激光控制下的量子多能级系统的维数约化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子理论自二十世纪诞生以来,就开始深刻的影响和改变着人类社会,为了解和改造微观世界提供了理论基础,并推动了激光、半导体、核能等高科技的发展。量子理论在快速发展的同时,不断与其他学科交叉融合,量子控制就是量子理论与控制科学相结合产生的一门新兴学科,量子控制的迅速发展必将带来科学界的又一次革命。以研究量子系统主动控制为主要内容的量子控制理论诞生了。量子控制作为一个全新的学科领域正在蓬勃崛起。它的发展可能彻底改变计算机,工业,医学与生命学科。量子控制系统应用与化学反应的研究也有很多成果。其中激光作为重要的实验工具,极大的促进了量子相干控制理论的发展。
     本论文的主要工作是研究和讨论量子控制中的多能级哈密顿系统在激光脉冲驱动下的有效维约化。我们考虑了近能级简并的影响,对不同强度激光脉冲控制场下的多能级系统的布居转移,讨论了量子控制中的一些基本观念和方法,介绍旋转波近似和微扰近似的适用范围,以及二能级系统中的拉比振荡。我们对薛定谔表象下的二能级模型进行了详细的分析,并详细讨论多能级系统模型的一般理论,研究在外界脉冲驱动控制下的多能级系统的量子动力学情况,全面地讨论了脉冲驱动的多能级系统的模型,以及不同强度激光场控制下的多能级的布居转移情况。
     我们主要研究了在外界脉冲驱动控制下的存在近简并能级的多能级系统的量子动力学,讨论了不同激光场控制下的基态到近简并多能级激发态的布居转移,指出在不同强度激光控制下的近简并多能级与二能级系统间的布居转移的相似性,从理论上证明了在外界控制场满足一定条件时,所考虑的多能级的布居转移结果和二能级的相似,以上结果可以推广到有多组近简并能级的多能级系统,用来简化设计一般意义上的有限维量子系统的控制策略。
Quantum theory has changed the landscape of human society since it was found in the 20th century. It established the foundation for understanding and explaining phenomena in atomic and sub-atomic scale, and promoted the development of laser, semi-conductor, nuclear power and so on. During its development, Quantum theory is fusing with other branches of science. Quantum control is a new area of science born from the combination of quantum theory and control theory. It may bring in revolution to computer science, medical and life science. The application of quantum control in chemical reaction has already produced exciting achievements and the invention of laser, and further accelerated the development of the theory of quantum coherent control.
     This thesis discusses how the dimension of a multi-level quantum system is reduced to a simple system when it is controlled by a short laser pulse. We consider the effect of near degenerate eigenstates, and the strength of the laser. The objective is to control the collective population on all excited states. We treat the system with Rotating Wave Approximation (RWA) and perturbative theory. Precise and approximate model of pulse-driven two-level systems are studied and compared with the original multi-level systems. The population transfer of multi-level quantum system controlled by short pulsed is analyzed in different situation.
     In the thesis, we focus on the multi-level quantum system with near degenerate eigenstates, and discuss the population transfer from the ground state to the near-degenerate excited states. It is noted that in the case of both weak and strong field, the multi-level system can both be reduced to a two-level system. The results could be generalized to a multi-level system with several sets of near-degenerated eigenstates. The conclusion could be utilized to identify the effective dimension of a quantum multi-level system controlled by laser.
引文
[1]Chu S. Cold Atoms and Quantum Control[J]. Nature,2002416(6877):206-210.
    [2]N. V. Vitanov, M. Fleischhauer, B. W. Shore, and K. Bergmann. Coherent manipulation of atoms and molecules by sequential laser pulses. Advances In Atomic, Molecular, And Optical Physics, Vol 46,46:55-190,2001.
    [3]A. P. Peirce, M. A. Dahleh, and H. Rabitz. Optimal-control of quantum-mechanical systems-existence, numerical approximation, and applications. Physical Review A,37(12): 4950-4964,1988a.
    [4]A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, andG. Gerber. Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science,282:919,1998.
    [5]U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann. Population transfer between molecular vibrational levels by stimulated raman scattering with partially overlapping laser fields, a new concept and experimental results. J. Chem. Phys.,92:5363,1990.
    [6]Mark N. Kobrak and Stuart A. Rice. Selective photochemistry via adiabatic passage:An extension of stimulated raman adiabatic passage for degenerate final states. Phys.Rev. A, 57(2885):2885,1998.
    [7]Daniel Braun. Dissipative Quantum Chaos and Decoherence. Springer-Verlag, Berlin-Heidelberg,2001.
    [8]Richard S. Judson and Herschel Rabitz. Teaching lasers to control molecules. Phys.Rev. Lett., 68(10):1500-1503, Mar 1992.10.1103/Phys. Rev. Lett.,68.1500.
    [9]B. W. Shore. Coherent manipulations of atoms using laser light. Acta Physica Slovaca,58(3):243-486,2008.
    [10]Bruce W. Shore and Richard J. Cook. Coherent dynamics of n-level atoms and molecules.
    [11]Bruce W. Shore and Richard J. Cook. Coherent dynamics of n-level atoms and molecules.iv. two-and three-level behavior. Phys. Rev. A,20:1958,1979b.
    [12]J. H. Eberly, editor. Optics Express, Focus Issue:Control of Loss and Decoherence in Quantum Systems, volume 02 of 09, April 1998.
    [13]O. E1. Akramine and A. Makhoute. The kinetics of the atomic relaxation induced by laser noise. J. Phys. B,31:4349,1998.
    [14]K. Bergmann, H. Theuer, and B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Reviews Of Modern Physics,70(3):1003-1025,1998.
    [15]R. Xu, Y.J. Yan, Y. Ohtsuki, Y. Fujimura, and H. Rabitz. Optimal control of quantum non-markovian dissipation:Reduced liouville-space theory. J. Chem. Phys,120:6600,2004.
    [16]Feng Shuang and Herschel Rabitz. Cooperating or fighting with control noise in the optimal manipulation of quantum dynamics. J. Chem. Phys.,121(19):9270-9278, 2004.10.1063/1.1799591.
    [17]Feng Shuang and Herschel Rabitz. Cooperating or fighting with decoherence in the optimal control of quantum dynamics. J. Chem. Phys.,124(15):154105,2006.10.1063/1.2186644.
    [18]Feng Shuang, Herschel Rabitz, and Mark Dykman. Foundations for cooperating with control noise in the manipulation of quantum dynamics. Phys. Rev. E,75(2):021103, 2007b.10.1103/PhysRevE.75.021103.
    [19]Feng Shuang, Mianlai Zhou, Alexander Pechen, Rebing Wu, Ofer M. Shir, and Herschel Rabitz. Control of quantum dynamics by optimized measurements. Phys. Rev. A,78 (6):063422,2008.
    [20]Potter E D, Herek J L, Pedersen S, LIU Q, Zewail A H. Femtosecond laser control of a chemi-cal reaction[J]. Nature,1992,(355):66.
    [21]Zhu L, Kleiman V, LI X, LU S P, Trentel-Man K, Gordon R J。 Coherent laser control of the product distribution obtained in the photoexcitation of HI[J].Science,1995,(270):77.
    [22]Bardeen C J, Wilson K R, Yakovlev V V. Quantum Control of Molecular Motion and Multiphoton Processes in 12 by Use of Ultrashort Chirped Pulses[C]. Quantum Electronics and Laser Science Conference,1997,164-165.
    [23]Tamborenea P I, Metiu H. Quantum Control of Electrons in Semiconductor Nanostructures Using Spatially Uniform Electric Fields[J]. Proceedings of the 40 th IEEE Conference on Decision and Control,2001:281-286.
    [24]Paz J P. Quantum Engineering:Protecting the Quantum World[J]. Nature,2001,412(6850): 869-870.
    [25]Borsa F, D'Alessandro D, Miller L. Quantum Control of Molecular Magnets Using Magmetic Force Microscopy[C]. Proceedings of the 40 th IEEE Conference on Decision and Control, 2001. Orlando, Florida USA 279-280.
    [26]Meschede D, Frese D, Kuhr S. Deterministic Source and Transportation for Single Atoms[C].Quantum Electronics and Laser Science Conference,2001,254-259.
    [27]Tamborenea P I, Metiu H. Quantum Control of Electrons in Semiconductor Nanostructures Using Spatially Uniform Electric Fields[J]. Proceedings of the 40thIEEE Conference on Decision and Control,2001:281-286.
    [28]Chu S. Cold Atoms and Quantum Control[J]. Nature,2002.416(6877):206-210=
    [29]Barnes W. Quantum Physics:Survival of the Entangled[J]. Nature,2002,418(6895):281-282.
    [30]G. M. Huang, T. J. Tarn, On the Controllability of Quantum-Mechanical Systems[J]. Math. Phys.1983,24(11):2608-2618.
    [31]C. K. Ong, G. M. Huang, T. J. Tarn, et al. Invertibility of Quantum-Mechanical Systems[J]. Mathematical SystemsTheory.1984,17:335-350.
    [32]J. W. Clark, C. K. Ong, T. J. Tarn, et al. Quantum Nonde-molition FiltersfJ].Mathematical Systems Theory.1985,18:33-35.
    [33]PeirceA P, Dahleh M A. Optimal control of quantum-mechanical systems:Existence, numerical approximation and application [J]. Physical Review,1988,6,37(12):4950-4956.
    [34]Warren W S, Rabitz H, Dahleh M. Coherent control of quantum dynamics:The dream is alive [J]. Science,1993.3,259(12):1581-1585.
    [35]Lloyd S.Quantum controllers for quantum systemsfDK]. eprint:quant-ph/9703042.
    [36]ClaudioA. Controllabilty of quantum mechanical systems by root space decomposition of su(N) [J]. Journal of mathematical physics,2000,43(5):2051-2062
    [37]Doherty A D, Doyle J,Mabuchi H et al, Robust control in the quantum domain [C]. IEEE International Conference on Decision and Control.2000.949-954.
    [38]Warren W S, Rabitz H, Dahleh M. Coherent Control of Quantum Dynamics[J].Science,1993, 259(5101):1581-1589.
    [39]Peirce A P, Dahleh M A, Rabitz H. Optimal Control of Quantum Molecular Systems[J]. International Conference on Control,1988,88(3):351-356-
    [40]Judson R S, Rabitz H. Phys. Rev. Lett.,1992,68 (10):1500—1503.
    [41]Wiseman. H. M, Milburn. G. J. Quantum Theory of Optical Feedback Via Homodyne Detection[J]. Physical. Review. Letters,1993,70(5):548-551.
    [42]Doherty. A. C, Jacobs K. Feedback Control of Quantum Systems Using Continuous State Estimation[J]. Physical Review A,1999,60(4):2700-2711.
    [43]Lloyd. S. Coherent Quantum Feedback[J]. Physical. Review. A,2000,62(2): 022108/1-022108/12.
    [44]Warren W S, Rabitz H, Dahleh M. Coherent control of quantum dynamics:the dream is alive [J]. Science,1993,259:1581-1589.
    [45]Dahleh M, Peirce A P, Rabitz H. Optimal Control of Uncertain Quantum Systems[J]. Physical Review A,1990.42(3):1065-1079.
    [46]Shen L Y, Shi S H, Rabitz H. Optimal-Control of Coherent Wave-Functions-a Linearized Quantum Dynamical View[J]. Journal of Physical Chemistry,1993.97(47):12114-12121.
    [47]Young S K, Rabitz H. Closed Loop Learning Control with Reduced Space Quantum Dynamics[J]. Journal of Chemical Physics,2002.117(3):1024-1030.
    [48]Zhu W S, Rabitz H. Closed Loop Learning Control to Suppress the Effects of Quantum Decoherence[J]. Journal of Chemical Physics,2003,118(15):6751-6770.
    [49]Ahn C, Doherty A C, Landahl A J. Continuous Quantum Error Correction Via Quantum Feedback Control[J]. Physical Review A,2002,65(4):042301/1-042301/10.
    [50]Ahn C, Wiseman H M, Milburn G J. Quantum Error Correction for Continuously Detected Errors[J]. Physical Review A,2003,67(5):052310/1-052310/11.
    [51]Zhang J, Li C W, Wu R B, et al. Maximal Suppression of Decoherence in Markovian Quantum Systems[J]. Journal of Physics a-Mathematical and General,2005,38(29):6587-6601.
    [52]Kawabata S. Information-Theoretical Approach to Control of Quantum-Mechanical Systems[J]. Physical Review A,2003,68(6):064302/1-064302/4.
    [53]陈宗海,董道毅,张陈斌.基于量子信息的量子控制[C].第25届中国控制会议,2006。哈尔滨:北京航空航天大学出版社.
    [54]陈宗海,董道毅.量子控制论[J].量子电子学报2004,21(5):546.
    [55]Bennett C H,Shor P W. Quantum information theory.IEEE Transactions on Information Theory,1998,44:2724-2742.
    [56]DOHERTY A C, HABIB S, JACOBS K, et al. Quantum feedback control and classical control theory[J]. Physical Review A,2000,62(1):2105-2118。
    [57]晓鸣(Xiao M),庄琪(Zhuang Q),戈央(Ge Y)科学通报(Chinese Science Bulletin),1999, 44(19):2017.
    [58]Wilson E K. Chemical & Engineering News,2001,79(22):38-39.
    [59]Gordon R J, Zhu L C, Seideman T. Acc. Chem. Res.,1999,32:1007-1016.
    [60]Rabitz H, de Vivie-Riedle R, Motzkus M, et al. Whither the Future of Controlling Quantum Phenomena[J]. Science,2000,288(5467):824-828.
    [61]Rabitz H. Algorithms for Closed Loop of Quantum Dynamics[C]. Proceedings of the 39th IEEE Conference on Decision and Control,2000, Sydney:937-942.
    [62]Wiseman H M, Milburn G J. Quantum Theory of Optical Feedback Via Homodyne Detection[J].Physical Review Letters,1993,70(5):548-551.
    [63]Doherty A C, Jacobs K. Feedback Control of Quantum Systems Using Continuous State Estimation[J]. Physical Review A,1999,60(4):2700-2711.
    [64]Giovannetti V, Tombesi P, Vitali D. Non-Markovian Quantum Feedback from Homodyne Measurements:The Effect of a Nonzero Feedback Delay Time[J]. Physical Review A,1999, 60(2):1549-1561.
    [65]Lloyd S. Coherent Quantum Feedback[J]. Physical Review A,2000,62(2):022108/1-022108/12.
    [66]Zhang M, Dai H Y, Zhu X C,et al. Control of the Quantum Open System Via Quantum Generalized Measurement[J]. Phys. Rev. A,2006,73(3):032101/1-032101/12.
    [67]Sugawara M. Measurement-Assisted Quantum Dynamics Control of 5-Level System Using Intense Cw-Laser Fields[J]. Chemical Physics Letters,2006,428(4-6):457-460.
    [68]Pechen A, Il'in N, Shuang F, et al. Quantum Control by Von Neumann Measurements[J]. Phys.Rev. A,2006,74(5):052102/1-052102/8.
    [69]Peirce A P, Dahleh M A, Rabitz H. Optimal Control of Quantum-Mechanical Systems: Existence, Numerical Approximation,and Applications[J]. Physical Review A,1988, 37(12):4950-4964.
    [70]Rabitz H. Algorithms for Closed Loop of Quantum Dynamics[C]. Proceedings of the 39th IEEE Conference on Decision and Control,2000, Sydney:937-942.
    [71]D'Alessandro D, Dahleh M. Optimal Control of Two-Level Quantum Systems [J]. IEEE Transactions on Automatic Control,2001,46(6):866-876.
    [72]Wu R B, Li C W, Wang Y Z. Explicitly Solvable Extremals of Time Optimal Control for 2-Level Quantum Systems[J]. Physics Letters A,2002,295(1):20-24.
    [73]Yanagisawa M. Noncommutative Optimal Control and Quantum Networks[J]. Phys. Rev. A, 2006.73(2):022342/1-022342/10.
    [74]Doherty A, Doyle J, Mabuchi H, et al. Robust Control in the Quantum Domain[J]. Proceedings of the 39thIEEE Conference on Decision and Control,2000:949-954.
    [75]Geremia J M, Rabitz H. Optimal Identification of Hamiltonian Information by Closed-Loop Laser Control of Quantum Systems[J]. Phys. Rev. Lett,2002,89(26):263902/1-263902/13.
    [76]陈宗海,董道毅,张陈斌.基于量子信息的量子控制[C].第25届中国控制会议.2006,哈尔滨:北京航空航天大学出版社.
    [77]Dong D Y, Zhang C B, Chen Z H. Quantum feedback control using quantum cloning and state recognition[C]. Proceedings of the 16th IFAC World Congress.2005, Prague. P1965.
    [78]DongD Y, ZhangC B, Chen ZH, ChenC L. Information-technology approach to quantum Feedback control [J].Int.J.Mod.Phys.B,2006.20(11-13):1304.
    [79]Tannor D J, Rice S A. Coherent Pulse Sequence Control of Product Formation in Chemical Reactions[J]. Adv.Chem.Phys,1987.70(2):441-523.
    [80]Brumer P, Shapiro M. Coherence Chemistry:Controlling Chemical Reactions[J]. Acc. Chem. Res.,1989.22(3):407-413.
    [81]Rabitz H, Shi S H. Selective Excitation in Harmonic Molecular Systems by Optimally Designed fields[J]. Chemical Physics Letters,1989.139(7):185-199.
    [82]Warren W S, Rabitz H, Dahleh M. Coherent Control of Quantum Dynamics[J]. Science,1993. 259(5101):1581-1589.
    [83]Rabitz H, de Vivie-Riedle R, Motzkus M,et al. Whither the Future of Controlling Quantum Phenomena[J]. Science,2000.288(5467):824-828.
    [84]Rice S A. New Ideas for Guiding the Evolution of a Quantum System[J]. Science,1992. 258(5081):412-413.
    [85]WeinachtTC, BucksbaumPH. J. Opt. B:Quantum Semiclass.Opt.,2002,4:R35-R52.
    [86]Meshulach D, Silberberg Y. Coherent Quantum Control of Two-Photon Transitions by a Femtosecond Laser Pulse[J]. Nature,1998。 396(6708):239-242.
    [87]Schleich W P. Quantum Control:Sculpting a Wavepacket[J]. Nature,1999,397(6716):207-208.
    [88]Herek J L, Wohlleben W, Cogdell R J,et al. Quantum Control of Energy Flow in Light Harvesting[J]. Nature,2002,417(6888):533-535.
    [89]Tarn T J, Huang G, Clark J W. Modelling of Quantum Mechanical Control Systems[J]. Mathematical Modelling,1980.1(1):109-121.
    [90]Lin E B, Modelling of Quantum Control and Inverse Problem[C]. Proceedings of The First IEEE Regional Conference,1993.513-516.
    [91]Lin E B. Quantum Control Theory[J]. Contemporary Mathematics,1989,97(3):269-278.
    [92]Huang G M, Tarn T J, Clark JW. On the controllability of quantum-mechanical systems [J].J.Math.Phys,1983,24(11):2608-2618.
    [93]Ramakrishna V, Salapa MV, et al. Controllability of molecular systems[J]. Phys.Rev. A,1995, 51:960-966.
    [94]Ong C K, Huang G M, Tarn T J, et al. Invertibility of Quantum-Mechanical. Control-Systems[J]. Mathematical. Systems. Theory,1984,17(4):335-350.
    [95]YanagisawaM, Kimura H. Transfer function approach to quantum control systems [C]. In Proceedings of 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001,1595-1600.
    [96]董道毅,陈宗海.量子控制系统的建模与仿真研究[C]. Proceedings of WCICA IEEE,2004. Hangzhou:276-282.
    [97]Greiner W. Quantum Mechanics:An Introduction (Third Edition), Springer,1994.
    [98]Lin E B, Quantum control theory. Contemporary Mathmatics.1989,97:267-278.
    [99]Lin E B. Quantum mechanical control theory systems. Math. Comput.Modelling,1989,12: 313-318.
    [100]Dong D Y, Chen Z H. Establishing Formal State Space Modeld via Quantization for Quantum Control Systems. Journal fo Systems Engineering and Electronics,2005,16(2): 398-402.
    [101]Doherty A D, Doyle J, Mabuchi H et al. Robust control in the quantum domain [C]//IEEE International Conference on Decision and Control.2000,949-954.
    [102]Alessandro D D, Dahleh M. Optimal control of two-level quantum system [C]//IEEE trans on automation control.2001,6,46(6):866-876.
    [103]Rabitz H, Motzkus M, Kompa K. Whither the future of controlling quantum phenomena[J]. Science,2000, (288):824.
    [104]G.Cerullo, C. J. Bardeen, Q. Wang,C. V. Shank, Chem. Phys. Lett,262,362(1996).
    [105]Robert W. Boyd, Nonlinear Optics[M]. New YorkAcademic Press,1992.
    [106]Hurley S M, Castleman A W, Jr, Keeping reactions under quantum control [J]. Science,2001, (292):648.
    [107]Levis R J, Menkir G M, Rabit Z H. Selectivebond dissociation and rearrangement with optimallytailored, strong-field laser pulses [J]. Science,2001, (292):709.
    [108]Weinacht T C, Ahn J, Bucksbaum P H. Controlling the shape of a quantum wavefunction[J]. Na-ture,1999, (397):233.
    [109]Meshulach D, Silberberg Y. Coherent quantum control of two-photon transitions by a femtosec-ond laser pulse[J]. Nature,1998, (396):239.
    [110]Yoon T H, Marian A, Hall J L. Phase-coherent multi-level two-photon transitions in cold.
    [111]张永德,量子信息物理原理[M].北京:科学出版社,2006.
    [112]M.O.Scully and M.S.Zubairy, Quantum Optics,Cambridge University Press,1996.
    [113]喀兴林.高等量子力学[M].2001.北京:高等教育出版社.
    [114]I.I.Rabi, On the Process of Space Quantization. Phys. Rev.49,324(1936).
    [115]I.I.Rabi,Space Quantization in a Gyrating Magnetic Field.Phys.Rev.51,652(1937).
    [116]K. Fujii and H. Oike. How to Calculate the Exponential of Matrices. Arxiv preprint quant-ph/0604115,2006.iv. two-and three-level behavior. Phys. Rev. A,20:1958,1979a.
    [117]TakayanagiT, Li GP, Wakiya K, et al.Measurement of Electron-im-pact-excitation Cross Sections and Oscillator Strengths for Kr[J]. Phys.Rev.1990,A41(11):5948.
    [118]Trajmar S, Srivastava SK, TanakaH, et al. Excitation CrossSections for Krypton by Electrons in the 15■100 eV Impact-energy Range[J]. Phys.Rev,1981,A23(5):2167
    [119]Schumacher D W, Bucksbaum P H. Phase dependence of intense-field ionization[J]. Phys. Rev. A,1996,54:4271.
    [120]O.A. Agueev, Simulation of incoherent radiation absorption in 3C-,6H-and 4H-sic at rapid thermal processing, semiconductor physics,Quantum Electronics&Optoelectronics.2000.V.3,N 3.p.379-382