two-wave mode. Under the critical test condition, the velocity deficitcalculated by lateral expansion is close to17%, which shows that the velocity deficit ofthe continuous rotating detonation wave is mainly caused by the lateral expansioneffect.
     Investigations on the CRDE application are also carried out. Based ontwo-dimensional numerical simulation, the thrust vectoring ability of CRDE isdemonstrated. The influences of combustor geometric factors on the engineperformance have been analyzed by means of three-dimensional numerical simulation.The specific impulse performance can be improved by using a nozzle.
引文
[1] Lu Frank K., Braun Eric M., Massa Luca, Wilson Donald R. RotatingDetonation Wave Propulsion: Experimental Challenges, Modeling, and EngineConcepts (Invited)[R]. AIAA2011-6043,2011.
    [2] Zeldovich Ya. B. To the question of energy use of detonation combustion[J].Journal of propulsion and power,2006,22(3):588-592.
    [3] Wintenberger E., Shepherd J. E. Introduction to "To the Question of EnergyUse of Detonation Combustion" by Ya. B. Zeldovich[J]. Journal of Propulsion andPower,2006,22(3):586-587.
    [4] Wintenberger E., Shepherd J. E. Stagnation hugoniot analysis for steadycombustion waves in propulsion systems[J]. Journal of propulsion and power,2006,22(4):835-844.
    [5] Stewart D. Scott, Kasimov Aslan R. State of detonation stability theory and itsapplication to propulsion[J]. Journal of propulsion and power,2006,22(6):1230-1244.
    [6] Roy G.D., Frolov S.M., Borisov A.A., Netzer D.W. Pulse detonationpropulsion: challenges, current status, and future perspective[J]. Progress in Energy andCombustion Science,2004,30:545-672.
    [7] Wolanski P. Development of continuous rotating detonation engine.Deflagrative and detonative combustion. Moscow,2010.
    [8] Bdzil John B., Stewart D. Scott. The Dynamics of Detonation in ExplosiveSystems[J]. Annual Review of Fluid Mechanics,2007,39:263-292.
    [9] Nikolaev Yu. A., Vasil'ev A. A., Ul'yanitskii B. Yu. Gas Detonation and itsApplication in Engineering and Technologies (Review)[J]. Combustion, Explosion, andShock Waves,2003,30(4):382-410.
    [10] Nettleton M. A. Recent work on gaseous detonations [Review][J]. ShockWaves,2002,12:3-12.
    [11] Kailasanath K. Review of propulsion applications of detonation waves[J].AIAA Journal,2000,38(9):1698-1798.
    [12] Shepherd J. E. Detonation in gases[J]. proceedings of the combustioninstitute,2009,32:83-98.
    [13] Lee John H. S. The detonation phenomenon[M]. New York: CambridgeUniversity Press,2008.
    [14]刘世杰,林志勇,覃慧,刘卫东.连续旋转爆震波发动机研究进展[J].飞航导弹,2010,(2):70-75.
    [15] Vasil'ev A. A. Outstanding problems of gaseous detonation. Pulse andcontinuous detonation propulsion.2006.
    [16] Alexandrov V. G., Kraiko A. N., Ogorodnikov D. A., Reent K. S.et al.Supersonic Pulsed Detonation Ramjet Engin (SPDRE) and the Way of Operation ofSPDRE1999.
    [17] Nicholls J. A., Cullen R. E., Raglano K. W. Feasibility Studies of aRotating Detonation Wave Rocket Motor[J]. Journal of Spacecraft1966,3(6):893-898.
    [18] Adamson T. C., Olsson G. R. Performance analysis of a rotatingdetonation wave engine[J]. Astronautica Acta,1967,13(3):405-415.
    [19] Bykovskii F. A., Vasil'ev A. A., Vedernikov E. F., Mitrofanov V. V.Explosive combustion of a gas mixture in radial annular chambers[J]. combustion,Explosion, and Shock Waves,1994,32(4):510-516.
    [20] Bykovskii F A, E.F.Vedernikov. Continuous detonation combustion of anannular gas-mixture layer[J]. combustion, Explosion, and Shock Waves,1996,32(5):489-491.
    [21] Bykovskii F. A., Vedernikov E. F. Self-sustaining pulsating detonation ofgas-mixture flow[J]. Combustion, Explosion, and Shock Waves,1996,32(4):442-448.
    [22] Bykovskii F. A., Vedernikov E. F. The flow in a planar-radial vortexchamber.1. an experimental study of the velocity field in transient and steady flows[J].Journal of Applied Mechanics and Technical Physics,1999,40(6):1097-1105.
    [23] Bykovskii F. A., Vedernikov E. F. The flow in planar-radial vortexchamber.2. vortex structure of the flow[J]. Journal of Applied Mechanics and TechnicalPhysics,2000,41(1):35-43.
    [24] Bykovskii F. A. Thermal fluxes in combustion chamber walls in thedetonation and turbulent combustion modes[J]. Fizika Goreniya i Vzryva,1991,27(1):70-75.
    [25] Bykovskii F. A. Continuous Spin Detonation in Annular Combustors[J].Combustion, Explosion, and Shock Waves,2005,41(4):449-459.
    [26] Bykovskii F. A., Mitrofanov V. V. Detonation combustion of a gasmixture in a cylindrical chamber[J]. combustion, Explosion, and Shock Waves,1980,16:570-578.
    [27] Bykovskii F. A., Mitrofanov V. V., Vedernikov E. F. Continuousdetonation combustion of fuel-air mixtures[J]. Combustion, Explosion, and ShockWaves,1997,33(3):344-353.
    [28] Bykovskii F. A., Vedernikov E. F. Discharge coefficients of nozzles and oftheir combinations in forward and reverse flows [J]. Journal of Applied Mechanics andTechnical Physics,1996,37(4):541-546.
    [29] Bykovskii F. A., Vedernikov E. F. Continuous detonation of a subsonicflow of a propellant[J]. Combustion, Explosion, and Shock Waves,2003,39(3):323-334.
    [30] Bykovskii F. A., Vedernikov E. F. Continuous spin detonation ofHydrogen-Oxygen mixtures3. methods of measuring flow parameters and flowstructure in combustor of different geometries[J]. Combustion, Explosion, and ShockWaves,2008,44(4):451-460.
    [31] Bykovskii F A, Vedernikov E F. Heat fluxes to combustor walls duringcontinuous spin detonation of fuel-air mixtures[J]. combustion, Explosion, and ShockWaves,2009,45(1):70-77.
    [32] Bykovskii F. A., Vedernikov E. F., Polozov S. V. Noise and vibrations in acombustor with continuous spin detonation combustion of the fuel[J]. Combustion,Explosion, and Shock Waves,2006,42(5):582-593.
    [33] Bykovskii F. A., Vedernikov E. F., Polozov S. V., Golubev Yu. V.Initiation of Detonation in Flows of Fuel-Air Mixtures[J]. Combustion, Explosion, andShock Waves,2007,43(3):345-354.
    [34] Bykovskii F. A., Zhdan S. A. Realization and Modeling of ContinuousSpin Detonation of a Hydrogen-Oxygen Mixture in Flow-Type Combustors.2.Combustors with Expansion of the Annular Channel[J]. Combustion, Explosion, andShock Waves,2009,45(6):716-728.
    [35] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Spin Detonation ofFuel-Air Mixtures in a Cylindrical Combustor[J]. Doklady Physics,2005,50(1):56-58.
    [36] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous SpinDetonation of Fuel-Air Mixtures[J]. Combustion, Explosion, and Shock Waves,2006,42(4):463-471.
    [37] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous SpinDetonations[J]. Journal of propulsion and power,2006,22(6):1204-1216.
    [38] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous spindetonation of Hydrogen-Oxygen mixtures2. combustor with an expanding annularchannel[J]. Combustion, Explosion, and Shock Waves,2008,44(3):330-342.
    [39] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous spindetonation of Hydrogen-Oxygen mixtures1. annular cylindrical combustors[J].Combustion, Explosion, and Shock Waves,2008,44(2):150-162.
    [40] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous detonation inthe regime of nonstationary ejection of the oxidizer[J]. Doklady Physics,2009,54(1):29-31.
    [41] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Realization and Modelingof Continuous Spin Detonation of a Hydrogen-Oxygen Mixture in Flow-TypeCombustors.1. Combustors of Cylindrical Annular Geometry[J]. Combustion,Explosion, and Shock Waves,2009,45(5):606-617.
    [42] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous SpinDetonation of a Hydrogen-Air Mixture with Addition of Air into the Products and theMixing Region[J]. Combustion, Explosion, and Shock Waves,2010,46(1):52-59.
    [43] Bykovskii F. A., Zhdan S. A., Vedernikov E. F. Continuous Detonation inthe Regime of Self-Oscillatory Ejection of the Oxidizer1. Oxygen As a Oxidizer[J].Combustion, Explosion, and Shock Waves,2010,46(3):344-351.
    [44] Zhdan S. A. Mathematical Modeling of a Rotating Detonation Wave in aHydrogen-Oxygen Mixture[J]. Combustion, Explosion, and Shock Waves,2007, Vol.43(no.4):449-459.
    [45] Zhdan S. A. Mathematical Model of Continuous Detonation in an AnnularCombustor with a Supersonic Flow Velocity[J]. Combustion, Explosion, and ShockWaves,2008,44(6).
    [46] Zhdan S. A., Mardashev A. M., Mitrofanov V. V. Calculation of the flowof spin detonation in an annular chamber[J]. Fizika Goreniya i Vzryva,1990,26(2):91-95.
    [47]周蕊,王健平.连续爆轰发动机热力学性质的数值模拟[J].航空动力学报,2011,27(1):16-24.
    [48]张旭东,范宝春,潘振华,归明月.旋转爆轰自持机理的数值研究[J].弹道学报,2011,23(1):1-4.
    [49]张旭东,范宝春,潘振华,归明月.旋转爆轰胞格结构的实验和数值研究[J].爆炸与冲击,2011,31(4):337-342.
    [50] Yi Tae-Hyeong, Lou Jing, Turangan Cary, Choi Jeong-Yeolet al.Propulsive performance of a continuously rotating detonation engine[J]. Journal ofpropulsion and power,2011,27(1):171-181.
    [51] Thomas Levi M., Schauer Frederick R, Hoke John L., Naples Andrew.Buildup and Operation of a Rotating Detonation Engine[R]. AIAA2011-602,2011.
    [52] Schwer Douglas A., Kailasanath Kailas. Numerical Study of the Effects ofEngine Size on Rotating Detonation Engines[R]. AIAA2011-581,2011.
    [53] Schwer Douglas A., Kailasanath K. Effect of Inlet on Fill Region andPerformance of Rotating Detonation Engines[R]. AIAA2011-6044,2011.
    [54] Schwer Douglas, Kailasanath Kailas. Numerical investigation of thephysics of rotating-detonation-engines[J]. Proceedings of the combustion institute,2011,33:2195-2202.
    [55] Russo Rachel M., King Paul I., Schauer Frederick R., Thomas Levi M.Characterization of Pressure Rise Across a Continuous Detonation Engine[R]. AIAA2011-6046,2011.
    [56] Pan Zhenhua, Fan Baochun, Zhang Xudong, Gui Mingyueet al. Waveletpattern and self-sustained mechanism of gaseous detonation rotating in a coaxialcylinder[J]. Combustion and flame,2011,158(11):2220-2228.
    [57] Nordeen Craig A., Schwer Douglas, Schauer Fredrick, Hoke Johnet al.Energy Transfer in a Rotating Detonation Engine[R]. AIAA2011-6045,2011.
    [58] Naour Bruno Le, Falempin Fran ois, Miquel Flore. Recent experimentalresults obtained on Continuous Detonation Wave Engine[R]. AIAA2011-2235,2011.
    [59] Liu Shi-Jie, Lin Zhi-Yong, Sun Ming-Bo, Liu Wei-Dong. ThrustVectoring of a Continuous Rotating Detonation Engine by Changing the Local InjectionPressure[J]. Chinese Physics Letters,2011,28(9).
    [60] Li Jian-Ling, Fan Wei, Chen Wei, Wang Keet al. Propulsive performanceof a liquid kerosene/oxygen pulse detonation rocket engine[J]. Experimental Thermaland Fluid Science,2011,35:265-271.
    [61] Kindracki J., Wolanski P., Gut Z. Experimental research on the rotatingdetonation in gaseous fuels-oxygen mixtures[J]. shock waves,2011,21:75-84.
    [62] Eude Yohann, Davidenko Dmitry M., G kalp Iskender. Use of theAdaptive Mesh Refinement for3D Simulations of a CDWRE (Continuous DetonationWave Rocket Engine)[R]. AIAA2011-2236,2011.
    [63] Davidenko Dmitry M., Eude Yohann, G kalp Iskender, Falempin Fran ois.Theoretical and Numerical Studies on Continuous Detonation Wave Engines[R]. AIAA2011-2334,2011.
    [64] Braun Eric M., Balcazar Thania S., Wilson Donald R., Lu Frank K.Experimental Study of a High-Frequency Fluidic Valve Fuel Injector[R]. AIAA2011-5545,2011.
    [65]张旭东,范宝春,归明月,潘振华.旋转爆轰的三维结构和侧向稀疏波的影响[J].爆炸与冲击,2010,30(4):337-341.
    [66]邵业涛,王健平,唐新猛,石天一.连续旋转爆轰发动机流场三维数值模拟[J].航空动力学报,2010,25(8):1717-1722.
    [67]潘振华,范宝春,归明月,张旭东.流动系统中爆轰波传播特性的数值模拟[J].爆炸与冲击,2010,30(6):593-595.
    [68]归明月,范宝春,张旭东,潘振华et al.旋转爆轰的三维数值模拟[J].推进技术,2010,31(1):82-86.
    [69] Yi Tae-Hyeong, Lou Jing, Turangan Cary, Khoo Boo Cheonget al. Effectof nozzle shapes on the performance of continuously rotating detonation engine[R].AIAA2010-152,2010.
    [70] Yetao Shao, Jianping Wang. Change in continuous detonation wavepropagation mode from rotating detonation to standing detonation[J]. Chinese PhysicsLetters,2010,27(3).
    [71] Yamada Takayuki, Hayashi A. Koichi, Yamada Eisuke, TsuboiNobuyukiet al. Detonation limit thresholds in H2/O2rotating detonation engine[J].Combustion science and technology,2010,182:1901-1914.
    [72] Yamada Takayuki, A.K.Hayashi, Yamada Eisuke, Tsuboi Nobuyukiet al.Numerical analysis of threshold of limit detonation in rotating detonation engine[R].AIAA2010-153,2010.
    [73] Shao Ye-Tao, Liu Meng, Wang Jian-Ping. Numerical Investigation ofRotating Detonation Engine Propulsive Performance[J]. Combustion science andtechnology,2010,182:1586-1597.
    [74] Shao Yetao, Liu Meng, Wang Jianping. Continuous Detonation Engineand Effects of Different Types of Nozzles on Its Propulsion Performance[J]. ChineseJournal of Aeronautics,2010,23:645-650.
    [75] Schwer Douglas A, K.Kailasanath. Numerical investigation of rotatingdetonation engine[R]. AIAA2010-6880,2010.
    [76] Braun Eric M., Lu Frank K., Wilson Donald R. Detonation engineperformance comparison using first and second law analyses[R]. AIAA2010-7040,2010.
    [77] Braun Eric M., Lu Frank K., Wilson Donald R. Aribreathing rotatingdetonation wave engine cycle analysis[R]. AIAA2010-7039,2010.
    [78] Braun Eric M., Dunn Nathan L., Lu Frank K. Testing of a continuousdetonation wave engine with swirled injection[R]. AIAA2010-146,2010.
    [79]邵业涛,王健平.连续爆轰发动机的二维数值模拟研究[J].航空动力学报,2009,24(5):980-986.
    [80]邵业涛,刘勐,王健平.圆柱坐标系下连续旋转爆轰发动机的数值模拟[J].推进技术,2009,30(6):717-721.
    [81] Yi Tae-Hyeong, Turangan Cary, Lou Jing, Wolanski Piotret al. Athree-dimensional numerical study of rotational detonation in an annular chamber[R].AIAA2009-634,2009.
    [82] Wolanski Piotr, Kindracki Jan. Research on continuous rotating detonationand its applications to jet propulsion[J]. ISABE,2009, ISABE-2009-1313.
    [83] Hishida Manabu, Fujiwara Toshi, Wolanski Piotr. Fundamentals ofrotating detonations[J]. shock waves,2009,19(1):1-10.
    [84] Fujiwara T., Hishida M., Kindracki J., Wolanski P. Stabilization ofDetonation for Any Incoming Mach Numbers[J]. Combustion, Explosion, and ShockWaves,2009,45(5):603-605.
    [85] Falempin Francois, Naour Bruno Le. R&T Effort on Pulsed andContinuous Detonation Wave Engines[R]. AIAA2009-7284,2009.
    [86] Falempin Francois, Daniau Emeric. A Contribution to the Development ofActual Continuous Detonation Wave Engine[R]. AIAA2008-2679,2008.
    [87] Davidenko Dmitry M., Gokalp Iskender, Kudryavtsev Alexey N.Numerical Study of the Continuous Detonation Wave Rocket Engine[R]. AIAA2008-2680,2008.
    [88] Davidenko D. M., Kudryavtsev A. N., Gokalp Iskender. Numericalsimulation of H2/O2continuous spin detonation with a detailed chemical mechanism[R].21st ICDERS Poitiers, France,2007.
    [89] Daniau E., Falempin F., Getin N., Bykovskii F.A.et al. Design of aContinuous Detonation Wave Engine for Space Application[R]. AIAA2006-4794,2006.
    [90] Wolanski Piotr, Kindracki Jan, Fujiwara Toshi. An Experimental Study ofRotating Detonation Engine[R]. ICDERS,2005.
    [91] Lentsch A., Bec R., Serre L., Falempin F. Overview of current Frenchactivities on PDRE and continuous detonation wave rocket engines[R]. AIAA2005-3232,2005.
    [92] Daniau E., Falempin F., Zhdan S. Pulsed and Rotating DetonationPropulsion Systems: First Step Toward Operational Engines[R]. AIAA2005-3233,2005.
    [93]刘世杰,林志勇,孙明波,刘卫东.旋转爆震波发动机二维数值模拟[J].推进技术,2010,31(5):634-640.
    [94]姜孝海,范宝春,董刚,陈志华et al.旋转爆轰流场的数值模拟[J].推进技术,2007,28(4):403-407.
    [95] Shi-Jie Liu, Zhi-Yong Lin, Feng-Chen Zhuang, Jin Zhouet al. Numericalresearch on detailed structure of continuous rotating detonation wave[R].7thInternational Colloquium on Pulsed and Continuous Detonations,St. Petersburg, Russia,2010.
    [96] Manson N., Dabora E. K. Chronology of research on detonation waves:1920-1950. Dynamic aspect of detonations.1993.
    [97] Bauer P., Dabora E. K., Manson. N. Chronology of early researchdetonation waves[In:3–18. Washington, D.C.: AIAA,1991.
    [98] Chapman D. L. On the rate of explosion in gases[J]. Philos. Mag.,1899,47:90-104.
    [99] Jouguet E. On the propagation of chemical reactions in gases[J]. J. deMathematiques Pures et Appliquees,1905,1:347-425.
    [100] Browne S., Ziegler J., Shepherd J. E. Numerical Solution Methods forShock and Detonation Jump Conditions[R]. California Institute of Technology:2004.
    [101] Zeldovich Ya. B. On the theory of the propagation of detonation ingaseous systems[J]. Zh. Eksp. Teor. Fiz.,1940,10:542-568.
    [102] Neumann Von. Theory of detonation waves[R]. O.S.R.D.: Rept.549,1942.
    [103] Doering W. On detonation processes in gases[J]. Ann. Phys.,1943,43:421-436.
    [104] Erpenbeck J. J. Stability of idealized one-reaction detonations[J]. Phys.Fluids,1964,7:684-696.
    [105] Erpenbeck J.J. Stability of steady-state equilibrium detonations[J]. Phys.Fluids,1962,5:604-614.
    [106] Abouseif G. E., Toong T. Y. Theory of unstable detonations[J].Combustion and flame,1982,45:67-94.
    [107] Abouseif G. E., Toong T. Y. Theory of unstable two-dimensionaldetonations: Genesis of the transverse waves[J]. Combustion and flame,1986,63:191-207.
    [108] Buckmaster J. D., Neves J. One-dimensional detonation stability: Thespectrum for infinite activation energy[J]. Phys. Fluids,1988,31(12):3571-3576.
    [109] Buckmaster J. D. A theory for triple point spacing in overdriven detonationwaves[J]. Combustion and flame,1989,77:219-228.
    [110] Lee H. I., Stewart D. S. Calculation of linear detonation instability:Onedimensional instability of planar detonations[J]. J. Fluid Mech.,1990,216:103-132.
    [111] Bourlioux A., Majda A. J. Theoretical and numerical structure for unstabletwo-dimensional detonations[J]. Combustion and flame,1992,90:211-229.
    [112] Clavin P., He L. Stability and non-linear dynamics of one-dimensionaloverdriven detonations in gases[J]. J. Fluid Mech.,1996,306:353-378.
    [113] Short M. An asymptotic derivation of the linear stability of thesquare-wave detonation using the Newtonian limit[J]. Proc. R. Soc. Lond. A,1996,452:2203-2224.
    [114] Sharpe G. J. Linear stability of idealized detonations[J]. Proc. R. Soc.Lond. A,1997,453:2603-2625.
    [115] Short M., Stewart D. S. Cellular detonation stability. Part1. Anormal-mode linear analysis[J]. J. Fluid Mech.,1998,368:229-262.
    [116] Clavin P., Williams F. A. Dynamics of planar gaseous detonations nearChapman-Jouguet conditions for small heat release[J]. Combustion Theory andModeling,2002,6:127-139.
    [117] He L., Lee J. H. S. The dynamical limit of one-dimensional detonations[J].Phys. Fluids,1995,7(5):1151-1158.
    [118] Sharpe G. J., Falle S.A.E.G. One-dimensional numerical simulations ofidealized detonations[J]. Proc. R. Soc. Lond. A,1999,455:1203-1214.
    [119] Bourlioux A. Numerical study of unstable detonation[D]. Princeton:Princeton University (Ph.D.),1991.
    [120] Henrick Andrew K., Aslam Tariq D., Powers Joseph M. Highly accuratenumerical simulations of pulsating one-dimensional detonations[R]. AIAA2005-1311,2005.
    [121] Henrick A. K., Aslam T. D., Powers J. M. Simulations of PulsatingOne-Dimensional Detonations with True Fifth Order Accuracy[J]. Journal ofComputational Physics,2006,213(1):311-329.
    [122]洪滔,秦承森.一维爆轰波不稳定性的数值模拟[J].高压物理学报,2003,17(4):255-260.
    [123] Sharpe G. J., Falle S.A.E.G. Numerical simulations of pulsatingdetonations: I. Non-linear stability of steady detonations[J]. Combustion Theory andModeling,2000,4:557-574.
    [124] Ng Hoi Dick. The effect of chemical reaction kinetics on the structure ofgaseous detonations[D]. Montreal: McGill University (Ph.D.),2005.
    [125] Ng H. D., Higgins A. J., Kiyanda C. B., Radulescu M. I.et al. NonlinearDynamics and Chaos Analysis of One-Dimensional Pulsating Detonations[J].Combustion Theory and Modeling,2005,9(1):159-170.
    [126] Ng H. D., Radulescu M. I., Higgins A. J., Nikiforakis N.et al. Numericalinvestigation of the instability for one-dimensional Chapman-Jouguet detonations withchain-branching kinetics[J]. Combustion Theory and Modeling,2005,9:385-401.
    [127] Lee John H. S. Dynamic parameters of gaseous detonations[J]. AnnualReview of Fluid Mechanics,1984,16(311-336).
    [128] Austin Joanna M. The Role of Instability in Gaseous Detonation[D].Pasadena, California: California Institute of Technology (Ph.D),2003.
    [129] Austin J.M., Pintgen F., J.E.Shepherd. Reaction zones in highly unstabledetonations[J]. Proceedings of the combustion institute,2005,30:1849-1857.
    [130] Austin J. M., Pintgen F., Shepherd J. E. Lead shock oscillation anddecoupling in propagating detonations[R]. AIAA2005-1170,2005.
    [131] Lee J. H. S., Radulescu M. I. On the Hydrodynamic Thickness of CellularDetonations[J]. Combustion, Explosion, and Shock Waves,2005,41(6):745-765.
    [132] Radulescu M. I., Sharpe Gary J., Law C. K., Lee John H. S. Thehydrodynamic structure of unstable cellular detonations[J]. Journal of Fluid Mechanics,2007,580:31-81.
    [133] Radulescu M. I., Sharpe G. J., Lee J. H. S., Kiyanda C. B.et al. Theignition mechanism in irregular structure gaseous detonations[J]. Proceedings of thecombustion institute,2005,30:1859-1867.
    [134] Shepherd J. E., Pintgen F., Austin J. M., Eckett C. A. The structure of thedetonation front in gases[J]. AIAA2002-0773,2002.
    [135] Weber M., Olivier H. The thickness of detonation waves visualised byslight obstacles[J]. shock waves,2004,13:351-365.
    [136]王昌建.气相爆轰波反应区结构的平面激光诱导荧光测量[J].力学学报,2007,39(5).
    [137] Pintgen F., Eckett C. A., Austin J. M., Shepherd J. E. Direct observationsof reaction zone structure in propagating detonations[J]. combustion and flame,2003,133:211-229.
    [138] White D. R. Turbulent Structure of Gaseous Detonation[J]. Physics ofFluids,1961,4(4):465-480.
    [139] Schott G. L. Observation of the Structure of Spinning Detonation[J].Physics of Fluids,1965,8(5):850-865.
    [140] Strehlow R. A. Transverse Waves in Detonations[J]. Combustion andflame,1965,9(2):109-119.
    [141] Soloukhin R. I. Multiheaded Structure of Gaseous Detonation[Combustionand flame,1966,10(1):51-58.
    [142] Strehlow R. A. The nature of transverse waves in detonations[J].Astronautica Acta,1969,5:539-548.
    [143] Voitsekhovskii B. V., Mitrofanov V. V., Topchiyan M. E. Structure of thedetonation front in gases[J]. Fizika Goreniya i Vzryva,1969,5(3):385-395.
    [144] Fickett Wildon, Davis William C. Detonation: theory and experiment[M].New York: Dover Publications, Inc,1999.
    [145] Ng H. D., Botros B. B., Chao J., Yang J. M.et al. Head-on collision of adetonation with a planar shock wave[J]. Shock Waves,2006,15(5):341-352.
    [146] Choi Jeong-Yeol, Ma Fuhua, Yang Vigor. Numerial simulation of cellularstructure of two-dimensional detonation waves[R]. AIAA2005-1174,2005.
    [147] Kailasanath K., Oran E. S., Boris J. P. Determination of detonation cellsize and the role of transverse waves in two-dimensional detonations[J]. Combustionand Flame,1985,61:199-209.
    [148] Oran Elaine S., James W. Weber Jr., Stefaniw Eliza I., Lefebvre MichelH.et al. A numerical study of a two-dimensional H2-O2-Ar detonation using a detailedchemical reaction model[J]. Combustion and flame,1998,113:147-163.
    [149] Oran E. S., Young T. R., Boris J. P., Picone J. M.et al. A study ofdetonation structure: the formation of unreacted gas pockets[J]. Nineteenth Symposium(international) on Combustion,1982:573-582.
    [150] Taki S., Fujiwara T. Numerical analysis of two-dimensional nonsteadydetonations[J]. AIAA Journal,1978,16(1):73-77.
    [151] Trotsyuk A. V. Numerical Simulation of the Structure ofTwo-Dimensional Gaseous Detonation of an H2-O2-Ar Mixture[J]. Combustion,Explosion, and Shock Waves,1999,35(5):549-558.
    [152] Williams F. A. Detonation chemistry: A review[R]. AIAA2002-0778,2002.
    [153]李廷文,刘云峰,王健平.二维爆轰波详细化学反应数值模拟[J].气体物理-理论与应用,2007,2(1):52-57.
    [154]王昌建,徐胜利.直管内胞格爆轰的基元反应数值模拟[J].爆炸与冲击,2005,25(5):405-416.
    [155]王丁喜,严传俊.爆震燃烧波在管内传播过程的二维数值模拟[J].机械科学与技术,2006,25(4):461-464.
    [156]张德良,谢魏,郭长铭,胡湘渝.气相爆轰胞格结构和马赫反射数值模拟[J].爆炸与冲击,2001,21(3):161-167.
    [157] Deiterding R. Parallel Adaptive Simulation of Multi-dimensionalDetonation Structures[D]. Cottbus, Germany: Technical University of Cottbus (Ph.D),2003.
    [158] Gamezo Vadim N., Desbordes Daniel, Oran Elaine S. Formation andevolusion of two-dimensional cellular detonations[J]. Combustion and flame,1999,116:154-165.
    [159] Gamezo Vadim N., Khokhlov Alexei M., Oran Elaine S. The Influence ofShock Bifurcations on Shock-Flame Interactions and DDT[J]. Combustion and flame,2001,126:1810-1826.
    [160] Gamezo V. N., Khokhlov A. M., Oran E. S. EFFECTS OF WAKES ONSHOCK-FLAME INTERACTIONS AND DEFLAGRATION-TO-DETONATIONTRANSITION[J]. Proceedings of the Combustion Institute,2002,29:2803-2808.
    [161] Gamezo Vadim N., Ogawa Takanobu, Oran Elaine S. Flame accelerationand DDT in channels with obstacles: Effect of obstacle spacing[Combustion and flame,2008,155:302-315.
    [162] Gamezo Vadim N., Oran Elaine S., Khokhlov Alexei M. Formation ofinduction time gradients for detonation initiation[R]. AIAA2003-1317,2003.
    [163] Law Chung K. Combustion at a crossroads: Status and prospects[J].Proceedings of the combustion institute,2007,31:1-29.
    [164] Oran E.S., Gamezo V.N., Khokhlov A.M. EFFECTS OF BOUNDARYLAYERS AND WAKES ON SHOCK-FLAME INTERACTIONS ANDDDT[AIAA-2002-0776,2002.
    [165] Oran E. S., Kailasanath K., Guirguis R. H. Numerical simulations of thedevelopment and structure of detonations[J]. Prog. Astronaut. Aeronaut.,1988,114:155-169.
    [166] Oran E. S., Khokhlov Alexei M. numerical simulation of deflagraion todetonation transition[R]. AIAA99-0965,1999.
    [167] Shimizu H., Tsuboi N., Hayashi A. K. Study of detailed chemical reactionmodel on hydeogen-air detonation[R]. AIAA2001-0478,2001.
    [168] Smirnov N. N., Nikitin V. F., Shurekhdeli S. Alyari. Investigation ofSelf-Sustaining Waves in Metastable Systems: Deflagration-to-Detonation Transition[J].JOURNAL OF PROPULSION AND POWER,2009,25(3):593-608.
    [169] Veynante Denis, Vervisch Luc. Turbulent combustion modeling[J].Process in energy and combustion science,2002,28:193-266.
    [170] Westbrook Charles K., Mizobuchi Yasuhiro, Poinsot Thierry J., SmithPhillip J.et al. Computational combustion[J]. Proceedings of the combustion institute,2005,30:125-157.
    [171] Gavrikov A. I., Efimenko A. A., Dorofeev S. B. A model for detonationcell size prediction from chemical kinetics[J]. combustion and flame,2000,120:19-33.
    [172] Lee J. J., Garinis D., Frost D. L., Lee J. H. S.et al. Two-dimensionalautocorrelation function analysis of smoked foil patterns[J]. Shock waves,1995,5:169-174.
    [173] Leung C., Radulescu M. I., Sharpe G. J. Coherent high frequencyinstabilities of detonations[R].23rd ICDERS, Irvine, USA,2011.
    [174] Shepherd J. E. The chemical kinetics of hydrogen-air-diluentdetonations[J]. Prog. Astronaut. Aeronaut.,1986,106:263-293.
    [175] Vasil'ev A. A. Cell Size as the Main Geometric Parameter of a MultifrontDetonation Wave[J]. Journal of Propulsion and Power,2006,22(6):1245-1260.
    [176] Hanana M., Lefebvre M. H., Tiggelen P.J. Van. Pressure profiles indetonation cells with rectangular and diagonal structures[J]. shock waves,2001,11:77-88.
    [177] Williams Daniel N., Bauwens Luc, Oran E. S. Detailed structure andpropagation of three-dimensional detonations[J]. Twenty-Sixth Symposium(International) on Combustion,1996:2991-2998.
    [178] Tsuboi Nobuyuki, Katoh Seiji, Hayashi A. Koichi. Three-dimensionalnumerical simulation for hydrogen/air detonation: rectangular and diagonal structures[J].Proceedings of the Combustion Institute,2002,29:2783-2788.
    [179] Gamezo V.N., Oran E.S., Khokhlov A.M. Three-dimensional reactiveshock bifurcations[J]. Proceedings of the combustion institute,2005,30:1841-1847.
    [180] He Hao, Yu S.-T. John, Zhang Zeng-Chan. Direct calculations of one-,two-, and three-dimensional detonations by the CESE method[R]. AIAA2005-229,2005.
    [181] Cho D.-R., Won Su-Hee, Choi Jeong-Yeol, Ma Fuhuaet al.Three-dimensional Unstable Detonation Wave Structures in Pipes[R]. AIAA2006-957,2006.
    [182] Deledicque Vincent, Papalexandris Miltiadis V. Computational study ofthree-dimensional gaseous detoantion structures[combustion and flame,2006,144:821-837.
    [183] Dou Hua-Shu, Tsai Her Mann, Khoo Boo Cheong, Qiu Jianxian.three-dimensional numerical simulation for detonation waves using WENO schemes[R].AIAA2007-1177,2007.
    [184] Cho D.-R, Won Soo-Hee, Shin Edward Jae-Ryul, Choi Jeong-Yeol.numerical study of three-dimensional detonation wave dynamics in a circulartube[AIAA2009-1558,2009.
    [185] Radulescu Matei I., Ng Hoi Dick, Lee John H. S., VaratharajanBalachandar. The effect of argon dilution on the stability of acetylene/oxygendetonations[J]. Proceedings of the combustion institute,2002,29:2825-2831.
    [186] Ando Daisuke, Inaba Kazuaki, Yamamoto Makoto. NumericalInvestigation on the TransverseWave Property of Two-Dimensional H2-O2-DiluentDetonations[R]. AIAA2007-989,2007.
    [187] Gamezo V. N., Vasilev A. A., Khokhlov A. M., Oran E. S. Fine cellularstructures produced by marginal detonations[J]. Proceedings of the combustion institute,2000,28:611-617.
    [188] Kessler D. A., Gamezo V. N., Oran E. S. Multilevel detonation cellstructures in methane-air mixtures[J]. Proceedings of the combustion institute,2010.
    [189] Kessler D. A., Gamezo V. N., Oran E. S. Wave structures and irregulardetonation cells in methane-air mixtures with concentration gradients[R]. AIAA2011-798,2011.
    [190] Mahmoudi Y., Mazaheri K. High resolution numerical simulation of thestructure of2-D gaseous detonations[J]. Proceedings of the combustion institute,2011,33:2187-2194.
    [191] Presles H. N., Desbordes D., Guirard M., Guerraud C. Gaseousnitromethane and nitromethane-oxygen mixtures: a new detonation structure[J]. Shockwaves,1996,6:111-114.
    [192] Sugiyama Yuta, Matsuo Akiko. On the characteristics of two-dimensionaldouble cellular detonations with two successive reactions model[J]. Proceedings of theCombustion Institute,2011,33:2227-2233.
    [193] Mach P., Radulescu M.I. Mach reflection bifurcations as a mechanism ofcell multiplication in gaseous detonations[J]. Proceedings of the Combustion Institute,2010.
    [194] Murray S. B. Numa Manson on velocity deficits and detonation stability[J].shock waves,2008,18:255-268.
    [195] Radulescu M. The propagation and failure mechanism of gaseousdetonations: experiments in porous-walled tubes[D]. Montreal: McGill University(Ph.D),2003.
    [196] Radulescu Matei I., Lee John H. S. The failure mechanism of gaseousdetoantions: experiments in porous wall tubes[J]. combustion and flame,2002,131:29-46.
    [197] Tonello Nicolas A., Sichel Martin, E.S.Oran. Numerical simulation of thediffraction of planar detonations in h2-o2mixtures[J]. Twenty-sixth symposium(international) on combustion,1996:3033-3039.
    [198] Khasainov Boris, Presles Henri-Noel, Desbordes Daniel, DemontisPietroet al. Detonation diffraction from circular tubes to cones[J]. shock waves,2005,14(3):187-192.
    [199] Guo Changming, Wang Changjian, Xu Shengli, Zhang Hanhong. Cellularpattern evolution in gaseous detonation diffraction in a90degree-branched channel[J].combustion and flame,2007,148(89-99).
    [200] Qu Q. The evolution of a detonation wave in a variable cross-sectionalchamber[J]. Shock Waves,2008,18(3):213-233.
    [201] Pintgen F., Shepherd J. E. Detonation diffraction in gases[combustion andflame,2009,156:665-677.
    [202] Nicholls J. A., Dabora E. K., Ong R. S. B. An experimental investigationof the possibility of achieving a standing detonation wave[R]. The University ofMichigan:1959.
    [203] Voitsekhovskii B. V. Maintained detonations[J]. Doklady Akademii NaukUzSSR,1959,129(6):1254-1256.
    [204] Voitsekhovskii B. V. Spinning maintained detonations[J]. Prikl. Mekh.Tekh. Fiz.,1960,(3):157-164.
    [205] Mikhailov V. V., Topchiyan M. E. Study of continuous detonation in anannular channel[J]. Fizika Goreniya i Vzryva,1965,1(4):20-23.
    [206] Edwards B. D. Maintained detonation waves in an annular chennel: ahypothesis which provides the link between classical acoustic combustion instabilityand detonation waves[J]. Symposium (International) on combustion,1977,16(1):1611-1618.
    [207] Ragland K. W., Cosens G. L., Cullen R. E. Detonation ofHydrogen-Oxygen at Low Temperature and High Pressure[J]. AIAA Journal,1964,2(1):142-144.
    [208] Canteins Gabriel. Study of Continuous Rotary Detonation-Application forpropulsion[D]. Poitiers: Universtity of Poitiers (Ph.D),2006.
    [209] Bartenev A. M., Gelfand B. E. Spontaneous initiation of detonations[J].progress in energy and combustion science,2000,26:29-55.
    [210] Lee John H. S. Initiation of gaseous detonation[J]. Annual Review ofFluid Mechanics,1977,28:75-104.
    [211] Oran E. S., Gamezo Vadim N. Origins of the deflagration-to-detonationtransition in gas-phase combustion[J]. combustion and flame,2007,148:4-47.
    [212]严传俊,何立明,范玮,雷恒仁et al.脉冲爆震发动机的研究与发展[J].航空动力学报,2001,16(3):212-217.
    [213] Hoffmann H. Reaction-Propuision Produced by Intermittent DetonationCombustion[R]. German Research Institute for Giiding: Rept. ATI-52365,1940.
    [214] Heiman D., Shreeve R. P., Eideiman S. Detonation Pulse Engine[R].AIAA1986-1683,1986.
    [215]何立明,徐通模,严传俊,汪林全et al.脉冲爆震发动机的推力测试与分析[J].西安交通大学学报,1998,32(10):18-21.
    [216]范玮,严传俊,邓君香,黄希桥et al.模型两相脉冲爆震发动机推力的测试与研究[J].航空动力学报,2001,16(2):185-188.
    [217] Ma Fh. Thrust chamber dynamics and propulsive performance of multitubepulse detonation engines[J]. Journal of Propulsion and Power,2005, vol.21(no.4).
    [218] Ma Fuhua, Choi Jeong-Yeol, Yang Vigor. Numerical modeling ofvalveless airbreathing pulse detonation engine[R]. AIAA2005-227,2005.
    [219] Ma Fuhua, Choi Jeong-Yeol, Yang Vigor. Thrust Chamber Dynamics andPropulsive Performance of Single-Tube Pulse Detonation Engines[J]. Journal ofpropulsion and power,2005,21(3):512-526.
    [220] Harris P. G. Pulse Detonation Engine as a Ramjet Replacement[J]. Journalof Propulsion and Power,2006,22(2):462-473.
    [221] Ma Fuhua, Choi Jeong-Yeol, Yang Vigor. Propulsive performance ofairbreathing pulsed detonation engines[J]. Journal of propulsion and power,2006,22(6):1188-1203.
    [222] Ma Fuhua, Choi Jeong-Yeol, Yang Vigor. internal flow dynamics andperformance of valveless airbreathing pulse detonation engine[R]. AIAA2006-1024,2006.
    [223]张义宁,王家骅,张靖周.多循环吸气式脉冲爆震发动机推力直接测量[J].推进技术,2006,27(5):459-462.
    [224]郑龙席,严传俊,范玮,李牧et al.脉冲爆震发动机推力测试方法分析与比较[J].测控技术,2006,25(4):37-41.
    [225] Bellini Rafaela, Lu Frank K. Exergy analysis of a pulse detonation powerdevice[J]. Journal of propulsion and power,2010,26(4):875-877.
    [226] Changxin Peng, Wei Fan, Qun Zhang, Cheng Yuanet al. Experimentalstudy of an air-breathing pulse detonation engine ejector[J]. Experimental Thermal andFluid Science,2011,35:971-977.
    [227] Tsuboi Nobuyuki, Kawakami Yuzi, Ezure Ryosuke, Hayashi A. Koichietal. Numerical Study and Performance Evaluation for Pulse Detonation Engine with anAerospike Nozzle[R]. AIAA2011-800,2011.
    [228] Kaneshige Michael J., Shepherd J. E. Oblique detonation stabilized on ahypervelocity projectile[J]. Twenty-Sixth Symposium (International) on Combustion,1996:3015-3022.
    [229] Maeda Shinichi, Inada Ryuichi, Kasahara Jiro, Matsuo Akiko.Visualization of the non-steady state oblique detonation wave phenomena aroundhypersonic spherical projectile[J]. Proceedings of the combustion institute,2010.
    [230] Higgins A. J. The effect of confinement on detonation initiation by bluntprojectiles[1997.
    [231] Higgins A. J., Bruckner A. P. Experimental investigation of detonationinitiation by hypervelocity blunt projectiles[R]. AIAA1996-0342,1996.
    [232] Lehr H. F. Experiments on Shock-Induced Combustion[J]. AstronauticaActa,1972,17:589-597.
    [233] Morris C. I.,.Kamel M. R, Ben-Yakar A., Hanson R. K. Combinedschlieren and OH PLIF imaging study of ram accelerator flowfields[R]. AIAA1998-0244,1998.
    [234] Morris C. I., Kamel M. R., Hansom R. K. Shock-induced combustion inhigh-speed wedge flows[J].27th Symp.(International) on Combustion,1998,27:2157-2164.
    [235] Viguier C., Gourara A., Desbordes D. Three-dimensional structure ofstabilization of oblique detonation wave in hypersonic flow[J]. Twenty-Seventhsymposium(international) on combustion,1998:2207-2214.
    [236] Viguier C., Silva L. F. Figueira Da, Desbordes Daniel, Deshaies Bruno.Onset of oblique detonation waves: comparison between experimental and numericalresults for hydrogen-air mixtures[J]. Proceedings of the Twenty-Sixth Symposium(International) on Combustion,1996:3023-3031.
    [237] Viguier C., Guerraud C., Desbordes D. H2/air and CH4/air detonations andcombustions behind oblique shock waves[J]. Twenty-Fifth Symposium (International)on Combustion,1994:53-59.
    [238]林志勇,李大鹏,周进,黄玉辉.连续式高焓超声速预混加热器设计与分析[J].推进技术,2007,28(6).
    [239]林志勇.高静温超声速预混气爆震起爆与发展过程机理研究[D].长沙:国防科学技术大学(Ph.D),2008.
    [240]林志勇,周进,张继业,王昱et al.预混超声速气流斜激波诱导脱体爆轰研究[J].航空动力学报,2009,24(1):50-54.
    [241] Fan B. C., Sichel M., Kauffman C. W. Analysis of obliqueshock-detonation wave interactions in the supersonic flow of a combustible medium[R].AIAA1988-0441,1988.
    [242] Carrier G. F., Fendell F. E., Fink S. F. Nonintrusive stabilization of aconical detonation wave for supersonic combustion[J]. Combustion and flame,1995,103:281-295.
    [243] Grismer Matthew J., Powerst. Joseph M. Calculations for SteadyPropagation of a Generic Ram Accelerator Configuration[J]. Journal of propulsion andpower,1995,11(1).
    [244] Papalexandris M. V. A Numerical Study of Wedge-Induced Detonations[J].Combustion and Flame,2000,120(4):526-538.
    [245] Fusina Giovanni, Sislian Jean P., Parent Bernard. Computational study offormation and stability of standing oblique detonation waves[R]. AIAA2004-1125,2004.
    [246] Fan Hui-Yuan, Lu. Frank K. Numerical Study of Reactive Flow Past aWedge in a Channel[R]. AIAA2005-1168,2005.
    [247] Choi Jeong-Yeol, Kim Dong-Wan, Jeung In-Seuck, Ma Fuhuaet al.Cell-like structure of unstable oblique detonation wave from high-resolution numericalsimulation[J]. proceedings of the combustion institute,2007,31:2473-2480.
    [248] Choi Jeong-Yeol, Shin Edward J.-R., Jeung In-Seuck. Unstablecombustion induced by oblique shock waves at the non-attaching condition of theoblique detonation wave[J]. Proceedings of the combustion institute,2009,32:2387-2396.
    [249] Alexandrov V. G., Baskakov A. A., Kraiko A. N., Krasheninnikov S. Y.etal. Supersonic Pulse Detonation Ramjet Engine: New Experimental and TheoreticalResults. Pulse and Continuous Detonation Propulsion Moscow,2003.
    [250] Alexandrov V. G., Kraiko A. N., Reent K. S. Mathematical Model ofSupersonic Pulsed Detonation Ramjet Engine[J]. Chemical Physics Reports,2001,20(6):84-89.
    [251] Alexandrov V. G., Kraiko A. N., Reent K. S. Determination of the Integraland Local Characteristics of Supersonic Pulsed Detonation Ramjet Engine (SPERE)[R].AIAA2001-1788,2001.
    [252] Alexandrov V. G., Kraiko A. N., Reent K. S. The Determination ofCharacteristics of Supersonic Pulsed Detonation Ramjet Engine (SPDRE)[J]. Journal ofAeromechanics and Gas Dynamics,2001,2:3-15.
    [253] Alexandrov V. G., Kraiko A. N., Reent K. S. Integral and LocalCharacteristics of Supersonic Pulsed Detonation Ramjet Engine (SPDRE)[J]. Journal ofMathematical Modeling,2003,15(6):17-26.
    [254] Alexandrov V. G., Kraiko A. N., Pyankov K. S., Reent K. S. SomeProblems of Supersonic Pulsed Detonation Ramjet Engine (SPDRE): Theory andExperimental Investigation of Detonation Wave Propagating Upstream the SupersonicFlow[R]. ISABE-2005-1050,2005.
    [255] Vasil'ev A. A., Zvegintsev V. I., Nalivaichenko D. G. Detonation Waves ina Reactive Supersonic Flow[J]. Combustion, Explosion, and Shock Waves,2006,42(5):568-581.
    [256] Machkenna W. W. Interaction between detonation waves and flowfields[J].AIAA Journal,1967,5(5):868-873.
    [257] Ishii K., Kataoka H., Kojima T. Initiation and propagation of detonationwaves in combustible high speed flows[J]. Proceedings of the combustion institute,2009,32:2323-2330.
    [258]范孝华.壁面条件对爆震波起爆以及传播过程影响机理的研究[D].长沙:国防科技大学(硕士学位论文),2011.
    [259]林伟.爆震燃烧热射流起爆机理研究[D].长沙:国防科技大学(硕士学位论文),2010.
    [260] Kaneshige Michael, Shepherd Joseph E. Detonation Database[R].Graduate Aeronautical Laboratories California Institute of Technology Pasadena:1997.
    [261]刘君,周松柏,徐春光.超声速流动中燃烧现象的数值模拟方法及应用[M].长沙:国防科大出版社,2008.
    [262]刘君,张涵信,高树椿.一种新型的计算化学非平衡流动的解耦方法[J].国防科技大学学报,2000,22(5):19-23.
    [263] Mott David R., Oran Elaine S., Leer Bram Van. A Quasi-Steady-StateSolver for the Stiff Ordinary Differential Equations of Reaction Kinetics[J]. Journal ofComputational Physics,2000,164:407-428.
    [264] Balakrishnan G., Williams F.A. Turbulent Combustion Regimes forHypersonic Propulsion Employing Hydrogen/Air Diffusion Flames[J]. Journal ofPropulsion and Power,1994,10(3):434-436.
    [265] Choi Jeong-Yeol, Jeung In-Seuck, Yoon Youngbin. Computational fluiddynamics algorithms for unsteady shock-induced combustion, Part1: validation[J].AIAA Journal,2000,38(7):1179-1187.
    [266]刘世杰,孙明波,林志勇,刘卫东.钝头体激波诱导振荡燃烧现象的数值模拟[J].力学学报,2010,42(4):597-606.
    [267] Mcvey J. B., Toong T-Y. Mechanism of instabilities of exothermichypersonic blunt-body flows[J]. Combustion Science and Technology,1971,3:63-76.
    [268]刘世杰,林志勇,孙明波,刘卫东.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报,2010,32(5):1-6.
    [269]王春,张德良,姜宗林.爆轰波平掠惰性气体界面及其解耦现象的数值研究[J].爆炸与冲击,2006,26(6):556-561.
    [270] Dabora E. K., Nicholls J. A., Morrison R. B. The influence of acompressible boundary on the propagation of gaseous detonations[J]. Tenth Symposium(International) on Combustion,1965:817-830.