Co_3O_4纳米材料的模拟酶性质及其在分析检测中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无机纳米材料一般被认为是生物惰性物质,但最近研究者发现一些无机纳米材料如磁性氧化铁纳米粒子、氧化铈纳米材料和贵金属纳米材料等展现出酶的催化性能。无机纳米材料的这一新颖性能促使产生了一个全新的研究领域-纳米材料模拟酶。本文以Co3O4纳米材料为研究对象,构建了新的纳米材料模拟酶体系,研究了其模拟过氧化物酶及模拟过氧化氢酶的催化性质和机理,探讨了结构与性能之间的关系,并将其应用于H2O2、葡萄糖和钙离子等物质的分析检测。
     通过筛选研究发现Co3O4纳米粒子具有较强的模拟过氧化物酶催化活性。详细研究了各因素对Co3O4纳米粒子模拟过氧化物酶催化能力的影响,结果显示催化能力依赖于pH、温度和过氧化氢浓度。对模拟过氧化物酶的催化动力学过程进行了研究,米氏常数显示Co3O4纳米粒子对底物四甲基联苯胺的结合能力大于天然过氧化物酶,催化常数表明Co3O4纳米粒子的催化能力略小于天然过氧化物酶。通过荧光探针法和电化学法探讨了催化反应机理,分析出Co3O4纳米粒子模拟过氧化物酶的催化能力来源于它们在催化过程中的电子传递作用。基于Co3O4纳米粒子模拟过氧化物酶,建立了检测H2O2和葡萄糖的方法。检测H2O2的线性范围为:0.05-25mmol/L,检测限是10μmol/L。检测葡萄糖的线性范围是0.01-10mmol/L,检测限是5μmol/L。其它糖如乳糖、果糖和麦芽糖对测定葡萄糖的干扰很小,说明方法具有较好的选择性。
     研究了结构因素对Co3O4纳米材料模拟过氧化物酶催化性能的影响,包括形貌和表面官能团修饰。合成出不同形貌Co3O4纳米材料:纳米片、纳米棒和纳米立方体,高倍透射电镜分析结果显示它们暴露的主要晶面分别是{112}、{110}和{100}晶面。研究发现各形貌材料模拟过氧化物酶的催化能力大小顺序为:纳米片>>纳米棒>纳米立方体,其中纳米片的催化能力大于天然过氧化物酶。实验结果表明各形貌材料催化能力的差异或许与它们暴露的晶面有关,利用相关软件研究了不同晶面的原子排列方式,分析了晶面对催化能力的影响。将Co3O4纳米片的表面修饰上不同官能团,包括-NH2、-SH、-COOH和-OH,并利用红外光谱、热重分析和Zeta电位分析等手段进行了表征。对其催化性能的研究表明除羟基修饰的纳米片之外,其它修饰物的催化能力都大于未修饰的纳米片,催化能力的大小为:Co3O4(-NH2)> Co3O4(-SH)> Co3O4(-COOH)> Co3O4> Co3O4(-OH),这可能与不同官能团修饰的Co3O4纳米片带有的不同电荷有关。对结构与模拟过氧化物酶催化能力之间关系的研究,为构建高催化能力的模拟过氧化物酶提供了一种有效方法,同时表面修饰可增加其生物亲和性,促进了其潜在的应用能力。
     发现Co3O4纳米粒子还具有模拟过氧化氢酶性质。并研究了Co3O4纳米粒子模拟过氧化氢酶催化能力的影响因素、催化动力学和稳定性。结果表明:催化能力随pH和温度的上升而增加;通过阿伦尼乌斯公式计算得到Co3O4纳米粒子和天然过氧化氢酶的活化能分别是43.3KJ/mol和42.8KJ/mol,说明两者催化分解H2O2的难易程度相似;Co3O4纳米粒子和天然过氧化氢酶的Kcat和Kcat/Km数值非常接近,表明Co3O4纳米粒子具有很高的模拟过氧化氢酶催化能力;Co3O4纳米粒子的稳定性远高于天然过氧化氢酶。基于Co3O4纳米粒子模拟过氧化氢酶性质,制备了电化学传感器,应用于检测H2O2。电化学检测H2O2的线性范围是:10μmol/L-4mmol/L,检测限是3μmol/L。和其它天然过氧化氢酶相比,具有较宽的检测范围和较低的检测限。
     对不同形貌Co3O4纳米材料的模拟过氧化氢酶催化性能进行了研究。测定了各材料的催化动力学过程,结果显示活化能大小为:纳米片<纳米棒<纳米立方体,催化能力大小为:纳米片>纳米棒>纳米立方体。阐述了Co3O4纳米材料模拟过氧化氢酶的催化机理,即Co3O4纳米材料上的Co(Ⅲ)从一分子过氧化氢得到一个电子变成Co(Ⅱ),并使过氧化氢生成氧气和水;其次Co3O4纳米材料上的Co(Ⅱ)将电子传递给另外一分子的过氧化氢变至Co(Ⅲ),使过氧化氢还原成氢氧根离子。通过催化机理解释了各材料催化能力的差异是来源于它们具有不同的电子传递能力。研究发现钙离子能急剧增加Co3O4纳米材料模拟过氧化氢酶的催化能力。基于钙离子的促进作用,构建了一种新型的钙离子传感器。检测钙离子的线性范围是:0.1-1mmol/L,检测限为4μmol/L。传感器具有良好的选择性和重复性,应用于牛奶样中钙离子的检测,测定值和ICP-AES测定值相吻合,说明构建的传感器具有较高的准确性。
Inorganic nanomaterials are generally considered as biologically inert substances. In recent years, it is surprising that some nanomaterials exhibit the catalytic properties of enzymes, such as magnetic iron oxide nanoparticles, cerium oxide nanomaterials, precious metals nanomaterials and so on. The novel properties of nanomaterials promote the establishment of a new field─nanomaterial-based artificial enzymes. We studied Co3O4nanomaterials and constructed the new nanomaterial-based artificial enzymes. The catalytic properties, kinetics and mechanisms of their mimetic peroxidase and mimetic catalase were studied in detail. And Co3O4nanomaterials were applied in the detection of some substances.
     Based on the systematic research, Co3O4nanoparticles were found to show the peroxidase mimetic activity. The effect of various factors on the catalytic activity of Co3O4nanoparticles was studied, the results showed that the catalytic activity was dependent on pH, temperature and H2O2concentration. The catalytic kinetics of Co3O4nanoparticles were investaged with the Michaelis-Menten equation. Michaelis constants showed that Co3O4nanoparticles had a higher affinity for TMB than that of natural peroxidase. The catalytic constants indicated that the catalytic activity of Co3O4nanoparticles was lower than natural peroxidase. The reaction mechanism was investigated with fluorescence probe and electrochemical methods. The catalytic activity of Co3O4nanoparticles was due to the electron transfer in the catalytic process. Co3O4nanoparticles were applied in the detection of H2O2and glucose with its mimetic peroxidase activity. The linear range for H2O2was from0.05to25mmol/L and the detection limit was10μmol/L. The linear range for glucose was from0.01to10mmol/L and the detection limit was5μmol/L. The demonstrated biosensing system was highly selective for glucose detection.
     The impact of structure of Co3O4nanomaterials on their peroxidase mimic activity was studied, including morphology and surface modification with functional groups. The Co3O4nanomaterials of different morphology including nanoplates, nanorods and nanocubes were synthesized, and HRTEM results showed that their mainly exposed planes were {112},{110} and {100} planes, respectively. The catalytic activities of Co3O4nanomaterials with different morphology followed the order of nanoplates>> nanorods> nanocubes. The results indicated that the difference in catalytic activity might be related to their explosed planes. The surface atomic configurations in different crystal planes were stuided by relative software, indicating that planes were the important factor on the catalytic activity. Finally, the surfaces of Co3O4nanosheets were modified by different functional groups, including-NH2,-SH,-COOH and-OH, which were verified using infrared spectroscopy, thermal analysis instruments and Zeta potential analysis. Other than the complex modified by hydroxy, the catalytic activities of the complexs were higher than Co3O4nanosheets. The order of their catalytic activities was Co3O4(-NH2)> Co3O4(-SH)> Co3O4(-COOH)> Co3O4> Co3O4(-OH), which might be related with the different electric charges on the surface of the complexs. Studies on the relationship between the structure and the catalytic ability of peroxidase mimic provided an effective method for constructing the peroxidase mimic with high catalytic activity. Surface modification can also increased their biological affinity and promoted their potential applications.
     The catalytic properties of Co3O4nanoparticles as catalase mimic was firstly studied. The external factors, catalytic kinetics and stability were studied. The results showed that: the catalytic activity increased as pH and temperature; the activation energy of Co3O4nanoparticles and catalase were obtained by Arrhenius formula to be43.3KJ/mol and42.8KJ/mol, indicating close catalytic decomposition barriers; the close Kcat and Kcat/Km values of Co3O4nanoparticles and catlase showed Co3O4nanoparticles had high catalase mimic activity; the stability of Co3O4nanoparticles was higher than that of catalase. Based on the mimetic catalase activity of Co3O4nanoparticles, they were used as the amperometric sensor for the detection of H2O2. The linear range of the H2O2sensor was from10μmol/L to4mmol/L, with the detection limit of3μmol/L. Compared with some other catalases, it had wide range and low detedction.
     The catalytic properties of Co3O4nanomaterials as catalase mimic with different morphology are studied. The catalytic kinetics of Co3O4nanomaterials as catalase mimic were studied, the activation energies followed the order of nanoplates nanorods> nanocubes. The catalytic mechanism of Co3O4nanomaterials as catalase mimic was proposed: firstly, the Co(III) of Co3O4nanomaterials obtained electrons easily from H2O2and turned into Co(II), oxidizing H2O2into oxygen and water; secondly, Co(II) in Co3O4nanomaterials transferred electrons to H2O2and changed back to Co(III), reducing H2O2to OH. The difference of catalase mimic activities was due to the different electron transfer ability of Co3O4nanomaterials. Calcium ion was found to dramatically increase the catalase mimic activity of Co3O4nanomaterials. Based on the stimulation of calcium ion, an amperometric biosensor with Co3O4nanoplates was developed to detect Ca2+. The linear range of for detecing Ca2+was0.1and1mmol/L with a detection limit of4μmol/L. It showed high selectivity against other metal ions and good reproducibility. The proposed method was successfully applied for the determination of calcium in milk samples, showing high accuracy.
引文
[1] Benkovic S J, Hammes-Schiffer S. A Perspective on Enzyme Catalysis[J].Science,2003,301:1196-1202.
    [2] Beaudry A A, Joyce G F. Directed Evolution of an RNA Enzyme[J]. Science,1992,257:635-641.
    [3] Breslow R. Artificial Enzymes[J]. Science,1982,218:532-537.
    [4] Murakami Y, Kikuchi J, Hisaeda Y, et al. Artificial Enzymes[J]. ChemicalReviews,1996,96:721-758.
    [5] Nanda V, Koder R L. Designing Artificial Enzymes by Intuition andComputation[J]. Nature Chemistry,2010,2:15-24.
    [6] Breslow R. Biomimetic Chemistry and Artificial Enzymes-catalysis byDesign[J]. Accounts of Chemical Research,1995,28:146-153.
    [7] Monnereau C, Ramos P H, Deutman A B C, et al. Porphyrin MacrocyclicCatalysts for the Processive Oxidation of Polymer Substrates[J]. Journal ofthe American Chemical Society,2010,132:1529-1531.
    [8] Machan C W, Spokoyny A M, Jones M R, et al. Plasticity of the Nickel(II)Coordination Environment in Complexes with Hemilabile PhosphinoThioether Ligands[J]. Journal of the American Chemical Society,2011,133:3023-3033.
    [9] Zhang B L, Breslow R. Ester Hydrolysis by a Catalytic Cyclodextrin DimerEnzyme Mimic with a Metallobipyridyl Linking group[J]. Journal of theAmerican Chemical Society,1997,119:1676-1681.
    [10] Wang Q G, Yang Z M, Zhang X Q, et al. Asupramolecular-hydrogel-encapsulated Hemin as an Artificial Enzyme toMimic Peroxidase[J]. Angewandte Chemie-International Edition,2007,46:4285-4289.
    [11] Liu L, Breslow R. A Potent Polymer/pyridoxamine Enzyme Mimic[J].Journal of the American Chemical Society,2002,124:4978-4979.
    [12] Hosseini M W, Lehn J M, Jones K C, et al. Supramolecular Catalysis-polyammonium Macrocycles as Enzyme Mimics for Phosphoryl Transfer inAtp Hydrolysis[J]. Journal of the American Chemical Society,1989,111:6330-6335.
    [13] Valiev R. Materials Science-Nanomaterial Advantage[J]. Nature,2002,419:887-889.
    [14] Lahann J. Environmental Nanotechnology-Nanomaterials Clean Up[J].Nature Nanotechnology,2008,3:320-321.
    [15] Banin U. Tiny Seeds Make a Big Difference-A seeded-growth ApproachProvides Shape-controlled Bimetallic Nanocrystals and Opens the Way for aRich Selection of New Nanoscale Building Blocks[J]. Nature Materials,2007,6:625-626.
    [16] A.KOTOV N,孟海凤.纳米颗粒和蛋白质:何其相似耶?[J].生命科学,2008:375-382.
    [17] Gao L Z, Zhuang J, Nie L, et al. Intrinsic Peroxidase-like Activity ofFerromagnetic Nanoparticles[J]. Nature Nanotechnology,2007,2:577-583.
    [18]梁敏敏,阎锡蕴.纳米材料模拟酶性质及其应用[J].东南大学学报(医学版),2011,30:105-107.
    [19] Yu F Q, Huang Y Z, Cole A J, et al. The Artificial Peroxidase Activity ofMagnetic Iron Oxide Nanoparticles and Its Application to GlucoseDetection[J]. Biomaterials,2009,30:4716-4722.
    [20] Wang C, Daimon H, Sun S H. Dumbbell-like Pt-Fe3O4Nanoparticles andTheir Enhanced Catalysis for Oxygen Reduction Reaction[J]. Nano Letters,2009,9:1493-1496.
    [21] Sun H Y, Jiao X L, Han Y Y, et al. Synthesis of Fe3O4-Au Nanocompositeswith Enhanced Peroxidase-Like Activity[J]. European Journal of InorganicChemistry,2013:109-114.
    [22] Dong Y-l, Zhang H-g, Rahman Z U, et al. Graphene oxide-Fe3O4magneticnanocomposites with Peroxidase-like Activity for Colorimetric Detection ofGlucose[J]. Nanoscale,2012,4:3969-3976.
    [23] Chen Z W, Yin J J, Zhou Y T, et al. Dual Enzyme-like Activities of IronOxide Nanoparticles and Their Implication for Diminishing Cytotoxicity[J].ACS Nano,2012,6:4001-4012.
    [24] Chaudhari K N, Chaudhari N K, Yu J S. Peroxidase Mimic Activity ofHematite Iron Oxides (alpha-Fe2O3) with Different Nanostructres[J].Catalysis Science&Technology,2012,2:119-124.
    [25] Chen W, Chen J, Liu A L, et al. Peroxidase-Like Activity of Cupric OxideNanoparticle[J]. Chemcatchem,2011,3:1151-1154.
    [26] Deng H M, Shen W, Peng Y F, et al. Nanoparticulate Peroxidase/CatalaseMimetic and Its Application[J]. Chemistry-a European Journal,2012,18:8906-8911.
    [27] Andre R, Natalio F, Humanes M, et al. V2O5Nanowires with an IntrinsicPeroxidase-Like Activity[J]. Advanced Functional Materials,2011,21:501-509.
    [28] Asati A, Santra S, Kaittanis C, et al. Oxidase-Like Activity ofPolymer-Coated Cerium Oxide Nanoparticles[J]. AngewandteChemie-International Edition,2009,48:2308-2312.
    [29] Peng Y F, Chen X J, Yi G S, et al. Mechanism of the Oxidation of OrganicDyes in the Presence of Nanoceria[J]. Chemical Communications,2011,47:2916-2918.
    [30] Pirmohamed T, Dowding J M, Singh S, et al. Nanoceria Exhibit RedoxState-dependent Catalase Mimetic Activity[J]. Chemical Communications,2010,46:2736-2738.
    [31] Heckert E G, Karakoti A S, Seal S, et al. The Role of Cerium Redox State inthe SOD Mimetic Activity of Nanoceria[J]. Biomaterials,2008,29:2705-2709.
    [32] Shi W B, Zhang X D, He S H, et al. CoFe2O4Magnetic Nanoparticles as aPeroxidase Mimic Mediated Chemiluminescence for Hydrogen Peroxide andGlucose[J]. Chemical Communications,2011,47:10785-10787.
    [33] Jv Y, Li B X, Cao R. Positively-charged Gold Nanoparticles as PeroxidiaseMimic and their Application in Hydrogen Peroxide and GlucoseDetection[J]. Chemical Communications,2010,46:8017-8019.
    [34] Long Y J, Li Y F, Liu Y, et al. Visual Observation of the Mercury-stimulatedPeroxidase Mimetic Activity of Gold Nanoparticles[J]. ChemicalCommunications,2011,47:11939-11941.
    [35] Wang S, Chen W, Liu A L, et al. Comparison of the Peroxidase-LikeActivity of Unmodified, Amino-Modified, and Citrate-Capped GoldNanoparticles[J]. Chemphyschem,2012,13:1199-1204.
    [36] Comotti M, Della Pina C, Matarrese R, et al. The Catalytic Activity of"Naked" Gold Particles[J]. Angewandte Chemie-International Edition,2004,43:5812-5815.
    [37] Beltrame P, Comotti M, Della Pina C, et al. Aerobic Oxidation of Glucose I.Enzymatic Catalysis[J]. Journal of Catalysis,2004,228:282-287.
    [38] He W W, Zhou Y T, Wamer W G, et al. Mechanisms of the pH DependentGeneration of Hydroxyl Radicals and Oxygen Induced by AgNanoparticles[J]. Biomaterials,2012,33:7547-7555.
    [39] Fan J, Yin J J, Ning B, et al. Direct Evidence for Catalase and PeroxidaseActivities of Ferritin-platinum Nanoparticles[J]. Biomaterials,2011,32:1611-1618.
    [40] Zhang L B, Laug L, Munchgesang W, et al. Reducing Stress on Cells withApoferritin-Encapsulated Platinum Nanoparticles[J]. Nano Letters,2010,10:219-223.
    [41] Clark A, Zhu A P, Sun K, et al. Cerium Oxide and Platinum NanoparticlesProtect Cells from Oxidant-mediated Apoptosis[J]. Journal of NanoparticleResearch,2011,13:5547-5555.
    [42] He W W, Wu X C, Liu J B, et al. Design of AgM Bimetallic AlloyNanostructures (M=Au, Pd, Pt) with Tunable Morphology andPeroxidase-Like Activity[J]. Chemistry of Materials,2010,22:2988-2994.
    [43] Lien C W, Huang C C, Chang H T. Peroxidase-mimic Bismuth-goldNanoparticles for Determining the Activity of Thrombin and Drugscreening[J]. Chemical Communications,2012,48:7952-7954.
    [44] He W W, Liu Y, Yuan J S, et al. Au@Pt Nanostructures as Oxidase andPeroxidase Mimetics for Use in Immunoassays[J]. Biomaterials,2011,32:1139-1147.
    [45] Song Y J, Wang X H, Zhao C, et al. Label-Free Colorimetric Detection ofSingle Nucleotide Polymorphism by Using Single-Walled Carbon NanotubeIntrinsic Peroxidase-Like Activity[J]. Chemistry-a European Journal,2010,16:3617-3621.
    [46] Song Y J, Qu K G, Zhao C, et al. Graphene Oxide: Intrinsic PeroxidaseCatalytic Activity and Its Application to Glucose Detection[J]. AdvancedMaterials,2010,22:2206-+.
    [47] Song Y J, Qu K G, Xu C, et al. Visual and Quantitative Detection of CopperIons Using Magnetic Silica Nanoparticles Clicked on Multiwalled CarbonNanotubes[J]. Chemical Communications,2010,46:6572-6574.
    [48] Roy P, Lin Z H, Liang C T, et al. Synthesis of Enzyme Mimics of IronTelluride Nanorods for the Detection of Glucose[J]. ChemicalCommunications,2012,48:4079-4081.
    [49] Wang W, Jiang X P, Chen K Z. Iron Phosphate Microflowers as PeroxidaseMimic and Superoxide Dismutase Mimic for Biocatalysis and Biosensing[J].Chemical Communications,2012,48:7289-7291.
    [50] Maji S K, Dutta A K, Srivastava D N, et al. Peroxidase-like Behavior,Amperometric Biosensing of Hydrogen Peroxide and PhotocatalyticActivity by Cadmium Sulfide Nanoparticles[J]. Journal of MolecularCatalysis a-Chemical,2012,358:1-9.
    [51] Wei H, Wang E. Fe3O4Magnetic Nanoparticles as Peroxidase Mimetics andTheir Applications in H2O2and Glucose Detection[J]. Analytical Chemistry,2008,80:2250-2254.
    [52] Su L, Feng J, Zhou X M, et al. Colorimetric Detection of Urine GlucoseBased ZnFe2O4Magnetic Nanoparticles[J]. Analytical Chemistry,2012,84:5753-5758.
    [53] Shi W B, Wang Q L, Long Y J, et al. Carbon Nanodots as PeroxidaseMimetics and Their Applications to Glucose Detection[J]. ChemicalCommunications,2011,47:6695-6697.
    [54] Liu Z L, Zhao B, Shi Y, et al. Novel Nonenzymatic Hydrogen PeroxideSensor based on Iron Oxide-silver Hybrid Submicrospheres[J]. Talanta,2010,81:1650-1654.
    [55] Wang Y L, Chen S H, Ni F, et al. Peroxidase-Like Layered DoubleHydroxide Nanoflakes for Electrocatalytic Reduction of H2O2[J].Electroanalysis,2009,21:2125-2132.
    [56] Dai Z H, Liu S H, Bao J C, et al. Nanostructured FeS as a Mimic Peroxidasefor Biocatalysis and Biosensing[J]. Chemistry-a European Journal,2009,15:4321-4326.
    [57] Tseng C W, Chang H Y, Chang J Y, et al. Detection of Mercury Ions Basedon Mercury-induced Switching of Enzyme-like Activity of Platinum/goldNanoparticles[J]. Nanoscale,2012,4:6823-6830.
    [58] Ding N, Yan N, Ren C L, et al. Colorimetric Determination of Melamine inDairy Products by Fe3O4Magnetic Nanoparticles-H2O2-ABTS DetectionSystem[J]. Analytical Chemistry,2010,82:5897-5899.
    [59] Guan G J, Yang L, Mei Q S, et al. Chemiluminescence Switching onPeroxidase-Like Fe3O4Nanoparticles for Selective Detection andSimultaneous Determination of Various Pesticides[J]. Analytical Chemistry,2012,84:9492-9497.
    [60] Tao Y, Lin Y H, Huang Z Z, et al. Incorporating Graphene Oxide and GoldNanoclusters: A Synergistic Catalyst with Surprisingly HighPeroxidase-Like Activity Over a Broad pH Range and its Application forCancer Cell Detection[J]. Advanced Materials,2013,25:2594-2599.
    [61] Wang N, Zhu L H, Wang D L, et al. Sono-assisted Preparation ofHighly-efficient Peroxidase-like Fe3O4Magnetic Nanoparticles forCatalytic Removal of Organic Pollutants with H2O2[J]. UltrasonicsSonochemistry,2010,17:526-533.
    [62] Zhang J B, Zhuang J, Gao L Z, et al. Decomposing Phenol by The HiddenTalent of Ferromagnetic Nanoparticles[J]. Chemosphere,2008,73:1524-1528.
    [63] Asati A, Kaittanis C, Santra S, et al. pH-Tunable Oxidase-Like Activity ofCerium Oxide Nanoparticles Achieving Sensitive Fluorigenic Detection ofCancer Biomarkers at Neutral pH[J]. Analytical Chemistry,2011,83:2547-2553.
    [64] Luo W J, Zhu C F, Su S, et al. Self-Catalyzed, Self-Limiting Growth ofGlucose Oxidase-Mimicking Gold Nanoparticles[J]. ACS Nano,2010,4:7451-7458.
    [65] Hirst S M, Karakoti A S, Tyler R D, et al. Anti-inflammatory Properties ofCerium Oxide Nanoparticles[J]. Small,2009,5:2848-2856.
    [66] Celardo I, De Nicola M, Mandoli C, et al. Ce3+Ions DetermineRedox-Dependent Anti-apoptotic Effect of Cerium Oxide Nanoparticles[J].ACS Nano,2011,5:4537-4549.
    [67] Pagliari F, Mandoli C, Forte G, et al. Cerium Oxide Nanoparticles ProtectCardiac Progenitor Cells from Oxidative Stress[J]. ACS Nano,2012,6:3767-3775.
    [68] Mandoli C, Pagliari F, Pagliari S, et al. Stem Cell Aligned Growth Inducedby CeO2Nanoparticles in PLGA Scaffolds with Improved Bioactivity forRegenerative Medicine[J]. Advanced Functional Materials,2010,20:1617-1624.
    [69] Chen J P, Patil S, Seal S, et al. Rare Earth Nanoparticles Prevent RetinalDegeneration Induced by Intracellular Peroxides[J]. Nature Nanotechnology,2006,1:142-150.
    [70] Das M, Patil S, Bhargava N, et al. Auto-catalytic Ceria Nanoparticles OfferNeuroprotection to Adult Rat Spinal Cord Neurons[J]. Biomaterials,2007,28:1918-1925.
    [71] Tarnuzzer R W, Colon J, Patil S, et al. Vacancy Engineered CeriaNanostructures for Protection from Radiation-induced Cellular Damage[J].Nano Letters,2005,5:2573-2577.
    [72] Mulinari T A, La Porta F A, Andres J, et al. Microwave-hydrothermalSynthesis of Single-crystalline Co3O4Spinel Nanocubes[J]. Crystengcomm,2013,15:7443-7449.
    [73] Nassar M Y. Size-controlled Synthesis of CoCO3and Co3O4Nanoparticlesby Free-surfactant Hydrothermal Method[J]. Materials Letters,2013,94:112-115.
    [74] Nassar M Y, Mohamed T Y, Ahmed I S. One-pot Solvothermal Synthesis ofNovel Cobalt Salicylaldimine-urea Complexes: A New Approach to Co3O4Nanoparticles[J]. Journal of Molecular Structure,2013,1050:81-87.
    [75] Cheng K, Cao D X, Yang F, et al. Facile Synthesis ofMorphology-controlled Co3O4Nanostructures through SolvothermalMethod with Enhanced Catalytic Activity for H2O2Electroreduction[J].Journal of Power Sources,2014,253:214-223.
    [76] Wu H J, Wang L D, Shen Z Y, et al. Catalytic Oxidation of Toluene andP-xylene using Gold Supported on Co3O4Catalyst Prepared by ColloidalPrecipitation Method[J]. Journal of Molecular Catalysis a-Chemical,2011,351:188-195.
    [77] Lu S S, Jing X Y, Liu J Y, et al. Synthesis of Porous Sheet-like Co3O4Microstructure by Precipitation Method and Its Potential Applications inThe Thermal Decomposition of Ammonium Perchlorate[J]. Journal of SolidState Chemistry,2013,197:345-351.
    [78] Yan H J, Xie X H, Liu K W, et al. Facile Preparation of Co3O4Nanoparticlesvia Thermal Decomposition of Co(NO3)2loading on C3N4[J]. PowderTechnology,2012,221:199-202.
    [79] Khalaji A D, Nikookar M, Fejfarova K, et al. Synthesis of New Cobalt(III)Schiff Base Complex: A New Precursor for Preparation Co3O4Nanoparticlesvia Solid-state Thermal Decomposition[J]. Journal of Molecular Structure,2014,1071:6-10.
    [80]孙灵娜,王小慧,王强.水热法合成四氧化三钴纳米材料[J].材料科学与工程学报,2011:17-20.
    [81]黄可龙,刘人生,杨幼平,等.形貌可控的四氧化三钴溶剂热合成及反应机理[J].物理化学学报,2007:655-658.
    [82]侯相钰,冯静,刘晓寒,等.草酸沉淀法合成自组装纳米Co3O4及性质[J].无机化学学报,2010:525-528.
    [83] Salavati-Niasari M, Mir N, Davar F. Synthesis and Characterization ofCo3O4Nanorods by Thermal Decomposition of Cobalt Oxalate[J]. Journalof Physics and Chemistry of Solids,2009,70:847-852.
    [84] Liao M J, Feng J Y, Luo W J, et al. Co3O4Nanoparticles as Robust WaterOxidation Catalysts Towards Remarkably Enhanced Photostability of aTa3N5Photoanode[J]. Advanced Functional Materials,2012,22:3066-3074.
    [85] Shi P H, Su R J, Wan F Z, et al. Co3O4Nanocrystals on Graphene Oxide as aSynergistic Catalyst for Degradation of Orange II in Water by AdvancedOxidation Technology Based on Sulfate Radicals[J]. Applied CatalysisB-Environmental,2012,123:265-272.
    [86] Wang J Y, Yang N L, Tang H J, et al. Accurate Control of MultishelledCo3O4Hollow Microspheres as High-Performance Anode Materials inLithium-Ion Batteries[J]. Angewandte Chemie-International Edition,2013,52:6417-6420.
    [87] Li L, Seng K H, Chen Z X, et al. Self-assembly of Hierarchical Star-likeCo3O4Micro/nanostructures and Their Application in Lithium IonBatteries[J]. Nanoscale,2013,5:1922-1928.
    [88] Cui H T, Wang M M, Ren W Z, et al. Low Temperature Synthesis of HighElectrochemical Performance Co3O4Nanoparticles for Application inSupercapacitor[J]. Functional Materials Letters,2014,7.
    [89] Wang Y Y, Lei Y, Li J, et al. Synthesis of3D-Nanonet Hollow StructuredCo3O4for High Capacity Supercapacitor[J]. ACS Applied Materials&Interfaces,2014,6:6739-6747.
    [90]曹全喜,周晓华,蔡式东,等. Co3O4在压敏陶瓷中的作用和影响[J].压电与声光,1996:260-263.
    [91]杨巍屹,马南钢.3YPSZ-Al2O3-Co3O4陶瓷力学性能的研究[J].中国陶瓷,2012:34-37.
    [92] Wen Z, Zhu L P, Li Y G, et al. Mesoporous Co3O4Nanoneedle Arrays forHhigh-performance Gas Sensor[J]. Sensors and Actuators B-Chemical,2014,203:873-879.
    [93] Elhag S, Ibupoto Z H, Liu X J, et al. Dopamine wide range detection sensorbased on modified Co3O4nanowires electrode[J]. Sensors and ActuatorsB-Chemical,2014,203:543-549.
    [94] Xie X W, Li Y, Liu Z Q, et al. Low-temperature Oxidation of CO Catalysedby Co3O4nanorods[J]. Nature,2009,458:746-749.
    [95]刘兴泉,李淑华,何泽珍,等.锂离子蓄电池正极材料LiCoO2的制备与电化学性能研究[J].化工科技,2001:8-11.
    [96] Zhao G Y, Xu Z M, Sun K N. Hierarchical Porous Co3O4Films as CathodeCatalysts of Rechargeable LiO2Batteries[J]. Journal of Materials ChemistryA,2013,1:12862-12867.
    [97] Xia X H, Tu J P, Mai Y J, et al. Self-supported Hydrothermal SynthesizedHollow Co3O4Nanowire Arrays with High Supercapacitor Capacitance[J].Journal of Materials Chemistry,2011,21:9319-9325.
    [98] Nguyen H, El-Safty S A. Meso-and Macroporous Co3O4Nanorods forEffective VOC Gas Sensors[J]. Journal of Physical Chemistry C,2011,115:8466-8474.
    [99] Hwang S, Umar A, Kim S, et al. Low-temperature Growth ofWell-crystalline Co3O4Hexagonal Nanodisks as Anode Material forLithium-ion Batteries[J]. Electrochimica Acta,2011,56:8534-8538.
    [100] Wang Q, Yang Z, Zhang X, et al. A Supramolecular-Hydrogel-EncapsulatedHemin as an Artificial Enzyme to Mimic Peroxidase[J]. AngewandteChemie International Edition,2007,46:4285-4289.
    [101] Sono M, Roach M P, Coulter E D, et al. Heme-containing Oxygenases[J].Chemical Reviews,1996,96:2841-2887.
    [102] Liu Z H, Cai R X, Mao L Y, et al. Highly Sensitive SpectrofluorimetricDetermination of Hydrogen Peroxide with Beta-cyclodextrin-hemin asCatalyst[J]. Analyst,1999,124:173-176.
    [103] Wei H, Wang E K. Nanomaterials with Enzyme-like Characteristics(nanozymes): Next-generation Artificial Enzymes[J]. Chemical SocietyReviews,2013,42:6060-6093.
    [104] Hutchins M G, Wright P J, Grebenik P D. Comparison of Different Formsof Black Cobalt Selective Solar-absorber Surfaces[J]. Solar EnergyMaterials,1987,16:113-131.
    [105] Smith R D L, Prevot M S, Fagan R D, et al. Water Oxidation Catalysis:Electrocatalytic Response to Metal Stoichiometry in Amorphous MetalOxide Films Containing Iron, Cobalt, and Nickel[J]. Journal of theAmerican Chemical Society,2013,135:11580-11586.
    [106] Coperet C. Catalysis by Transition Metal Sulphides. From MolecularTheory to Industrial Applications[J]. Journal of Catalysis,2013,307:121-121.
    [107] Huang X J, Choi Y K. Chemical Sensors Based on NanostructuredMaterials[J]. Sensors and Actuators B-Chemical,2007,122:659-671.
    [108] Bai S, Shen X P, Zhu G X, et al. Optical Properties and a Simple andGeneral Route for the Rapid Syntheses of Reduced Graphene Oxide-MetalSulfide Nanocomposites[J]. European Journal of Inorganic Chemistry,2013:256-262.
    [109] Chattopadhyay K, Mazumdar S. Structural and Conformational Stability ofHorseradish Peroxidase: Effect of Temperature and pH[J]. Biochemistry,2000,39:263-270.
    [110] Josephy P D, Eling T, Mason R P. The Horseradish Peroxidase-catalyzedOxidation of3,5,3',5'-tetramethylbenzidine. Free Radical andCharge-transfer Complex Intermediates[J]. Journal of Biological Chemistry,1982,257:3669-3675.
    [111] Lin Y H, Zhao A D, Tao Y, et al. Ionic Liquid as an Efficient Modulator onArtificial Enzyme System: Toward the Realization of High-TemperatureCatalytic Reactions[J]. Journal of the American Chemical Society,2013,135:4207-4210.
    [112] Nicell J A, Wright H. A Model of Peroxidase Activity with Inhibition byHydrogen Peroxide[J]. Enzyme and Microbial Technology,1997,21:302-310.
    [113] Rodriguez-Lopez J N, Lowe D J, Hernandez-Ruiz J, et al. Mechanism ofReaction of Hydrogen Peroxide with Horseradish Peroxidase: Identificationof Intermediates in The Catalytic Cycle[J]. Journal of the AmericanChemical Society,2001,123:11838-11847.
    [114] Chen Z, Yin J J, Zhou Y T, et al. Dual Enzyme-like Activities of Iron OxideNanoparticles and Their Implication for Diminishing Cytotoxicity[J]. ACSNano,2012,6:4001-4012.
    [115] Ishibashi K, Fujishima A, Watanabe T, et al. Quantum Yields of ActiveOxidative Species Formed on TiO2Photocatalyst[J]. Journal ofPhotochemistry and Photobiology a-Chemistry,2000,134:139-142.
    [116] Cao R, Li B X. A Simple and Sensitive Method for Visual Detection ofHeparin using Positively-charged Gold Nanoparticles as ColorimetricProbes[J]. Chemical Communications,2011,47:2865-2867.
    [117] Valden M, Lai X, Goodman D W. Onset of Catalytic Activity of GoldClusters on Titania with The Appearance of Nonmetallic Properties[J].Science,1998,281:1647-1650.
    [118] Schl gl R, Abd Hamid S B. Nanocatalysis: Mature Science Revisited orSomething Really New?[J]. Angewandte Chemie International Edition,2004,43:1628-1637.
    [119] Shi F, Tse M K, Pohl M M, et al. Tuning Catalytic Activity betweenHomogeneous and Heterogeneous Catalysis: Improved Activity andSelectivity of Free Nano-Fe2O3in Selective Oxidations[J]. AngewandteChemie International Edition,2007,46:8866-8868.
    [120] Spencer N, Schoonmaker R, Somorjai G. Structure Sensitivity in The IronSingle-crystal Catalysed Synthesis of Ammonia[J]. Nature,1981,294:643-644.
    [121] Spencer N, Schoonmaker R, Somorjai G. Iron Single Crystals as AmmoniaSynthesis Catalysts: Effect of Surface Structure on Catalyst Activity[J].Journal of Catalysis,1982,74:129-135.
    [122] Van Bokhoven J A. Understanding Structure–performance Relationships inOxidic Catalysts: Controlling Shape and Tuning Performance[J].Chemcatchem,2009,1:363-364.
    [123] Lim B, Wang J, Camargo P H, et al. Twin-Induced Growth ofPalladium-Platinum Alloy Nanocrystals[J]. Angewandte ChemieInternational Edition,2009,48:6304-6308.
    [124] Lim B, Jiang M, Tao J, et al. Shape-Controlled Synthesis of PdNanocrystals in Aqueous Solutions[J]. Advanced Functional Materials,2009,19:189-200.
    [125] Jun Y w, Choi J s, Cheon J. Shape Control of Semiconductor and MetalOxide Nanocrystals Through Nonhydrolytic Colloidal Routes[J].Angewandte Chemie International Edition,2006,45:3414-3439.
    [126] Hu L, Peng Q, Li Y. Selective Synthesis of Co3O4Nanocrystal withDifferent Shape and Crystal Plane Effect on Catalytic Property forMethane Combustion[J]. Journal of the American Chemical Society,2008,130:16136-16137.
    [127] Tian N, Zhou Z-Y, Sun S-G, et al. Synthesis of Tetrahexahedral PlatinumNanocrystals with High-index Facets and High Electro-oxidationactivity[J]. Science,2007,316:732-735.
    [128] Aneggi E, Wiater D, de Leitenburg C, et al. Shape-dependent Activity ofCeria in Soot Combustion[J]. ACS Catalysis,2014,4:172-181.
    [129] Qiao Z A, Wu Z, Dai S. Shape-Controlled Ceria-based Nanostructures forCatalysis Applications[J]. ChemSusChem,2013,6:1821-1833.
    [130] Varghese B, Teo C, Zhu Y, et al. Co3O4Nanostructures with DifferentMorphologies and their Field-Emission Properties[J]. Advanced FunctionalMaterials,2007,17:1932-1939.
    [131] Yin J F, Cao H Q, Lu Y X. Self-assembly into Magnetic Co3O4Complex Nanostructures as Peroxidase[J]. Journal of Materials Chemistry,2012,22:527-534.
    [132] Teng Y, Kusano Y, Azuma M, et al. Morphology Effects of Co3O4Nanocrystals Catalyzing CO Oxidation in A Dry Reactant GasStream[J]. Catalysis Science&Technology,2011,1:920-922.
    [133] Fei Z, He S, Li L, et al. Morphology-directed Synthesis of Co3O4Nanotubes Based on Modified Kirkendall Effect and Its Application in CH4Combustion[J]. Chemical Communications,2012,48:853-855.
    [134] Xu R, Zeng H C. Self-generation of Tiered Surfactant Superstructures for One-pot Synthesis of Co3O4Nanocubes and Their Close-andNon-close-packed Organizations[J]. Langmuir,2004,20:9780-9790.
    [135] Klibanov A M, Tu T-m, Scott K P. Peroxidase-catalyzed Removal ofPhenols from Coal-conversion Waste Waters[J]. Science,1983,221:259-261.
    [136] Gorton L, Lindgren A, Larsson T, et al. Direct Electron Transfer BetweenHeme-containing Enzymes and Electrodes as Basis for Third GenerationBiosensors[J]. Analytica Chimica Acta,1999,400:91-108.
    [137] Wachs I E. Recent Conceptual Advances in The Catalysis Science of MixedMetal Oxide Catalytic Materials[J]. Catalysis Today,2005,100:79-94.
    [138] Ma M, Zhang Y, Yu W, et al. Preparation and Characterization of Magnetitenanoparticles coated by amino silane[J]. Colloids and Surfacesa-Physicochemical and Engineering Aspects,2003,212:219-226.
    [139]李峰,李红强,赖学军,等. γ-巯丙基三甲氧基硅烷对纳米二氧化硅表面接枝改性的研究[J].无机盐工业,2014:33-36.
    [140] Tang E J, Cheng G X, Ma X L, et al. Surface Modification of Zinc OxideNanoparticle by PMAA and Its Dispersion in Aqueous System[J]. AppliedSurface Science,2006,252:5227-5232.
    [141]李绍霞.磁性纳米粒子的表面功能化修饰[D].烟台:烟台大学,2009.
    [142] McCord J M, Keele B B, Fridovich I. An Enzyme-based Theory ofObligate Anaerobiosis: the Physiological Function of SuperoxideDismutase[J]. Proceedings of the National Academy of Sciences,1971,68:1024-1027.
    [143] Hekimi S, Guarente L. Genetics and The Specificity of The AgingProcess[J]. Science,2003,299:1351-1354.
    [144] Jenner P. Oxidative Stress in Parkinson's Disease[J]. Annals of Neurology,2003,53:26-38.
    [145] Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating MitochondrialDNA Mutations Can Regulate Tumor Cell Metastasis[J]. ScienceSignalling,2008,320:661.
    [146] Alacam A, Tulunoglu, Oygür T, et al. Effects of Topical CatalaseApplication on Dental Pulp Tissue: A Histopathological Evaluation[J].Journal of Dentistry,2000,28:333-339.
    [147] Loprasert S, Vattanaviboon P, Praituan W, et al. Regulation of TheOxidative Stress Protective Enzymes, Catalase and Superoxide Dismutasein Xanthomonas-a Review[J]. Gene,1996,179:33-37.
    [148] Akgol S, Dinckaya E. A Novel Biosensor for Specific Determination ofHydrogen Peroxide: Catalase Enzyme Electrode based on DissolvedOxygen Probe[J]. Talanta,1999,48:363-367.
    [149] Tatsuma T, Watanabe T, Tatsuma S. Substrate-purging Enzyme Electrodes.Peroxidase/catalase Electrodes for Hydrogen Peroxide with An ImprovedUpper Sensing Limit[J]. Analytical Chemistry,1994,66:290-294.
    [150] Reddig N, Pursche D, Kloskowski M, et al. Tuning the Catalase Activity ofDinuclear Manganese Complexes by Utilizing Different SubstitutedTripodal Ligands[J]. European Journal of Inorganic Chemistry,2004,2004:879-887.
    [151] Jung C, Rong Y, Doctrow S, et al. Synthetic Superoxide Dismutase/catalaseMimetics Reduce Oxidative Stress and Prolong Survival in A MouseAmyotrophic Lateral Sclerosis Model[J]. Neuroscience Letters,2001,304:157-160.
    [152] Melov S, Doctrow S R, Schneider J A, et al. Lifespan Extension andRescue of Spongiform Encephalopathy in Superoxide Dismutase2Nullizygous Mice Treated with Superoxide Dismutase–catalaseMimetics[J]. The Journal of Neuroscience,2001,21:8348-8353.
    [153] Abashkin Y G, Burt S K.(Salen) Mn (III) Compound as a NonpeptidylMimic of Catalase: DFT Study of the Metal Oxidation by a PeroxideMolecule[J]. The Journal of Physical Chemistry B,2004,108:2708-2711.
    [154] Triller M U, Hsieh W Y, Pecoraro V L, et al. Preparation of HighlyEfficient Manganese Catalase Mimics[J]. Inorganic Chemistry,2002,41:5544-5554.
    [155] Sicking W, Korth H G, Jansen G, et al. Hydrogen Peroxide Decompositionby a Non-Heme Iron (III) Catalase Mimic: A DFT Study[J]. Chemistry-aEuropean Journal,2007,13:4230-4245.
    [156] Kajita M, Hikosaka K, Iitsuka M, et al. Platinum Nanoparticle Is a UsefulScavenger of Superoxide Anion and Hydrogen Peroxide[J]. Free RadicalResearch,2007,41:615-626.
    [157] Ozkaya T, Baykal A, Toprak M S, et al. Reflux Synthesis of Co3O4Nanoparticles and Its Magnetic Characterization[J]. Journal of Magnetismand Magnetic Materials,2009,321:2145-2149.
    [158] Varghese B, Teo C H, Zhu Y, et al. Co3O4Nanostructures with DifferentMorphologies and their Field-Emission Properties[J]. Advanced FunctionalMaterials,2007,17:1932-1939.
    [159] Hou L R, Lian L, Li D K, et al. Mesoporous N-containing CarbonNanosheets Towards High-performance Electrochemical Capacitors[J].Carbon,2013,64:141-149.
    [160] Barreca D, Massignan C, Daolio S, et al. Composition and Microstructureof Cobalt Oxide Thin Films Obtained from A Novel Cobalt(II) Precursorby Chemical Vapor Deposition[J]. Chemistry of Materials,2001,13:588-593.
    [161] Switala J, Loewen P C. Diversity of Properties Among Catalases[J].Archives of Biochemistry and Biophysics,2002,401:145-154.
    [162] Yamaguchi K, Mori K, Mizugaki T, et al. Epoxidation of α, β-unsaturatedKetones Using Hydrogen Peroxide in The Presence of Basic Hydrotalcite catalysts[J]. The Journal of Organic Chemistry,2000,65:6897-6903.
    [163] Du J, Sono M, Dawson J H. Functional Switching of Amphitrite OrnataDehaloperoxidase from O2-Binding Globin to Peroxidase EnzymeFacilitated by Halophenol Substrate and H2O2[J]. Biochemistry,2010,49:6064-6069.
    [164] Garcia-Viloca M, Gao J, Karplus M, et al. How Enzymes Work: Analysisby Modern Rate Theory and Computer Simulations[J]. Science,2004,303:186-195.
    [165] Hiroki A, LaVerne J A. Decomposition of Hydrogen Peroxide atWater-ceramic Oxide Interfaces[J]. The Journal of Physical Chemistry B,2005,109:3364-3370.
    [166] Ogino K, Kodama N, Nakajima M, et al. Catalase Catalyzes NitrotyrosineFormation from Sodium Azide and Hydrogen Peroxide[J]. Free RadicalResearch,2001,35:735-747.
    [167] Vatsyayan P, Bordoloi S, Goswami P. Large Catalase Based Bioelectrodefor Biosensor Application[J]. Biophysical Chemistry,2010,153:36-42.
    [168] Choi M M F, Yiu T P. Immobilization of Beef Liver Catalase on EggshellMembrane for Fabrication of Hydrogen Peroxide Biosensor[J]. Enzymeand Microbial Technology,2004,34:41-47.
    [169] Salimi A, Noorbakhsh A, Ghadermarz M. Direct Electrochemistry andElectrocatalytic Activity of Catalase Incorporated onto Multiwall CarbonNanotubes-modified Glassy Carbon Electrode[J]. Analytical Biochemistry,2005,344:16-24.
    [170] Giorgio M, Trinei M, Migliaccio E, et al. Hydrogen Peroxide: A MetabolicBy-product or a Common Mediator of Ageing Signals?[J]. Nature ReviewsMolecular Cell Biology,2007,8:722A-728.
    [171] Valko M, Leibfritz D, Moncol J, et al. Free Radicals and Antioxidants inNormal Physiological Functions and Human Disease[J]. The InternationalJournal of Biochemistry&Cell Biology,2007,39:44-84.
    [172] Brioukhanov A, Netrusov A. Catalase and Superoxide Dismutase:Distribution, Properties, and Physiological Role in Cells of StrictAnaerobes[J]. Biochemistry (Moscow),2004,69:949-962.
    [173] Pessiki P, Khangulov S, Ho D, et al. Structural and Functional Models ofthe Dimanganese Catalase Enzymes.2. Structure, Electrochemical, Redox,and EPR Properties[J]. Journal of the American Chemical Society,1994,116:891-897.
    [174] Fisher A E O, Maxwell S C, Naughton D P. Catalase and SuperoxideDismutase Mimics for the Treatment of Inflammatory Diseases[J].Inorganic Chemistry Communications,2003,6:1205-1208.
    [175] An Q, Sun C, Li D, et al. Peroxidase-Like Activity of Fe3O4@CarbonNanoparticles Enhancing Ascorbic Acid-Induced Oxidative Stress andSelective Damage to PC-3Prostate Cancer Cells[J]. ACS AppliedMaterials&Interfaces,2013,5:13248-13257.
    [176] Pautler R, Kelly E Y, Huang P-J J, et al. Attaching DNA to Nanoceria:Regulating Oxidase Activity and Fluorescence Quenching[J]. ACS AppliedMaterials&Interfaces,2013,5:6820-6825.
    [177] Deng H, Shen W, Peng Y, et al. Nanoparticulate Peroxidase/CatalaseMimetic and Its Application[J]. Chemistry-a European Journal,2012,18:8906-8911.
    [178] Chen Z, Yin J-J, Zhou Y-T, et al. Dual Enzyme-like Activities of IronOxide Nanoparticles and Their Implication for DiminishingCytotoxicity[J]. ACS Nano,2012,6:4001-4012.
    [179] Mu J S, Zhang L, Zhao M, et al. Co3O4Nanoparticles as An EfficientCatalase Mimic: Properties, Mechanism and Its Electrocatalytic SensingApplication for Hydrogen Peroxide[J]. Journal of Molecular Catalysisa-Chemical,2013,378:30-37.
    [180] Kimbrough D R, Magoun M A, Langfur M. A Laboratory ExperimentInvestigating Different Aspects of Catalase Activity in An Inquiry-basedApproach[J]. Journal of Chemical Education,1997,74:210.
    [181] Akyilmaz E, Kozgus O. Determination of Calcium in Milk and WaterSamples by Using Catalase Enzyme Electrode[J]. Food Chemistry,2009,115:347-351.
    [182] Akyilmaz E, Yorganci E. A Novel Biosensor Based on Activation Effect ofThiamine on The Activity of Pyruvate Oxidase[J]. Biosensors andBioelectronics,2008,23:1874-1877.
    [183] Akbayirli P, Akyilmaz E. Activation-Based Catalase Enzyme Electrode andits Usage for Glucose Determination[J]. Analytical Letters,2007,40:3360-3372.
    [184] Sun H, Gao J, Ferrington D A, et al. Repair of Oxidized Calmodulin byMethionine Sulfoxide Reductase Restores Ability to Activate the PlasmaMembrane Ca-ATPase[J]. Biochemistry,1999,38:105-112.
    [185] palek O, Balej J, Paseka I. Kinetics of the Decomposition of HydrogenPeroxide in Alkaline Solutions[J]. Journal of the Chemical Society,Faraday Transactions1: Physical Chemistry in Condensed Phases,1982,78:2349-2359.
    [186] Dong J L, Song L N, Yin J J, et al. Co3O4Nanoparticles withMulti-Enzyme Activities and Their Application in ImmunohistochemicalAssay[J]. ACS Applied Materials&Interfaces,2014,6:1959-1970.
    [187] Rodr g uez Rodr g uez E, Sanz Alaejos M, D a z Romero C. MineralConcentrations in Cow's Milk from The Canary Island[J]. Journal of FoodComposition and Analysis,2001,14:419-430.