硫对设备高温腐蚀产物自燃性及自燃预防措施的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含硫原油中的活性硫对炼油、储运等设备有腐蚀作用,生成硫铁化物的自燃性给生产带来安全隐患。硫铁化物的自燃性受锈蚀前体的组成和硫化深度、相对湿度、硫化温度和气氛等因素的影响。本文以Fe2O3、Fe3O4、Fe(OH)3和单质硫为模型化合物,研究含硫油品对设备高温腐蚀产物的自燃性及自燃预防措施。在不同条件下进行铁氧化物的高温硫化和氧化实验,采用XRD、DTA-TG、低温N2吸附-脱附和化学分析等技术表征含铁物种的物相、组成和热效应的变化,研究高温硫化产物自燃倾向与诱发因素的关系,弄清影响铁氧化物高温硫化和硫化产物自燃性的关键因素。对微波辐射油品氧化脱硫技术、开发复合硫铁化合物清洗剂等预防措施进行实验研究。
     XRD和化学定量分析结果表明,硫对设备内表面腐蚀产物的组成和物相极其复杂,其中Fe2O3、Fe3O4和FeO(OH)是铁锈的主要成份,按质量分数计:Fe2O3约为62.0%,Fe3O4约为27.2%,Fe(OH)3约为10.8%。低温N2吸附-脱附和硫化实验结果表明Fe2O3、Fe3O4和Fe(OH)3三种试样的比表面积由大到小的顺序为Fe(OH)3>>Fe2O3>Fe3O4。单质硫与Fe2O3、Fe3O4和Fe(OH)3的高温硫化腐蚀产物主要是FeS2,并有少量其他类型的硫铁化合物,如FeS、Fe1-xS、Fe2(SO4)3、Fe(OH)SO4和FeSO4,其种类和数量与硫化温度有关。对比单质硫的差热-热重曲线和单质硫与Fe2O3、Fe3O4和Fe(OH)3样品反应的差热-热重曲线,得出单质硫与Fe2O3反应的初始温度是233.34℃;与Fe304反应的初始温度是308.47℃;与Fe(OH)3反应的初始温度是287.67℃。单质硫与Fe2O3和Fe(OH)3硫化产物中FeS2质量百分含量都随硫化温度升高、硫化时间延长而增大;单质硫与Fe3O4硫化产物中FeS2质量百分含量也随硫化温度升高而增大。
     高温硫化产物的自燃性与硫化物前体种类关系密切。Fe3O4高温硫化产物氧化自燃性很低,Fe2O3和Fe(OH)3高温硫化产物均有很高的氧化自燃性,并且与硫化温度和硫化时间、氧化温度、水含量和空气流速等因素有关。硫化温度越高,硫化时间越长,硫化产物的矿物化程度越高,由此导致产物硫化深度和结晶性均有所提高,在氧化过程中表现为硫化产物外层自燃性强而体相氧化速率较小。氧化温度越高、空气流率越大,硫化产物氧化反应速率越大,燃烧热效应越显著。当环境温度高于95℃时,单质硫与Fe2O3和Fe(OH)3的硫化产物自燃性较大;水分的存在能显著增大高温硫化腐蚀产物的自燃性。Fe(OH)3、Fe2O3和Fe3O4与单质硫高温硫腐蚀产物的氧化自燃性从大到小依次为Fe(OH)3、Fe2O3、Fe3O4。
     研究表明,采用微波辐射-过氧化氢/乙酸氧化脱硫法,在微波辐射压力0.5MPa、恒压辐射时间5min、辐射功率350W、复合溶剂用量为理论用量的13倍、氧化剂油比0.25:1、DMF萃取剂油比1:1、静置时间10min的条件下,可使辽河常二线柴油脱硫率达到89.6%,硫含量降至500μg·g-1以下,达到欧洲Ⅱ类标准,符合我国轻柴油质量标准。
     研制出新型复合硫铁化合物清洗剂。该清洗剂对硫铁化合物清除率和清除速率均高于国内同类产品,成本低、自身腐蚀性小且更加环境友好。本清洗剂已在炼厂的设备清洗过程中得到示范论证和工业应用,并取得了良好的效果。
     此项研究为炼油企业安全生产提供了有关硫铁化合物氧化放热自燃的较详细资料,同时根据实验研究结果提出了有效的预防措施,为炼油设备和装置的安全运行提供了科学依据,有效抑制和消除了因硫铁化合物氧化自燃而引发的火灾和爆炸事故,对石化企业安全生产具有一定的指导意义。
Active sulfuric species derived from crude oil can react with rust formed on storage tanks, vessels and tankers to form various iron sulfides, and the tendency for these compounds to spontaneously react with oxygen in air may bring a potential trouble for oil processing and storage. Pyrophoric nature of the iron sulfides, exposed to moist air, is confirmed relevant with composition and sulfurized degree of rust and also with ambient temperature and relative humidity. The present subject target is supposed to clarify the effect of pivotal factors on both the sulfurization of iron oxides and the spontaneous oxidation of the iron sulfides, especially to explore the water induction for pyrophoric mechanism of the iron sulfides. In present work, we conduct the new topic, namely researching on combustion tendency of high temperature corrosion products and preventive measures for storage tanks of containing sulfur oil. Iron oxide sulfurization and ferric sulfide controllable oxidation will be performed under various reaction conditions, and characterized by XRD、DTA-TG、N2 adsorption-desorption and chemical analysis in order to determine phase composition, ferric valence state and reaction enthalpies. The oil desulfurization technology was demonstrated by microwave radiation, and the study on new cleaning agent for removing the composite of iron sulfides was investigated simultaneously.
     The results obtained by powder X-ray diffraction and quantitative chemical analysis point out that the rust was formed with very complicated composition and phases, consisting of mainly Fe2O3, Fe3O4 and FeO(OH) as the compositions of 60.2%,27.2% and 10.8%. The low temperature N2 adsorption-desorption showed that the specific surface areas decreased orderly as Fe(OH)3>>Fe2O3> Fe3O4. When element sulfur reacted with Fe(OH)3, Fe2O3 and Fe3O4 under the condition of high temperature, FeS2 was mainly formed, along with the generations of other compounds in very low contents, such as FeS、Fe1-xS、Fe2(SO4)3、Fe(OH)SO4 and FeSO4, which were formed to depend on the reaction temperatures. Upon these DTA-TG curves for element sulfur only and the products of element sulfur reacting with Fe2O3、Fe3O4 and Fe(OH)3, the starting reaction temperatures of Fe2O3, Fe3O4 and Fe(OH)3 with element sulfur is 233.34℃,308.47℃and 287.67℃, respectively. And the FeS2 contents in the sulfidation products of Fe3O4 and Fe(OH)3 were observed to increase with both sulfidation temperature and sulfidation time.
     For high temperature sulfurization products the pyrophoric nature depended obviously on the precursor species of sulfides. Compared with the case of Fe3O4 as the precursor, the high temperature sulfurization products concerning Fe2O3 and Fe(OH)3 as precursors showed a remarkable pyrophoric tendency, which were affected obviously by the factors of sulfurization temperature, sulfurization time, sample moisture as well as air flow rate. Iron oxide red and iron hydroxide were sulfurized with element sulfur to form mineralized sulfides under reaction conditions of high temperature and long time, while the formed sulfides were confirmed with high crystallinity and deep sulfurization. In this case, the sulfide shell, other than the bulk phase, showed both the obvious pyrophoric nature and the high oxidization rate. Usually the sulfides were oxidized rapidly along wtith remarkable combustion enthalpies as increasing reaction temperature and air flow rate. The sulfides of element sulfur reaction with Fe2O3 and Fe(OH)3 showed higher pyrophoric tendencies when ambient temperature was higher than 95℃. The existence of water remarkably increases the pyrophoric oxidation of sulfidation products. The pyrophoric tendency of high temperature products sulfided by using element sulfur decreased as the order:Fe(OH)3> Fe2O3> Fe3O4.
     The results indicated that, by using microwave radiation in the presence of hydrogen peroxide-acetic acid composites, desulfurization level arrived at 89.6% and the sulfur content at least down to 500μg·g-1 for Liaohe atmospheric two-stage distillation diesel oil under the conditions as following:0.5 Mpa of microwave pressure,5 min of constant pressure radiation time, composite dosage being 13 times of theory value,0.25 of ratio of H2O2 to oil,1.0 of ratio of DME extraction reagent to oil,10 min of static depositing time. The technology mentioned above could update Liaohe atmospheric two-line distillation diesel oil to meet the Europe StandardⅡand the China Standard for light diesel oil.
     A new composite desulfurization reagent was developed with the nature of low cost and light corrosion. It was demonstrated in refine with both high desulfurization level and high desulfurization rate compared with the domestic commercial products employed now.
     The detailed data concerning pyrophoric nature of iron sulfides were offered in present work, and effective prevention measures were given according to the researching results. The prevention measures were proposed to restrain and even avoid the occurrence of a fire as well as an explosion due to pyrophoric oxidation of iron sulfides in refineries. And it was of great constructive value to safe operation of all petroleum chemical companies.
引文
[1]贾鹏林.高硫原油加工过程中的防腐蚀技术[J].石油化工腐蚀与防护,2001,18(5):1-4.
    [2]田松柏.中东原油中不同类型硫化合物的分布[J].石油学报(石油加工),2000,16(3):9.
    [3]王凤平,李晓刚,许适群.含硫原油加工过程中的硫腐蚀[J].石油化工腐蚀与防护,2001,18(6):35-38.
    [4]崔新安,贾鹏林.高硫原油加工过程中的腐蚀与防护[J].石油化工腐蚀与防护,2001,18(1):1-7.
    [5]汪申,田松柏.含硫原油腐蚀评价研究的进展[J].炼油设计,2000,30(7):23-24.
    [6]中国石化集团技术考察组.加工中东高硫原油访日、韩技术考察报告[J].石油化工腐蚀与防护,2001,18(6):1-17.
    [7]杨波,田松柏,赵杉林.不同形态硫化合物腐蚀行为的研究[J].腐蚀科学与防护技术,2004,16(6):385-388.
    [8]汤海涛,凌珑,王龙延.含硫原油加工过程中的硫转化规律[J].炼油设计,1999,29(8):223-232.
    [9]田松柏.活性硫的分析方法及在中东原油中的分布规律研究[J].石油化工科学研究院内部报告,2000,3:92-97.
    [10]王宝辉,陈颖,崔爱蕾.石油储罐硫自燃的化学机理和控制技术[J].中国安全科学学报,2003,13(1):23-25.
    [11]高向东,朱有志.加工高硫原油对储罐的影响[J].石油化工腐蚀与防护,2001,18(6):39-41.
    [12]刘长久,张光林.石油和石油产品中非烃化合物[M].北京:中国石化出版社,1991,50-83.
    [13]张其耀.原油脱盐蒸馏防腐[M].北京:中国石化出版社,1992,88-90.
    [14]贾鹏林.高硫原油加工中的防腐蚀技术[J].石油化工腐蚀与防护,2001,18(5):1-4.
    [15]林海朝,余家康,史志明等.含硫原油炼制过程中活性硫腐蚀[J].腐蚀科学与防护技术,2000,12(6):342-343.
    [16]Yang Bo, Tian Songbai, Zhao Shanlin. A Study of Thermal Decomposition of Alkanethiol in Pressure Reactor[J]. Fuel Processing Technology.2006, 87(8):673-678.
    [17]朱根权,夏道宏.含硫化合物热解规律的研究[J].燃料化学学报,2000,28(6):518-521.
    [18]朱根权,夏道宏.催化裂化过程中含硫化合物转化规律的研究[J]..燃料化学学报,2000,28(6):522-526.
    [19]朱岳麟,周健,熊常健等.炼油设备腐蚀与防护技术新进展[J].石油化工设备,2002,31(1):14-16.
    [20]卜全民,温力,姜虹等.炼制高硫原油对设备的腐蚀与安全对策[J].腐蚀科学与防护技术,2002,14(6):362-364.
    [21]郦建立.炼油工业中H2S的腐蚀[J].腐蚀科学与防护技术,2000,12(6):346-349.
    [22]崔新安,宁朝晖.石油加工中的硫腐蚀与防护[J].炼油设计,1999,29(8):61-67.
    [23]高延敏.环烷酸腐蚀研究现状和防护对策[J].石油化工腐蚀与防护,2000,17(2):6-9.
    [24]高向东.加工高硫原油装置的安全生产[J].石油化工腐蚀与防护,2002,19(5):5-9.
    [25]魏宝明.金属腐蚀理论及应用[M].北京:化学工业出版社,1996,46-51.
    [26]张琦,康彪.加工含硫原油的设备腐蚀问题及讨论[J].石油炼制与化工,2001,32(12):43-47.
    [27]中国石油化工设备管理协会设备防腐专业组.石油化工装置设备腐蚀与防护手册[M].北京:中石化出版社,1996,165-179.
    [28]陶宗乾,尹恩杰.含硫原油加工对策的探讨[J].石油炼制与化工,1995,26(11):6-13.
    [29]黄丽萍.含硫原油加工中的硫化物腐蚀与防腐技术[J].金山油化纤,2002,21(1):45-50.
    [30]卢绮敏编.石油工业中的腐蚀与防护[M].北京:化学工业出版社,2001,79-98.
    [31]朱日彰,齐慧滨,黄震中等.金属材料的高温硫腐蚀中的若干问题(1)[J].石油化工腐蚀与防护,1995,12(3):48-52.
    [32]朱日彰,齐慧滨,黄震中等.金属材料的高温硫腐蚀中的若干问题(2)[J].石油化工腐蚀与防护,1995,12(4):55-57.
    [33]黄靖国,刘小辉.常减压蒸馏装置的硫腐蚀问题及对策[J].石油化工腐蚀与防护,2002,19(3):1-5.
    [34]董晓峰,郝日诗.硫磺回收装置腐蚀原因及防护措施[J].安全技术,2006,6(7):13-15.
    [35]顾望平,刘小辉.加工进口高硫原油生产装置腐蚀防护技术[J].石油化工腐蚀与防护,2001,18(4):1-6.
    [36]吴世常,贾素琴.钢的高温硫化腐蚀的国内外概况[J].铸造,1996,(2):41-44.
    [37]Sotell G, Hoyt W B. Collection and correlation of high temperature hydrogen sulfide corrosion data[J]. Corrosion,1956,12(7):213-232.
    [38]Hans Arm, Paul Delahay. Mechanism of the iron-hydrogen sulfide reaction at evaluated temperatures[J]. Journal of the Electrochemical Society,1960,107(4): 264-271.
    [39]Sharp W H, Haycock E W. Sulfide scaling under hydrorefining conditions[J]. Division of Refining,1959,39(3):74-91.
    [40]Tandy E H. Inspection of petroleum refinery equipment[J]. Corrosion,1954, 10(5):160-164.
    [41]Neumaier B W, Schillmoller C M. High-temperature sulphide corrosion[J]. Petroleum, 1957, (10):385-386.
    [42]Backensto E B, Drew R D. Hydrogen sulfide corrosion in Sovaformers[J]. Petroleum Refiner,1956,35(8):165-169.
    [43]Backensto E B, Sjoberg J W. New hydrogen sulfide corrosion curves[J]. Petroleum Refiner,1958,37(12):119-120.
    [44]汪东汉.常减压蒸馏装置设备腐蚀典型事例与防护[J].石油化工腐蚀与防护,2004,21(5):10-15.
    [45]徐红英,梁文彬.炼制高硫原油焦化装置的硫腐蚀原因及对策[J].河北化工,2003,26(4):37-39.
    [46]刘同华.石脑油罐硫铁化合物自燃原因分析[J].中国安全科学学报,2002,12(4):32-35.
    [47]郭兴明,徐精彩,邓军等.地温在煤自燃过程中的作用分析[J].煤炭学报,2001,26(2):160-163.
    [48]Vella A P. Improved cleaning method safely removes pyrophoric iron sulfide[J]. Oil&Gas Journal,1997,95(2):65-68.
    [49]李崇山.矿井煤层自燃发火的自燃临界性条件[J].山东煤炭科技,2000,(增刊):115-117.
    [50]胡明红,王红汉,范喜生.煤的自燃原因分析与防治措施[J].工业安全与防尘,2001,27(1):25-27.
    [51]葛晓军,严建俊,周磊等.硫化亚铁自燃机理及事故预防[J].化工安全与环境,2001,14(16):2-7.
    [52]黄跃军.高温高硫矿床矿石自然性及防治技术研究[J].有色矿冶,2000,16(1): 13-15.
    [53]Walker R. Pyrophoric oxidation of iron sulfide[J]. Surface and Coating Technology, 1988,34(1):163-175.
    [54]王志荣,蒋军成,潘旭海.含硫油品储罐腐蚀自燃理论及实验研究[J].石油化工高等学校学报,2002,15(4):65-70.
    [55]张建芳,山红红.石油炼制基础知识[M].北京:中国石油化工出版社,1994,278-291
    [56]崔克清.化学过程安全工程学[M].北京:化学工业出版社,2002,125-135.
    [57]郭兴明,徐精彩,邓军.地温对煤层自燃危险性的影响研究[J].西安交通大学学报,2000,34(11):23-26.
    [58]徐宝平.硫化亚铁的自燃和火灾[J].化工安全与环境,2003,16(10):13-14.
    [59]Hughes R I, Morgan T. D. B. The Generation of Pyrophoric Material in the Cargo Tanks of Crude Oil Carriers[J]. Trans. Inst. Mar. Eng.,1976,88:153-161.
    [60]Walker R, Steele A D, Morgan T D B. The formation of pyrophoric iron sulfide from rust[J]. Surface and Coatings Technology,1987,31:183-187.
    [61]Shukla A K, Singh R S. Oxidation of Suphur in Pyrites in Relation to Soil and Water Regime[J]. Indian Society of Soil Science,1992,40(4):848-850.
    [62]Rickard D T. Kinetics and Mechanisms of Pyrite Formation at Low Temperatures[J]. American Journal of Science,1975,275(6):636-642.
    [63]Borek S L. Effect of Humidity on Pyrite Oxidation Environmental Geochemisty of Sulfide Oxidation[J]. ACS. Symp. Ser.,1994,550:31-44.
    [64]Walker R, Steele A D, Morgan T D B. Deactivation of pyrophoric iron sulfides [J]. Industrial & Engineering Chemistry Research,1997,36(9):3662-3667.
    [65]Coombs P G, Munir Z A. The mechanism of oxidation of ferrous sulfide(FeS) powder in the range of 648 to 923K[J]. Metallurgical transactions,1989,20b(10):661-669.
    [66]Asaki Z, Matsumoto K, Tanabe T, et al. Oxidation of dense iron sulfide[J]. Metallurgical transactions,1983,14b(3):109-116.
    [67]Asaki Z, Kondo Y. Oxidation kinetics of iron sulfide in the form of dense plate, pellet and single particle[J]. Journal of Thermal Analysis and Calorimetry,1989,35(6): 1751-1759.
    [68]陈炳林.加工高硫原油的硫化氢防治对策[J].石油化工安全技术,1999,15(5):17-20.
    [69]郭先健,刘纯鹏.FeS的水蒸汽高温氧化动力学[J].化工冶金,1994,15(3):209-213.
    [70]李萍,翟玉春,张振华等.FeS引发储油罐着火温度动态变化曲线的研究[J].中国安全科学学报,2004,14(3):44-48.
    [71]张凤华,马良军,张振华等.含硫油品储罐腐蚀产物FeS的生成及自燃性[J].油气储运,2005,24(2):42-44.
    [72]Ping Li, Jiandong Li, Shanlin Zhao, et al. Research on the danger of fires in oil tanks[J]. Fire Safety Journal,2005,40(4):331-338.
    [73]张振华,李萍,赵杉林等.硫化亚铁引发储油罐火灾危险性的研究[J].中国安全科学学报,2004,14(11):96-99.
    [74]张凤华,张振华,赵杉林等.含硫油品储罐自燃倾向性研究[J].石油化工高等学校学报,2005,18(2):5-7.
    [75]李萍,叶威,赵杉林等.硫化亚铁自然氧化倾向性的研究[J].燃烧科学与技术.2004,10(2):168-170.
    [76]张振华,赵杉林,陈世醒等.油品储罐中硫化亚铁自然氧化倾向性[J].石油化工高等学校学报,2004,17(3):27-30.
    [77]蒋军成,王志荣,王三明等.含硫油品储罐自燃机理及事故原因分析[J].安全与环境学报,2001,1(2):7-10.
    [78]李建东,李萍,孔令照等.含硫油品储罐自燃性的影响因素[J].辽宁石油化工大学学报,2004,24(4):1-3
    [79]叶威,赵杉林,张振华等.硫化亚铁绝热氧化反应的影响因素研究[J].石油化工腐蚀与防护,2003,20(1):19-21.
    [80]Sun Wei, Hu Yuehua,Qiu Guanzhou. Oxygen adsorption onpyrite(100) surface by density functional theory[J]. Journal of Central South University of Technology, 2004, 11(4):385-390
    [81]周勃,吴超.硫化矿石与氧化前后自燃倾向性的比较研究[J].中国矿业,1998,7(5):77-79.
    [82]万兵.硫化矿床自燃发火可能性鉴别[J].世界采矿快报,1998,14(11):27-30.
    [83]王坪龙.硫化矿石自燃发火规律现场试验研究[J].化工矿物与加工,1999,1(5):8-12.
    [84]余斌.矿石自燃机理分析与获取开采方法选择[J].西部探矿工程,1998,10(3):44-48
    [85]赵国彦,古德生,吴超等.硫化矿床内因火灾综合防治措施研究[J].矿业与开发,2001,21(1):17-19.
    [86]李萍.含硫油品对储罐的腐蚀与自燃性的研究[D].东北大学博士论文,2005,28-29.
    [87]刘明.汽油储罐内壁防腐蚀经验[J].石油化工腐蚀与防护,2006,23(4):61-62.
    [88]凌涛,何银达,李旭等.油管内涂层防腐技术应用[J].钻采工艺,2008, 31(2):140-141.
    [89]刘晓莉,张朝晖.储油罐防腐涂料选用及施工方法[J].设备管理与维修,2008,(3):17-18.
    [90]凌涛,何银达,李旭等.油管内涂层防腐技术应用[J].防腐保温技术,2004,12(3):57-61.
    [91]冯秀梅,武文广.含硫油品储罐自燃与防范措施[J].化工设备与管道,2006,43(4):62-64.
    [92]迟洪宇,潘晓军.油气集输防腐[J].内蒙古石油化工,2008,34(16):54-55.
    [93]刘伟,蒲晓林,白小东.油田硫化氢腐蚀机理及防护的研究现状及进展[J].石油钻探技术,2008,36(1):83-86.
    [94]Wang C, Jiang F, Wang F H. The characterization and corrosion resistance of cerium chemical conversion coatings for 304 stainless steel[J]. Corrosion Science,2004,46(1):75-89.
    [95]Tan C K, Blackwood D J. Corresion protection by multilayered conducting polymer coatings[J]. Corrosion Science,2003,45(3):545-557.
    [96]宋广成.石油产品储罐内壁防静电防腐蚀涂料漆层结构与应用原理[J].石油化工设备技术,2000,21(1):25-28.
    [97]H R Reinhoudt, R Troost, S Van Schalkwijk, et al.Advanced adsorbent prepared by new approach[M]. Elsevier Science,1997,23(11):237-244.
    [98]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-81.
    [99]宋立民,李伟,陶克毅.Ni2P/SiO2-Al20O3催化剂的制备、表征及其对4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能[J].催化学报,2007,28(12):143-147.
    [100]林海龙,孟祥垄,宋保宁等.一种磁稳定汽油吸附脱硫方法[P].CN:02126017,6A,2002-8-9.
    [101]刘爱华,达建文.低硫、低芳烃柴油生产技术[J].石化技术,2000,7(1):59-62.
    [102]邹明旭,石洪波,廖克俭.清洁燃料的非加氢脱硫技术进展[J].化学工业与工程技术,2005,26(3):33-36.
    [103]吴仲刘.轻质油品脱硫技术进展[J].全国气体净化信息站2008年技术交流会论文集,2008,28-30.
    [104]赵地顺,刘翠微,马四国.FCC汽油光催化氧化脱硫的实验室研究[J].石油炼制与化工,2006,37(6):23-26.
    [105]刘淑芝,孙兰兰,范印帅等.模拟轻质油氧化脱硫研究[J].精细化工, 2007,24(8):820-823.
    [106]刘淑芝,孙兰兰,王宝辉.加氢柴油超深度氧化脱硫研究[J].化工科技,2007,2(7):17-19.
    [107]Schucker, Robert Charles. Electrochemical Oxidation ofSulfur Compounds in Naphtha[P].美国专利,us6338788,2002-01-15.
    [108]王文波,汪树军,刘红研等.汽油电化学催化氧化脱硫[J].化工学报,2006,52(12):3033-3039.
    [109]Wang Wenbo, Wang Shujun, Wang Yuanhao, etc. A New Approach to Deep Desufurization of Gasoline by Electrochemically Catalytic Oxidation and Extraction[J]. Fuel Processing Technology,2007,88(10):1002-1008.
    [110]汪远吴,王文波,刘红研等.汽油电化学催化氧化脱一酸性电解体系的筛选[J].石油炼制与化工,2006,37(8):29-33.
    [111]徐亚洲.HTNBT-6型硫化亚铁高效清洗剂在加氢裂化装置上的应用[J].广州化工,2005,33(6):44-46.
    [112]左理胜,姜建平,曾蔚然.YX-LS5硫化亚铁清洗剂牲能的研究[J].清洗世界,2004,20(10):1-3、12.
    [113]汪琦,郭仕清.利用FZC-1化学清洗剂防止硫化亚铁自燃[J].安全、健康和环境,2004,4(5):10-13.
    [114]尹元根主编.多项催化剂的研究方法[M].化学工业出版社,1988,10,P147-151.
    [115]张金生,李丽华.微波消解试样-火焰原子吸收光谱法测定原油和渣油中铁、镍和铜[J].理化检验:化学分册2007,43(12):1065-1067.
    [116]李秀萍,李丽华,张金生.微波消解-微波等离子体矩原子发射光谱法测定乳胶管中的铁、钙、镍、镁、锌[J].分析科学学报,2007,23(3):319-322.
    [117]曾泽,蒋维旗,谢琰.微波溶解-氢化物发生原子荧光光谱法测定氟石中的砷和汞[J].检验检疫科学,2008,18(6):32-34.
    [118]林春晓,蔡智舜,苏丽敏,王丽云等.微波协同大孔树脂催化合成肉桂酸酯的扩大实验研究(Ⅱ)[J].广东微量元素科学,2008,15(11):65-68.
    [119]李丕高,王玫,李延,张茸.微波辐射合成丙酮缩氨基脲[J].精细石油化工,2008,25(4):1-4.
    [120]刘佳,孙德栋,薛文平,董晓丽等.微波辐照与碱联合处理污泥的试验研究[J].环境污染与防治,2008,30(12):63-66.
    [121]陈波,林建国.微波萃取技术及其在环境样品分析中的应用[J].化工技术与开发,2008,37(12):26-29.
    [122]李丕高,郭妙,李延.微波辐射技术合成3-氯-2-羟基丙磺酸钠[J].石 油化工,2008,37(8):832-835.
    [123]刘芃岩,温春辉,冯关涛,康现江.微波消解-原子荧光光谱法同时测定白洋淀芦苇中砷和镉[J].环境监测管理与技术,2008,20(6):40-42,46.
    [124]高甲山,鲍建国,余中山.2,4-二羟基二苯甲酮生产废水处理的研究[J].上海化工,2008,33(12):9-1 2.
    [125]朱金栋,邓志安,黄建忠.正交表法测定微波脱水最佳功率和加热时间值[J].内蒙古石油化工,2007,33(5):260-263.
    [126]蒋华义,路庆良.高凝高粘原油微波脱水降粘输送技术[J].油气储运,2004,23(5):34-37.
    [127]黄明福,刘振志,李萍,叶威等.微波辐射润滑油脱酸精制方法的研究[J].润滑油,2003,18(2):18-21.
    [128]胡同亮,刘振志,赵杉林.微波辐射法原油脱水的研究[J].炼油技术与工程,2003,33(2):6-8.
    [129]黄明福,赵杉林,杨柯,李萍.减二线馏分油微波辐射脱酸新方法的研究[J].精细石油化工,2003,(5):27-29.
    [130]胡同亮,杨柯,马良军,叶威等.原油脱盐脱水研究进展[J].抚顺石油学院学报,2003,23(3):1-5.
    [131]黄明福,赵杉林,杨柯,黎渊博.微波作用下直馏柴油脱酸新方法的研究[J].石油与天然气化工,2003,32(5):283-285.
    [132]黄明福,赵杉林,杨柯,李萍.微波辐射柴油脱酸精制[J].石油学报(石油加工),2003,19(6):81-84.
    [133]黄明福,赵杉林,杨柯,孔令照.常压二线馏分油微波脱酸新方法研究[J].燃料化学学报,2003,31(6):628-630.
    [134]孔令照,伍军,李萍,赵杉林.重质常压馏分油微波辐射脱酸的实验室研究[J].石油炼制与化工,2004,35(10):22-24.
    [135]赵杉林,孔令照,李萍,李建东.微波辐射柴油脱硫实验研究[J].化工科技,2005,13(3):1-4.
    [136]孔令照,李萍,张起凯,赵杉林.微波作用下柴油脱酸及其反应动力学[J].微波学报,2005,21(5):66-70.
    [137]李萍,毛燎原,赵杉林,张起凯.采用钠盐强化微波辐射高稠原油脱水的研究[J].精细石油化工,2008,25(2):25-29.
    [138]赵杉林,毛燎原,张起凯,李萍等.海水稀释-微波辐射协同作用高稠油脱水研究[J].石油学报石油加工,2007,23(2):62-67.
    [139]张起凯,徐洪志,赵杉林,李萍.氯化钙作用下微波辐射稠油破乳脱水的研究[J].无机盐工业,2007,39(8):47-49.
    [140]毛燎原,李萍,张起凯,赵杉林等.无机盐存在下微波辐射超稠原油脱水研究[J].无机盐工业,2006,38(11):53-55.
    [141]毛燎原,赵杉林,张起凯,李萍等.无机盐及海水作用下高稠油微波辐射法脱水研究[J].炼油技术与工程,2006,36(10):15-18.
    [142]祁强,李萍,张起凯,薛明明等.海水稀释下石蜡基高蜡原油微波破乳脱水研究[J].化工科技,2008,16(5):33-36.
    [143]商丽艳,李萍,赵杉林,张起凯等.微波辐射柴油氧化脱硫实验研究[J].科学技术与工程,2006,6(13):1901-1903.
    [144]杜荣熙,张磊,张林.炼油厂QXF-3化学清洗剂研究[J].清洗世界,2006,22(9):6-12.
    [145]李镇,裴建军,高冰梅,崔晓杰.ZF-1硫化亚铁化学清洗剂工业应用胜[J].炼科技技2000,22(4):33-35,47.
    [146]李镇,裴建军,高冰梅.ZF-1化学清洗剂的研制及工业应用[J].齐鲁石油化工,1999,27(4):275-277.
    [147]董晓巍,李兴昌.天然气管道中硫垢的化学清洗[J].清洗世界,2003,19(12):7-9.
    [148]刘小辉,庄晓冬,莫广文,孙国风.新型硫化亚铁钝化清洗剂NH-02Z研制及应用[J].石油化工腐蚀与防护,2005,22(3):41-44.
    [149]陶玉环,邢维建.硫化亚铁清洗剂在常减压装置中的应用[J].化工设备与防腐蚀,2003,(2):32-34.
    [150]周国军,李越明,郭仕清.硫化亚铁的化学清洗[J].安全、健康和环境,2003,3(6):4-5.
    [151]房亮,吴凡.炼油装置硫化亚铁污垢的化学清洗研究与实例[J].清洗世界,2005,21(8):5-8.
    [152]左理胜,曾蔚然,姜建平.硫化亚铁清洗配方的研究[J].石油化工腐蚀与防护,2003,20(3):20-24.
    [153]左理胜,曾蔚然,姜建平.炼油装置硫化亚铁清洗剂的配方及应用[J].石油炼制与化工,2003,34(8):64-67.
    [154]左理胜,王海清,姜建平.炼油污垢硫化亚铁的化学清洗[J].中国设备工程,2005,(10):27-29.
    [155]吕浩,陈伴生.GW-101型硫化亚铁钝化剂在加氢裂化装置上的应用[J].石油化工安全技术,2006,22(1):35-38.
    [156]李朝恒,裴旭东,王秀珍.硫化亚铁阻燃清洗剂[P].CN 1410596,C23G5/02,2003-4-16.