斑点追踪显像技术评价室间隔缺损修补术围术期左室形态及收缩功能的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1953年Gibbon应用垂屏式氧合器和滚压泵在心脏直视下成功手术修复1例房间隔缺损以来[1],体外循环心脏直视手术已成为心脏外科的主要治疗手段,成功矫治了许多先天性及后天获得性心脏疾患,为患者赢得了宝贵的生存机会。但体外循环心脏直视术后,机体循环系统重新启动及加载运行,常导致患者血流动力学状态发生急剧改变。同时,手术本身的不利影响,如体外循环非生理性灌注触发的全身炎症反应综合征、术中心肌的缺血再灌注损伤、手术本身的机械损伤等多种因素,常导致术后心肌发生严重损伤。研究表明:体外循环心脏直视术后有相当比例患者发生低心排血量综合征、心力衰竭、各种心律失常等严重并发症,从而影响患者的预后与存活。因此,早期识别心脏手术后患者心脏功能情况,对指导临床医师采取及时合理的医疗措施,预防严重并发症的发生及改善预后具有重要临床意义。
     影响心功能的因素有很多,主要有心室形态、前、后负荷、心肌收缩力、心肌收缩同步性、心率等。超声心动图技术因其简便无创、价格低廉、可床边重复使用等优点受到临床医师的青睐,目前已成为监测心脏术后心功能的主要影像学方法。左室射血分数(left ventricular ejection fraction)及短轴缩短率(fraction shortening)是常用的评价左室收缩功能的指标,但其仅能初步反映左室整体功能情况,并显著受心室负荷状态的影响,不能对具有三维运动的心脏的局部心肌运动特征进行全面分析[5-7]。新近开发的二维斑点追踪显像技术,通过实时追踪心肌内超声斑点回声的空间运动获得心肌运动信息,无角度和帧频依赖性,可对任何超声切面进行分析,能同时定量评价心肌在纵向、轴向及环向方向上的运动力学特征,从而能对整体和局部心肌的运动和功能进行全面评价。
     室间隔缺损(ventricular septal defect, VSD)是儿童最常见的先天性心脏病,占所有先天性心脏病的25%左右。国内自1958年6月开展体外循环下VSD修补术,如今单纯VSD手术成功率已达90%以上,成为VSD的主要治疗手段。外科VSD修补术也是最常见的小儿心脏外科手术之一。因此,本研究以VSD修补术为例,应用二维斑点追踪显像技术对VSD修补术后早期左室形态、左室心肌收缩同步性及左室局部心肌收缩功能进行全面定量分析,以探讨体外循环心内直视手术对左室功能的影响。
     本研究分以下三部分:
     第一部分二维超声心动图评价VSD修补术对围术期左室构形的影响
     本部分以拟行VSD修补术的患儿作为研究对象,根据VSD大小,将其分为三组:大、中、小VSD组。应用二维超声心动图对术前及术后6h内的左室形态特征进行全面分析,以探讨体外循环心内直视手术对VSD患儿左室构型的影响。
     结果显示:①各VSD组术前与对照组相比:小VSD组收缩末期与舒张末期以体表面积标化的左室长轴长径(Ld、Ls)、短轴前后径(APd、APs)、侧壁间隔横径(LSd、LSs);左室长轴构型指标SIs、SId、[(D1+D2+D3)/3L]d、[(D1+D2+D3)/3L]s、[2 D1/L]d、[2 D1/L]s、FSL、FSD2及短轴构型指标LSd/APd、LSs/APs、FSLS、FSAP测值与对照组相比差异均无统计学意义;中VSD组及大VSD组Ld、Ls、LSd、LSs、APd、APs、SIs、[(D1+D2+D3)/3L]d、[2D1/L]d、FSD2、FSLS测值均显著高于对照组(P<0.05 or <0.01);SId、[(D1+D2+D3)/3L]s、[2 D1/L]s、LSs/APs测值显著低于对照组(P<0.05),FSAP、LSd/APd测值与对照组相比差异无统计学意义。中VSD组FSL测值与对照组相比差异无统计学意义,而大VSD组FSL测值显著低于对照组(P<0.05)。②各VSD组术后与术前相比:小VSD组术后除Ld、Ls、LSd、APd、[2 D1/L]d、FSLS测值显著低于术前外(P<0.05),其余各指标测值术前、术后相比差异无统计学意义。中VSD组及大VSD组术后Ld、Ls、LSd、APd、APs、LSd/APd、SIs、[(D1+D2+D3)/3L]d、[2 D1/L]d、FSD2、FSLS测值显著低于术前,SId、[(D1+D2+D3)/3L]s、[2 D1/L]s、LSs/APs显著高于术前,组间比较差异均有统计学意义(P<0.05),其余指标测值术前、术后相比差异无统计学意义。③对照组与各VSD组术后相比:小VSD组上述各指标测值与对照组相比差异无统计学意义。中VSD组除FSLS、FSAP测值显著低于对照组,LSs、APs测值显著高于对照组外,其余各指标测值两组间比较差异无统计学意义。大VSD组除Ld、SIs、LSd、APd、LSs、APs、[(D_1+D_2+D_3)/3L]d、[2 D_1/L]d测值显著高于对照组,[(D_1+D_2+D_3)/3L]s、[2 D_1/L]s、LSd/APd、LSs/APs、FSLS、FSAP测值显著低于对照组外(P<0.05),其余各指标测值两组间比较差异无统计学意义。
     第二部分斑点追踪显像技术评价VSD修补术对围术期左室心肌收缩同步性的影响
     本部分以拟行VSD修补术的患儿作为研究对象,根据VSD大小,将其分为三组:大、中、小VSD组。应用斑点追踪显像技术结合应变参数对VSD修补术前及术后6h内左室心肌收缩同步性进行评价,以探讨体外循环心内直视手术对患儿左室心肌收缩同步性的影响,并探讨斑点追踪显像技术在心脏手术围手术期评价患者左室心肌收缩同步性的价值。
     结果显示:①各VSD组术前与对照组相比:小VSD组左室各节段心肌纵向、轴向及环向收缩期达峰值应变时间标准差(Tsl-SD、Tsr-SD、Tsc-SD)及最大差值(Tsl-diff、Tsr-diff、Tsc-diff)测值与对照组相比差异无统计学意义。中VSD组除Tsl-SD、Tsl-diff测值显著高于对照组外(P<0.05),其余各指标测值两组间比较差异无统计学意义。大VSD组Tsl-SD、Tsl-diff、Tsc-SD、Tsc-diff测值均显著高于对照组相应测值(P<0.05),而Tsr-SD、Tsr-diff测值与对照组相比差异无统计学意义。小、中VSD组左室各室壁中间段心肌最小Tsl、Tsc、Tsr测值与最大测值比较差异无统计学意义。大VSD组相应最小测值与最大测值相比差异有统计学意义(P<0.05)。三组最大测值均位于前间隔或后间隔部位。②各VSD组术后与术前相比:小VSD组术后各指标测值与术前相比差异无统计学意义。中VSD组及大VSD组术后各指标测值与术前相比均显著增加,差异有统计学意义(P<0.05)。③对照组与各VSD组术后比较:小VSD组术后各指标测值与对照组相比差异均无统计学意义。中VSD组及大VSD组上述各指标测值均显著大于对照组相应测值,组间比较差异有统计学意义。术后小VSD组左室各室壁中间段心肌最小Tsl、Tsc、Tsr测值与最大测值相比差异无统计学意义。而中VSD组及大VSD组相应最小测值与最大测值相比差异均有统计学意义(P<0.05),且最大测值均位于前间隔或后间隔。
     第三部分斑点追踪显像技术评价VSD修补术对围术期左室局部心肌收缩功能的影响
     本部分以拟行VSD修补术的患儿作为研究对象,根据VSD大小,将其分为三组:大、中、小VSD组。应用斑点追踪显像技术结合应变及应变率参数对VSD修补术前、术后6h内左室局部心肌收缩功能进行评价,以探讨体外循环心内直视手术对患儿左室局部心肌收缩功能的影响,并探讨斑点追踪显像技术在心脏手术围手术期评价患者左室局部心肌收缩功能的价值。
     结果显示:①各手术组术前与对照组相比:小VSD组左室舒张末期容积(LVEDV)、收缩末期容积(LVESV)、左室射血分数(LVEF)测值与对照组相比差异无统计学意义;中VSD组LVEDV测值显著高于对照组(P<0.05),LVESV、LVEF测值与对照组相比差异无统计学意义。大VSD组LVEDV、LVESV测值显著高于对照组(P<0.05),LVEF测值与对照组相比差异无统计学意义。小VSD组左室各节段心肌纵向,轴向,环向应变(SL、SR、SC)及应变率(SrL、SrR、SrC)测值与对照组相比差异无统计学意义。中VSD组左室各节段心肌SL、SR、SC、SrL、SrR、SrC测值均显著高于对照组,组间比较差异有统计学意义(P<0.05)。大VSD组左室各节段心肌SL、SrL测值显著低于对照组(P<0.05),SR、SC、SrR、SrC测值前壁、后壁及下壁各节段心肌显著低于对照组相应节段测值(P<0.05),而前间隔、侧壁及后间隔各节段心肌上述指标测值与对照组相比,差异无统计学意义。②各VSD组术后与术前相比:小VSD组术后LVEDV、LVESV、LVEF测值与术前相比差异无统计学意义。中VSD组及大VSD组术后LVEDV、LVESV、LVEF测值均显著低于术前,组间比较差异均有统计学意义(P<0.01)。小VSD组术后左室各节段心肌SL、SR、SC、SrL、SrR、SrC测值均显著低于术前,其中以前间隔、后间隔及下壁降低尤为明显(P<0.01)。中VSD组及大VSD组术后左室各节段心肌SL、SR、SC、SrL、SrR、SrC均显著低于术前相应节段测值,差异有统计学意义(P<0.01)。③各手术组术后与对照组相比:小VSD组及中VSD组术后LVEDV、LVESV、LVEF测值与对照组相比,差异无统计学意义;大VSD组LVEDV、LVESV测值显著高于对照组(P<0.05),LVEF测值显著低于对照组(P<0.05)。小、中、大VSD组左室各节段心肌SL、SR、SC、SrL、SrR、SrC测值均显著低于对照组(P<0.01)。
     结论
     在本研究条件下,我们可以得出如下结论:
     1. VSD修补术后早期左室构型即发生改变:左室长轴方向上,舒张末期左室构型由术前的类圆形趋向椭圆型,而收缩末期由术前狭长的扁椭圆形趋向圆椭圆形。左室短轴方向上,舒张末期左室构型仍保持为类圆形,而收缩末期由术前的椭圆形趋向类圆形,即大、中、小VSD组术后左室构型均趋于正常化。小VSD组术后早期左室构型即可完全恢复正常,而中、大VSD组围手术期左室构型尚不能完全恢复至正常。
     2. VSD修补术对小VSD左室心肌收缩同步性未产生明显影响,对中VSD及大VSD左室心肌产生不利影响,导致左室心肌收缩显著不同步。
     3.二维斑点追踪显像技术结合应变参数可以对VSD修补术前、术后左室心肌收缩同步性进行全面评价。
     3.大、中、小VSD修补术后左室节段心肌收缩功能均显著低于术前,其降低的原因不仅与VSD术后前负荷显著改变有关,还与手术过程导致左室构型改变、左室心肌收缩不同步及心肌收缩力损害有关。
     4.与常规超声心动图技术相比,二维斑点追踪显像技术结合应变及应变率参数可准确、定量评价术后局部心肌收缩功能。应变及应变率参数是负荷依赖性参数,测值受前、后负荷变化的影响,不能准确反映局部心肌收缩力情况,但通过对比分析,仍能从中得出心肌收缩力的变化信息。
Since open-heart surgery with cardiopulmonary bypass (CPB) began with closure of an atrial septal defect by John Gibbon in 1953[1], the CPB have been applied widely in the field of cardiac surgery. Cardiac surgery with CPB has been used to correct many cardiac abnormalities for congenital or acquired heart diseases, and provide opportunity for survival, but it is also associated with a defined degree of preoperative and postoperative morbidity and mortality related severe complication, such as low cardiac output syndrome, arrhythmias, heart failure. Potential mechanisms have included the significant change of hemodynamics immediate after operation and the procedures themselves, such as CPB related systemic inflammatory response syndrome, direct surgical aggression on the heart tissue, injury effect of hypothermia and/or ischemia and reperfusion . Identification of patients who are at higher risk may allow better targeting of investigation, monitoring, and treatment, ultimately leading to an improvement in patient outcome.
     The important determinants of left ventricular (LV) systolic function are ventricular geometry, preload, afterload, contractility, synchrony of contraction and heart rate . Echocardiography is considered to be an ideal tool for LV function assessment. Among the several LV function echocardiographic indexes, the most commonly used in the clinical setting are LV ejection fraction (EF) and shortening fraction (FS). However, EF and FS are load-dependent parameters and may not reflect the regional myocardium contractile function.
     A novel approach to quantify regional LV function from routine gray-scale 2D echocardiographic images, known as speckle tracking (STE), calculates myocardial strain independent of angle of incidence. The software uses conventional gray-scale B-mode recordings and tracks myocardial speckles, which serve as natural acoustic markers. Myocardium multi-dimensional, i.e. longitudinal, radial and circumferential deformation can be measured from echocardiographic views. Experimental and clinical studies have demonstrated that the SET method can assess the LV regional and global contractile alterations accurately in healthy subjects, in the settings of acute and chronic ischemia, dyssynchrony, and cardiomyopathy .
     Ventricular septal defects (VSD) are a common congenital heart disease, and their repair is one of the most representative cardiac operations. In this study, we used the STE technique to evaluate the effect of cardiac surgery with CPB on the LV geometry, LV regional and global contractile synchrony and function associate with VSD surgery. The study was divided into three parts as follows:
     Part 1. Assessment of left ventricular geometry during perioperation of VSD surgery using 2D echocardiography
     The aim of this part was to assess the effect of cardiac surgery with CPB on the LV geometry associate with the repair of VSD using 2D echocardiography. The VSD surgical patients were involved in this study. The patients were divided into three groups according the size of the VSD: small (S), moderate (M) and large (L) group.
     Results:①pre-operation: compared with the values in the control group, the LV end-systolic and end-diastolic longest diameter (Ls, Ld) in longitudinal section, radial anterior to posterior diameter (APs, APd), and lateral to septal diameter (LSs, LSd) in cross section, sphericity index (SIs, SId), [(D_1+D_2+D_3)/3L]d、[(D_1+D_2+D_3)/3L]s、[2D_1/L]d、[2D_1/L]s, LSd/APd, LSs/APs, and fractional shortening of L, D_2, LS, AP (FSL, FSD_2, FSLS, FSAP) showed no significant difference in the S VSD group. Ld, Ls, LSd, LSs, APd, APs, SIs, [(D_1+D_2+D_3)/3L]d, [2D_1/L]d, FSD_2, FS_(LS) increased significantly (P<0.05 or 0.01), SId, [(D_1+D_2+D_3)/3L]s, [2D_1/L]s, LSs/APs decreased significantly and FS_(AP), LSd/APd showed no significant difference in the M VSD and L VSD groups. FSL showed no significant difference in the M VSD group, and FSL decreased significantly in the L VSD group (P<0.05).②within 6 hours after the operation, the Ld, Ls, LSd, APd, [2 D1/L]d, FSLS significantly lower than that before operation in the S VSD group (P<0.05), the others parameters showed no significant difference when compared with the preoperation. Ld, Ls, LSd, APd, APs, LSd/APd, SIs, [(D_1+D_2+D_3)/3L]d, [2 D_1/L]d, FSD_2, FSLS were significantly lower (P<0.05) and SId, [(D_1+D_2+D_3)/3L]s, [2 D_1/L]s, LSs/APs were significantly higher (P<0.05) than those before operation in the M and L VSD groups, the others parameters showed no significant difference between the preoperation and postoperation.③postoperation: Compared with the values in the control group, all the parameters showed no significant differences in the S VSD group. The FSLS, FSAP decreased significantly (P<0.05), LSs, APs increased significantly (P<0.05), and the other parameters showed no significant differences in the M VSD group. The Ld, SIs, LSd, APd, LSs, APs, [(D_1+D_2+D_3)/3L]d, [2 D_1/L]d values increased significantly (P<0.05), [(D_1+D_2+D_3)/3L]s, [2 D_1/L]s, LSd/APd, LSs/APs, FSLS, FSAP values decreased significantly (P<0.05), and the other parameters showed no significant differences in the L VSD group.
     Part 2. Assessment of LV regional and global contractile synchrony during perioperation of VSD surgery using speckle tracking echocardiography
     The aims of this part were to assess the effect of cardiac surgery with CPB on the LV regional and global contractile synchrony associate with the repair of VSD using speckle tracking echocardiography combined with strain parameter, and to assess the value of speckle tracking echocardiography in the evaluation of LV contractile synchrony during perioperation. The VSD surgical patients were involved in this study; the patients were divided into three groups according the size of the VSD: small (S), moderate (M) and large (L) group.
     Results:①preoperation: Compared with the values in the control group, the standard deviation of the time to peak systolic longitudinal strain (Tsl), peak systolic radial strain (Tsr) and peak systolic circumferential strain (Tsc) in all segments (Tsl-SD, Tsr-SD, Tsc-SD) and the maximal temporal difference of Tsl, Tsr, Tsc (Tsl-diff, Tsr-diff, Tsc-diff) in all segments showed no significant differences in the S group. The Tsl-SD, Tsl-diff increased significantly (P<0.05), and the other parameters showed no significant differences in the M VSD group. The Tsl-SD, Tsl-diff, Tsc-SD, Tsc-diff increased significantly (P<0.05), and the other parameters showed no significant difference in the L group. The longest Tvl, Tvr and Tsc occurred in the antero-septal or septal segments in all three groups.②within 6 hours after the operation, the all parameters showed no significant difference as compared with the preoperation in the S VSD group. All the parameters were higher significantly in the M and L groups than those before operation (P<0.05).③postoperation: Compared with the values in the control group, the all parameters showed no significant difference in the S VSD group. All the parameters increased significantly in the M and L VSD groups (P<0.05). The longest Tvl, Tvr and Tsc occurred in the antero-septal or septal segments in all three groups.
     Part 3. Assessment of LV regional and global contractile function during perioperation of VSD surgery using speckle tracking echocardiography
     The aims of this part were to assess the effect of cardiac surgery with CPB on the LV regional and global contractile function associated with the repair of VSD using speckle tracking echocardiography combined with strain and strain rate parameters, and to assess the value of speckle tracking echocardiography in the evaluation of LV contractile function during perioperation. The VSD surgical patients were involved in this study; the patients were divided into three groups according the size of the VSD: small (S), moderate (M) and large (L) group.
     Results:①preoperation: Compared with the values in the control group, the LV end-distolic volume (LVEDV), end-systolic volume (LVESV), and LV ejection fraction (LVEF) showed no signigicant difference in the S VSD group; the LVEDV increased significantly (P<0.05) and LVESV, LVEF showed no significant difference in the M group; the LVEDV, LVESV increased significantly (P<0.05) and LVEF showed no significant difference in the L group. The longitudinal strain (SL), radial strain (SR), circumferential strain (SC), and longitudinal strain rate (SrL), radial strain rate (SrR), and circumferential strain rate (SrC) in all segments showed no significant difference in the S VSD group; the SL, SR, SC, SrL, SrR, SrC values in all segments increased significantly(P<0.05) in the M VSD group; the SL, SrL values decreased significantly(P<0.05) in all segments and the SR, SC, SrR, SrC decreased significantly in anterior, posterior, and inferior walls (P<0.05) and showed no significant difference in anter-septal, septal, lateral walls in the L VSD group.②within 6 hours after the operation, compared with the values before operation, the LVEDV, LVESV, LVEF showed no significant difference in the S VSD group; The LVEDV, LVESV and LVEF decreased significantly in the M and L VSD groups (P<0.01). The SL, SR, SC, SrL, SrR, SrC in all segments decreased significantly in the three groups (P<0.05 or <0.01).③postoperation: Compared with the values in the control group, the LVESV, LVEDV, and LVEF showed no significant difference in the S and M VSD groups, the LVEDV, LVESV increased significantly and LVEF decreased significantly in the L VSD group (P<0.05). The SL, SR, SC, SrL, SrR, SrC decreased significantly in all segments in the three groups (P<0.01).
     Conclusions:
     Based on the present study, our conclusions are as follows:
     ①The LV dynamic geometry changed and trended to normalize in the early postoperative period. In longitudinal section, the LV is more elliptical in the end-diastole and more spherical in the end-systole as compared with preoperation. In cross section, the LV geometry did not changed in the end-diastole, was still circular, similar to the preoperation, but it changed from elliptical model of preoperation to spherical model after operation in the end-systole. The LV geometry was normalizing immediately after operation in the S VSD group, and was gradual normalizing over time after operation in the M and L groups.
     ②VSD repair had no significant effect on the LV regional and global contractile synchrony in the S VSD group, but it impaired the LV contractile synchrony in the M and L VSD groups.
     ③Speckle tracking echocardiography combined with strain parameter can assess accurately the change of LV regional and global contractile synchrony during perioperation of cardiac surgery.
     ④The VSD repair impaired the LV regional and global contractile function immediately after operation in the three groups. We presumed that reduction in LV preload and myocardium injury related the procedures themselves were the primary causes.
     ⑤Speckle tracking echocardiography combined with strain and strain rate parameters can assess accurately the change of LV regional and global contractile function during perioperation of cardiac surgery. Strain and strain rate are also load-dependent parameters and may not reflect the true myocardial contractile status, but it can demonstrate the presence of early abnormalities of myocardial contractile function despite a normal LV EF.
引文
1. Gibbon JH. Application of a mechanical heart-lung apparatus to cardiac surgery. Minn Med, 1954, 37: 171-180.
    2. Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery. nalysis of the EuroSCORE multi-national database of 19030 patients. Eur J Cardiothorac Surg. 1999, 15: 816–823.
    3. National Adult Cardiac Surgical Database Report 1999–2000. Available at http://www.scts.org/file/NACSDreport2000part4. pdf. Accessed November 5, 2005.
    4. Hart JP, Cabreriza SE, Rowan FW, et al. Echocardiographic analysis of ventricular geometry and function during repair of congenital heart defects. Ann Thorac Surg, 2004; 77: 53-60.
    5. Weidemann F, Eyskens B, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound based strain rate and strain imaging. J Am Soc Echocardiogr, 2002; 15: 20-8.
    6. Greenberg N, Firstenberg M, Castro PL, et al. Doppler-derived myocardial strain rate is a strong index of left ventricular contractility. Circulation, 2002; 105: 99-105.
    7. Edvardsen T, Helle-valle T, Smiseth OA. Systolic dysfunction in heart failure with normal ejection fraction: speckle-tracking echocardiography. Progress in Cardiovascular Diseases, 2006, 49(3): 207-214.
    8. Suffoletto MS, Dohi Kaoru, Cannesson M, et al. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation, 2006, 113: 960-968.
    9. Cho GY, Chan J, Leano R, et al. Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol, 2006, 97: 1661-1666.
    10. Amundsen BH, Helle-valle T, Edvardsen T, et al. Noninvasive myocardial strain measurement by speckle tracking echocardiography: Validation againstsonomicrometry and tagged magnetic resonance imaging. J Am Cardiol, 2006, 47(4): 789-793.
    11. Korinek J, Kjaergaard J, Sengupta PP, et al. High spatial resolution speckle tracking improves accuracy of 2-dimensional strain measurements: an update on a new method in functional echocardiography. J Am Soc Echocardiogr, 2007, 20: 165-170. 12.
    13. Buckberg GD. Basic science review: the helix and the heart. J Thorac Cardiovasc Surg, 2002, 124: 863-883.
    14. Pattoneri P, Pela G, Sozzi F, et al. Impact of myocardial geometry on left ventricular performance in healthy black and white young adults. Echocardiography, 2008, 25(1): 13-19.
    15. Ueno T, Sakata R, Iquro Y, et al. Mid-term changes of left ventricular geometry and function after Dor, SAVE, and Overlapping procedures. Eur J Cardiothorac Surg, 2007, 32 (1): 52-57.
    16.吴棘,李智贤,郭盛兰,等.扩张型心肌病左室重构的形态学评价及与心功能的关系.中国临床医学影像杂志, 2006, 17 (6): 304-306.
    17. D’Cruz IA, Daly DP, Hand RC, et al. Left ventricular shape in idiopathic dilated cardiomyopathy and cardiomyopathy with or without only mild ventricular dilatation. Am J Cardiol, 1992, 69: 1499-1501.
    18. Olsen CO, Rankin JS, Arentzen CE, et al. The deformational characteristics of the left ventricle in the conscious dog. Circ Res, 1981; 49(4):843-55.
    19. Villoria GJ, Nakazawa M, Marks RA, et al. The effect of left ventricular pressure or volume overload on ventricular dimension in children: left ventricular volume determination from one or two ventricular dimensions. Circulation, 1976; 54(6): 969-74.
    20. Ascah KJ, King ME, Gillam LD, et al. The effects of right ventricular hemodynamics on left ventricular configuration. Can J Cardiol, 1990, 6(3):99-106.
    21. Yoshikawa M, Sato T. Left ventricular end-systolic wall stress to volume relationship before and after surgical closure of ventricular septal defect. Pediatr Cardiol, 1987, 8(2): 93-98.
    22. Rehman AU, D’Cruz I. Quantitative echocardiographic assessment of left ventricular shape. Echocardiography, 1997, 14(2): 171-180.
    23. Rankin JS, MaHale PA, Arentzen CE, et al. The three- dimensional dynamic geometry of the left ventricle in the conscious dog. Circ Res, 1976, 39(3): 304-13.
    24. Moore CC, Lugo-Olivieri CH, McVeigh ER, et al. Three-dimensional systolic strain patterns in the normal human left ventricle: characterization with tagged MR imaging. Radiology, 2000(2); 214: 453-66.
    25. Rychik J, Jacobs ML, Norwood WJ. Acute changes in left ventricular geometry after volume reduction operation. Ann Thorac Surg. 1995 ; 60(5):1267-73.
    26. Quinn TA, Cabreriza SE, Blumenthal BF, et al. Regional functional depression immediately after ventricular septal defect closure. J Am Soc Echocardiogr, 2004, 17(10): 1066-72.
    27. Hart JP, Cabreriza SE, Walsh RF, et al. Echocardiographic analysis of ventricular geometry and function during repair of congenital septal defects. Ann Thorac Surg, 2004, 77(1): 53-60.
    1. Houyel L, Vaksmann G, Fournier A, et al. Ventricular arrhythmias after correction of ventricular septal defects: importance of surgical approach. J Am Coll Cardiol, 1990, 16(5): 1224-1228.
    2. Emkanjoo Z, Mirza-Ali M, Alizadeh A, et al. Predictors and frequency of conduction disturbances after open-heart surgery. Indian Pacing Electrophysiol J, 2008,8(1): 14-21.
    3. Okoroma EO, Guller B, Maloney JD, et al. Etiology of right bundle-branch block pattern after surgical closure of ventricular-septal defects. Am Heart J, 1975,90(1): 14-18.
    4. Lan YT, Lee JC, Wetzel G. Postoperative arrhythmia. Curr Opin Cardiol, 2003, 18(2): 73-78.
    5. Janousek J, Gebauer RA. Cardiac resynchronization therapy in pediatric and congenital heart disease. Pacing Clin Electrophysiol, 2008, 31(suppl 1): S21-23.
    6. Khairy P, Fournier A, Thibault B, et al. Cardiac resynchtonization therapy in congenital heart disease. Int J Cardiol, 2006, 109(2): 160-168.
    7. Takabayashi S, Shimpo H, Mitani Y, et al. Pediatric cardiac remodeling after resynchronization therapy. Pediatr Cardiol, 2006, 27(4): 485-489.
    8. Vitarelli A, Franciosa P, Conde Y, et al. Echocardiography assessment of ventricular asynchrony in dilated cardiomyopathy and congenital heart disease: tools and hopes. J Am Soc Echocardiogr, 2005, 18(12): 1424-1439.
    9. Turner MS, Bleasdale RA, Vinereanu D, et al. Electrical and mechanical components of dyssynchrony in heart failure patients with normal QRS duration and left bundle-branch block: impact of left and biventricular pacing. Circulation, 2004, 109: 2544-2549.
    10. Abraham WT, Hayes DL. Cardiac resynchronization therapy for heart failure. Circulation, 2003, 108: 2596-2603.
    11.张瑞芳,秦石成.心力衰竭患者左心室非同步运动的定量组织速度成像研究.中华超声影像学杂志, 2005, 14: 264-267.
    12. Schuster P, Faerestrand S. Techniques for identification of left ventricular asynchrony for cardiac resynchronization therapy in heart failure. Indian Pacing Electrophysiol. J, 2005, 5: 175-185.
    13. Helm RH, Leclercq C, Faris OP, et al. Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation, 2005, 111: 2760-2767.
    14. Sada LE, Kanzaki H, Severyn D. Quantification of radial mechanical dyssynchrony in patients with left bundle branch block and idiopathic dilated cardiomyopathy without conduction delay by tissue displacement imaging. Am J Cardiol, 2004, 94: 514-518.
    15. Yu CM, Fung WH, Lin H, et al. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy[J]. Am J Cardiol, 2003, 91(6): 684.
    16. Buckberg GD. Basic science review: the helix and the heart. J Thorac Cardiovasc Surg, 2002, 124: 863-883.
    17. Dohi K, Suffoletto MS, Schwartzman D, et al. Utility of echocardiographic radial strain imaging to quantify left ventricular dyssynchrony and predict acute response to cardiac resynchronization therapy. Am J Cardiol, 2005, 96: 112-116.
    18.蒋立虹,韦杰,邹弘麟,等.先天性心脏病室间隔缺损心肌细胞超微结构与临床意义.云南医药, 2003, 24(2): 87-89.
    19. Maron BJ, Ferrans VJ. Ultrastructural features of hypertrophied human ventricular myocardium [J].Prog Cardiovasc Dis, 1978, 21(3): 207-38.
    20. Zheng XG, Zhang TH, Lu ZF. Comparison of the ultrastructural and clinical studies on myocardium on myocardium in patients with congenital heart disease. Zhonghua Bing Li Xue Za Zhi, 1994, 23 (1): 26-28.
    21.毋健,王珂.左心室形态改变对心脏电机械同步性的影响.中国循环杂志, 2007, 22(2): 133-135.
    22.李隆贵,彭又华,张贵生.右室快速起搏犬心室形态与室壁应力的关系.临床心血管病杂志, 1995, 11 (增刊): 88-90.
    23. Shannon RP, Komamura K, Shen YT, et a1.Impaired regional subendoeardial coronary flow reserve in conscious dogs with pacing-induced heart failure. Am J Physio1, 1993, 265: 801-809.
    24. LeGrice lJ, Takayama Y, Holmes JW, et a1. Impaired subendocardial functi0n in tachycardia induced cardiac failure. Am J Physiol, 1995, 268: 1788-1794.
    25. Hobbins SM, Izukawa T, Radford DJ, et al. Conduction disturbances after surgical correction of ventricular septal defect by the atrial approach. Br Heart J, 1979, 41(3): 289-293.
    26. Abd EI Rahman MY, Hui W, Yigitbsi M, et al. Detection of left ventricular asynchrony in patients with right bundle branch block after repair of tetralogy of fallot using tissue-doppler imaging-derived strain. J Am Coll Cardiol, 2005, 45(6): 915-921.
    27. Quintana M, Saha S, Rohani M, et al. Electromechanical coupling, uncoupling, and ventricular function in patients with bundle branch block: A tissue-doppler echocardiographic study. Echocardiography, 2004, 21 (8): 687-698.
    28. Niu HX, Hua W, Zhang S, et al. Assessment of cardiac function and synchronicity in subjects with isolated bundle branch block using Doppler imaging. 2006, 119 (10): 795-800.
    29. Takamatsu H, Tada H, Okaniwa H, et al. Right bundle branch block and impaired left ventricular function as evidence of a left ventricular conduction delay. Circ J, 2008, 72: 120-126.
    30.张静,谢明星,王新房,等.速度向量成像技术评价正常QRS波群心力衰竭患者左心室收缩同步性的初步临床研究.中华超声影像学杂志,2007, 16 (4): 277-281.
    31.董丽莉,舒先红,潘翠珍,等.组织同步化显像技术评价右束支传导阻滞患者心室同步性与收缩功能.中华超声影像学杂志, 2006, 15 (11): 805-808.
    1. Hart JP, Cabreriza SE, Rowan FW, et al. Echocardiographic analysis of ventricular geometry and function during repair of congenital heart defects. Ann Thorac Surg, 2004; 77: 53-60.
    2. Eidem BW, Mcmahon CJ, Ayres NA, et al. Impact of chronic left ventricular preload and afterload on Doppler tissue imaging velocities: A study in congenital heart disease. J Am Soc Echocardiogr, 2005, 18: 830-838.
    3. Henry WL, Bonow RO, Rosing DR, et al. Observation on the optimum time for operative intervention for aortic regurgitation, II: serial echocardiographic evaluation of asymptomatic patients. Circulation, 1980; 61: 484-92.
    4. Rees AH, Rao PS, Rigby JJ, et al. Echocardiographic estimation of a left-to-right shunt in isolated ventricular septal defects. Eur J Cardiol, 1978, 7: 25-33.
    5. Weidemann F, Eyskens B, Jamal F, et al. Quantification of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound based strain rate and strain imaging. J Am Soc Echocardiogr, 2002; 15: 20-8.
    6. Greenberg N, Firstenberg M, Castro PL, et al. Doppler-derived myocardial strain rate is a strong index of left ventricular contractility. Circulation, 2002; 105: 99-105.
    7. Abraham TP, Nishimura RA, Holmes DR Jr, et al. Strain rate imaging for assessment of regional myocardial function: results from a clinical model of septal ablation. Circulation, 2002; 105: 1403-1406.
    8. Solarz DE, Witt SA, Glascock BJ, et al. Right ventricular strain rate and strain analysis in patients with repaired tetralogy of fallot: possible interventricular seotal compensation. J Am Soc Echocardiogr, 2004; 17: 338-344.
    9.姚泰,主编.生理学.第5版.北京:人民卫生出版社, 2002, 44.
    10. Claus P, Bijnens B, Weidemann F, et al. Post systolic thickening in ischemic myocardium: a simple mathematical model for simulating regional deformation; functional imaging and modeling of the heart. Lect Notes Comput Sci, 2001,2230:134-139.
    11. Salvo GD, Pacileo G, Verrengia M, et al. Early myocardial abnormalities in asymptomatic patients with severe isolated congenital aortic regurgitation: an ultrasound tissue characterization and strain rate study. J Am Soc Echocardiogr, 2005; 18: 122-127.
    12. Yasuoka K, Harada K, Tamura M, et al. Blood flow in the left anterior descending coronary artery in children with ventricular septal defect. J Am Soc Echocardiogr, 2002; 15: 807-813.
    13. Nitenberg A, Foult J, Antony I, et al. Coronary flow and resistance reserve in patients with chronic regurgitation, angina pectoris and normal coronary arteries. J Am Coll Cardiol 1988, 11: 478-86.
    14. McGinn AL, White CW, Wilson RF. Interstudy variability of coronary flow reserve: influence of heart rate, arterial pressure, and ventricular preload. Circulation, 1990, 81: 1319-30.
    15. Liu L, Tockman B, Girouard S, et al. Left ventricular resynchronization therapy in a canine model of left bundle branch block. Am J Physiol Heart Circ Physiol, 2002, 282: H2238-2244.
    16. Kim WH, Otsuji Y, Seward JB, et al. Estimation of left ventricular function in right ventricular volume and pressure overload: detection of early left ventricular dysfunction by Tei index. Jpn Heart J, 1999, 40: 145-154.
    17. GorcsanⅢJ, Gasior TA, Mandarino WA, et al. Assessment of the immediate effects of cardiopulmonary bypass on left ventricular performance by on-line pressure-area relations. Circulation, 1994, 89: 180-190.
    18. Cheung MM, Smallhorn JF, Vogel M, et al. Disruption of the ventricular myocardial force-frequency relationship after cardiac surgery in children: Noninvasive assessment by means of tissue Doppler imaging. J Thorac Cardiovasc Surg, 2006, 131(3): 625-631.
    19. Zacharska-Kokot E. The myocardial performance index in children after surgical correction of congenital malformations with intracardiac shunt. Kardio Pol, 2007, 65(2):143-150.
    20. Tulner SA, Klautz RJ, van Rijk-Zwikker GL, et al. perioperative assessment of left ventricular function by pressure-volume loops using theconductance catheter method. Anesth Anslg, 2003, 97: 950-957.
    21. Caldarone CA, Barner EW, Wang L, et al. Apoptosis-related mitochondrial dysfunction in the early postoperative neonatal lamb heart. Ann Thorac Surg, 2004, 78 : 948-955.
    22. Khoynezhad A, Jalali Z, Tortolani AJ. Apoptosis: pathophysiology and therapeutic implication for the cardiac surgery. Ann Thorac Surg, 2004, 78: 1109-1118.
    23. Thatte HS, Rhee JH, Zagaring SE, et al. Acidosis-induced apoptosis in human and porcine heart. Ann Thorac Surg, 2004, 77: 1376-1383.
    24.王萍,房秀生.心肌肌钙蛋白I对体外循环期心肌损伤的判定价值.中华麻醉学杂志,2000,20:265-269.
    25. Croal BL, Hillis GS, Gibson PH, et al. Relationship between postoperative cardiac troponinⅠlevels and outcome of cardiac surgery. Circulation, 2006, 114: 1468-1475.
    25. Quinn TA, Cabreriza SE, Blumenthal BF, et al. Regional function depression immediately after ventricular septal defect closure. J Am Soc Echocardiogr, 2004, 17(10): 1066-1072.
    26. Aybek T,Kahn MF,Dogan S, et al. Cardiopulmonary bypass impairs left ventricular function determined by conductance catheter measurement. Thorac Cardiovasc Surg. 2003 Dec: 51(6): 301-5.
    27. Tanous Y, Morita S, Ochiai Y, et al. Impact of atrial septal defect closure on right vemtricular performance. Circ J, 2006, 70: 909-912.
    28. Kim WH, Otsuji Y, Seward JB, et al. Estimation of left ventricular function in right ventricular volume and pressure overload: detection of early left ventricular dysfunction by Tei index. Jpn Heart J, 1999, 40: 145-154.
    29. Dohi Kaoru, Pinsky MR, Kanzaki H, et al. Effects of Radial left ventricular dyssynchrony on cardiac performance using quantitative tissue Doppler radial strainimaging. J Am Soc Echocardiogr, 2006, 19 (5): 475-482.
    30. Taggart DP, Hadjinikolas L, Wong K, et al. Vulnerability of paediatric myocardium to cardiac surgery. Heart, 1996, 76: 214-217.
    1. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? [J]. J Am Coll Cardiol, 2006, 47 (7): 1313-1327.
    2. Heimdal A, Stoylen A, Torp H, et al. Real-time strain rate imaging of the left ventricle by ultrasound [J]. J Am Soc Echocardiog, 1998, 11: 1013-1019.
    3. Yip G, Abraham T, Belohlavek M, et al. Clinical applications of strain rate imaging [J]. J Am Soc Echocardiogr, 2003, 16: 1334-1342.
    4. Teske AJ, De Boeck BW, Melman PG, et al. Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound, 2007, 30 (5): 5-27.
    5. Pislaru C, Pellikka PA. Tissue Doppler and strain-rate imaging in cardiac ultrasound imaging: valuable tools or expensive ornaments? Expert REV Cardiovasc Ther, 2005, 3 (1): 1-4.
    6. Suffoletto MS, Dohi K, Cannesson M, et al. Novel speckle-tracking radial strain from routine black- and- white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation, 2006, 113(7): 960-968.
    7. Helle-Valle T, Crosby J, Edvardsen T, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation, 2005, 112 (20): 3149-3156.
    8. Cho GY, Chan J, Leano R, et al. Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol, 2006, 97(11): 1661-1666.
    9. Edvardsen T, Helle-Valle T, Smiseth OA, et al, Systolic dysfunction in heart failure with normal ejection fraction: Speckle-tracking echocardiography. Progress in Cardiovascular Diseases, 2006, 49(3): 207-214.
    10. Notomi Y, Lysyansky P, Setter RM, et al. Measurement of ventricular torsion by two- dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol, 2005, 45(12):2034-2041.
    11.张静,谢明星,王新房,等.速度向量成像技术评价正常QRS波群心力衰竭患者左心室收缩同步性的初步临床研究.中华超声影像学杂志, 2007, 16(4): 277-281.
    12. Vannan MA, Pedrizzetti G, Li P, et al. Effect of cardiac resynchronization therapy on longitudinal and circumferential left ventricular mechanics by velocity vector imaging: description and initial clinical application of a novel method using high-frame rate B-mode echocardiographic images. Echocardiography, 2005, 22: 826-830.
    13. Leitman M, Lysyansky P, Sidenko S, et al. Two dimensional strain– a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr, 2004; 17: 1021-1029.
    14. Ingul CB, Torp H, Aase SA, et al. Automated analysis of strain rate and strain: feasibility and clinical implications. J Am Soc Echocardiogr 2005; 18: 411-418.
    15. Modesto KM, Cauduro S, Dispenzieri A, et al. Two-dimensional acoustic pattern derived strain parameters closely correlate with one-dimensional tissue Doppler derived strain measurements. Eur J Echocardiogr 2006; 7: 315-321.
    16. Kowalski M, Kukulski T, Jamal F, et al. Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med Biol, 2001, 27 (8): 1087-1097.
    17. Weidemann F, Eysken B, Jamal F, et al. Quantify of regional left and right ventricular radial and longitudinal function in healthy children using ultrasound-based strain rate and strain imaging. J Am Soc Echocardiog, 2002, 15 (1):20-28.
    18.舒先红,黄国倩,潘翠珍,等.正常人心肌应变及应变率定量分析.中华超声影像学杂志, 2004, 13 (11): 805-807.
    19. Sutherland GR, Salvo GD, Claus P, et al. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr, 2004,17(7): 788-802.
    20. Armstrong G, Pasquet A, Fukamachi K, et al. Marwick T. Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia. J Am Soc Echocardiogr 2000; 13: 731-737.
    21. Kukulski T, Jamal F, Herbots L, et al. Identification of acutely ischemic myocardium using ultrasonic strain measurements: a clinical study in patients undergoing coronary angioplasty [J]. J Am Coll Cardiol, 2003, 41 (5): 810-819.
    22. Edvardsen T, Skutstad H, Aakhus S, et al. Regional myocardial systolic function during acute myocardial ischemia echocardiography[J]. J Am Coll Cardiol, 2001, 37(3):726-730.
    23. Voigt JU, Exner B, Schmiedehausen K, et al. Strain rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia [J]. Circulation, 2003, 107(16): 2120-2126.
    24. Hoffmann R, Altiok E, Nowak B, et al. Strain rate measurement by Doppler echocardiography allows improved assessment of myocardial viability in patients with depressed left ventricular function [J]. J Am Coll Cardiol, 2002, 39 (3):443-449.
    25. Weidemann F, Dommke C, Bijnens B, et al. Defining the transmurality of a chronic myocardial infarction by ultrasonic strain-rate imaging: implications for identifying intramural viability; an experimental study. Circulation 2003; 107:883-888.
    26.潘翠珍,舒先红,朱丹,等.心肌应变及应变率成像在冠脉搭桥及室壁瘤切除术中的应用—附1例报道[J].上海医学影像杂志, 2004, 13 (1): 77-78.
    27. Jamal F, Bergerot C, Argaud L, et al. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol, 2003, 285 (6): H2842-2847.
    28. Breithardt OA, Herbots L, D’Hooge J, et al. Strain rate imaging in CRT candidates. Eur Heart J, 2004, 6(suppl): D16-D24.
    29. Yu CM, Fung JW, Zhang Q, et al. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy[J]. Circulation, 2004, 110 (1): 66-73.
    30. Palka P, Lange A, Fleming AD, et al. Differences in myocardial velocity gradient measured throughout the cardiac cycle in patients with hypertrophic cardiomyopathy, athletes and patients with left ventricular hypertrophy due to hypertension [J]. Journal of the American College of Cardiology, 1997, 30:760 - 768.
    31. Di Salvo G, Eyskens B, Claus P, et al. Late post repair ventricular function in patients with origin of the left main coronary artery from the pulmonary trunk. Am J Cardiol 2004; 93(4): 506- 508.
    32. Eroglu E, Herbots L, Van Cleemput J, et al. Ultrasonic strain/strain rate imaging-a new clinical tool to evaluate the transplanted heart [J]. Eur J Echocardiogr, 2005, 6 (3): 186-195.
    33. Fang ZY, Marwick TH. Mechanisms of exercise training in patients with heart failure [J]. American Heart Journal, 2003, 145(5): 904 - 911.
    34. Rust EM, Albayya FP, Metzger JM. Identification of acontractiled deficitin adult cardiac myocytes expressing hypertrophic cardiomyopathy associated mutant troponin T proteins [J] . J Clin Invest, 1999, 103 (10): 1459 - 1467.
    35.白江涛,陆凤翔,许迪,等.定量组织速度成像、应变和应变率显像评价肥厚型心肌病与高血压心脏病左室心功能的对比研究[J] .中国临床医学影像杂志,2004 ,15 (12) :692 - 695.
    36. Arnold MF, Voigt JU, Kukulski T, et al. Does atrioventricular ring motion always distinguish constriction from restriction? A Doppler myocardial imaging study [J]. J Am Soc Echocardiogr, 2001, 14 (5): 391 - 395.
    37.黄国倩,潘翠珍,舒先红,等.心肌应变率成像—超声定量评价局部心肌功能的新技术[J] .中国临床医学, 2004, 11(5): 918– 920.