碳化硅肖特基势垒二极管静态特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅以其禁带宽度大,击穿电场高,热导率大,电子饱和漂移速度高等
    优异特性成为继锗、硅、砷化镓之后的新一代半导体材料。本文在SiC肖特基
    势垒二极管的静态伏安特性方面进行了较为深入的研究。首先,比较系统和全
    面地讨论了碳化硅的晶体结构,有效载流子的多级离化模型和迁移率拟合公式,
    分析了“冻析”效应,得到了碳化硅材料的迁移率以及杂质离化率随温度的变
    化规律。其次,研究了室温下金属碳化硅接触的肖特基势垒高度和串联电阻
    ,给出了它们的计算公式。证明了在温度不太高的范围(300K—500K)内,
    正向伏安特性符合热电子发射理论。提出了一种计算反向电流密度的理论模型,
    模型的计算结果与实验数据的比较表明,隧道效应是常温下反向电流的主要输
    运机理。但在温度较高时,反向热电子发射电流和耗尽层中复合中心产生电流
    都大大增加,不能再忽略不计。最后,实际测量了Ti/4H-SiC肖特基势垒二极管,
    测量结果与理论计算值符合得较好,室温下理想因子、势垒高度分别为1.3和
    0.8eV左右,开启电压约为0.5V。
Silicon carbide is an attractive new generation semiconductor
    material following.
    Ge, Si, and GaAs due to its excellent properties such as wide
    bandgap, high breakdown
    field, high thermal conductivity and high saturation electron
    drift velocity. In this paper,
    the static I-V characteristics of Schottky barrier diodes for
    silicon carbide are studied
    systematically. The main points in this paper are summarized as
    follows:
    
     Firstly, the crystal structure of silicon carbide, a two-level
    ionization model for
    effective carriers and its fitting formulas are discussed in
    detail, and the phenomena of
    carrier freeze-out are studied. The temperature dependence of
    electron mobility and the
    impurity ionization rate are presented.
    
     Secondly, the Schottky barrier height and series resistance under
    room temperature
    are analyzed, and their relative formulas are obtained. Then it
    is demonstrated that the
    current conduction mechanism follows the thermionic emission
    theory at the
    temperature range from 300K to 500K under forward biased
    conditions. A theoretical
    model used in calculating reverse current density is proposed
    considering several
    current transport mechanisms. The comparison of theoretical
    results with experimental
    data indicates that tunneling effect is the dominant mechanism
    under room temperature,
    but the thermionic emission current and the generation current in
    the depletion region
    will increase greatly when temperature becomes high so that they
    are no longer
    negligible.
    
     Finally, the measurements of Ti/4H-SiC Schottky barrier diodes
    have been done
    and our models proposed in this paper are in good agreements with
    the experimental
    data. The ideality factor and barrier height are 1.3 and 0.8eV,
    respectively.
引文
1.张义门,张玉明,“碳化硅器件的需求背景及其发展现状”,电子科学技术评论,No.2,1996
    2.张玉明,张义门,“SiC功率器件”,电子科技导报,No.29,1996
    3.张玉明,张义门,罗晋升,“SiC、GaAs和Si的高温特性的比较”,固体电子学研究与进展,Vol.17,No.3,pp.305~310,1997
    4. H.Morkoc,S.Strite," Special Issue on High-Temperature Electronics", J.Appl.Physics, Vol.76, No.3, pp. 1363-1398, Aug.,1994
    5.田敬民,“SiC半导体材料与器件”,半导体杂志,第21卷2期,第27-37页,1996年6月
    6. R.F.Davis,Physica B pp. 1-15,1995
    7. P.A.Ivanov,V.E.Chelnokov, Semicond. Sci.Tech.,pp.863-880,July 1992
    8. Second International High temperature electronics Conference,SessionI,Charlotte, NC,June 5-10,1994
    9. A.A.Lebedev,A.N.Andreev, Proceedings of 1995 International Symposium on Power Semiconductor Devices & Ics,YoKohama 5,pp.101-106,.Sep. 1995
    10. A.Itoh,Tsunenobu and Kimoto,Hiroyuki Matsunami,"Efficient Power Schottky Rectifiers of 4H-SiC", Proceedings of 1995 International Symposium on Power Semiconductor Devices & Ics ,5.3 pp.101-106, the Yokohama, Japan, 1995
    11. M.Bhatnagar, Peter K.McLarty and B.J.Baliga ,"Silicon-Carbide High-Voltage (400V) Schottky Barrier Diodes", IEEE Electron Device Letters Vol. 13, No. 10,pp.501-503, Oct. 1992
    12.张玉明,张义门,罗晋升,“SiC肖特基势垒二极管的研制”,半导体学报,Vol.20,No.11,PP.1040~1043,1999,
    13.王姝睿、刘忠立、徐萍,“6H-SiC高压肖特基势垒二极管”,半导体学报,已录用
    14. D.Defives, O.Noblanc, C.Dua, C.Brylinski, M.Barthula, V. Aubry-Fortuna,F. Meyer, "Barrier Inhomogeneities and Electrical Characteristics of Ti/4H-SiC Schottky Rectifiers", IEEE Trans. Electron Devices, Vol.46, No.3,pp.449-455, Mar. 1999
    15. Praveen Shenoy, A.Moki and B.J.Baliga, "Vertical Schottky Barrier Dioder on 3C-SiC Grown on Si", IEEE Trans. Electron Devices, Vol.16, No.5,pp.411-414, May 1994
    
    
    16. Akira Itoh, T.Kimoto, and Hiroyuki MatsunamiR, "High Performance of HighVoltage 4H-SiC Schottky Barrier Diodes", IEEE Electron Device Letters, Vol.16, No.6, pp.280~282, June 1995
    17. M.Bhatnagar,B.Jayant Baliga,H.R.Kirk, "Effect of Surface Inhomogenertees on the Electrical Characteristics of Sic Schottky Contacts", IEEE Trans. Electron Devices, vol.43, No.1, pp.150-156, Jan.1996
    18. J.Crofion and S.Sriram, "Reverse Leakage Current Calculations for SiC Schottky Contacts", IEEE Trans.Electron Devices, vol.43, No. 12, pp. 2305~2307, Dec. 1996
    19.郝跃、彭军、杨银堂,“碳化硅宽带隙半导体技术”,科学出版社,第15页2000年5月,第一版
    20.张玉明,张义门,崔杰,罗晋升:“3C-SiC体特性的Monte Carlo模型”,物理学报,Vol.46,No.11,pp.2215~2222,1997
    21.张玉明,博士学位论文,碳化硅材料与器件的研究,西安交通大学,1998.4
    22. Yuming Zhang, Yimen Zhang, "High-Field and High-Temperature Transport in n-type 3C-SiC" ,The 2~(nd) International Conference on Modeling and Simulation of Microsystem, Semiconductor, Sensors and Actuators, San Juan,Puerto Rico, USA, April 19,1999
    23. S.M.Sze,Physics of Semiconductor Devices. New York: Wiley, 1981
    24. E.H.Rhoderick ,R.H.Williams, Metal-Semiconductor Contacts. 2nd ed. Oxford,U.K. Clarendon, 1988
    25.刘恩科 朱秉升 罗晋生。半导体物理学,国防工业出版社,1990
    26. T.Kimoto, T.Urushidani, S.Kobayashi, "High-Voltage(>1kV) SiC Schottky Barrier Diodes with Low On-Resistances",Vol. 14, No. 12, pp.548-550,Dec. 1993
    27.吕惠民,“SiC肖特基势垒二极管”,半导体杂志,第22卷2期,第41-47页,1997年6月
    28. K.J.Schoen, J.M.Woodall, J.A.Cooper, "Design Consideration and Experimental Analysis of High-Voltage SiC Schottky Barrier Rectifiers,"IEEE Trans. Electron Devices, Vol. 45, No.7, pp. 1595~1604, July 1998
    29. A.Itoh and T.Kimoto, "Excellent Reverse Blocking Characteristics of High-
    
    Voltage 4H-SiC Schottky Rectifiers with Boron-Implanted Edge Termination", IEEE Electron Device Letters, Vol 17, No.3, pp, 139-141, Mar. 1996
    30. Vilk.Saxena, Andrew J Steckl, Jian Nong, "High-Voltage Ni-and Pt-SiC Schottky Diodes Utilizing Metal Field Plate Termination", IEEE Trans. Electron Devices, Vol.46, No.3, pp.456-463, Mar. 1998
    31. S.Yoshida, K.Sasaki, E.Sakuma, Appl. Phys. Letter, 1985, 46, pp.766
    32. R.Raghunathan,D.Alok, and B.J. Baliga, "High Voltage 4H-SiC Schottky Barrier Diodes", IEEE Electron Device Letters, Vol 16, No.6, pp, 226-227, June 1995