碳化硅PMOS器件特性模拟及仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于CMOS具有十分重要的地位和SiC MOS器件的诱人前景,本文对6H-SiC PMOS器件的基本特性做了较为详细的研究,着重研究了界面态以及源漏寄生电阻对SiC PMOS器件特性的影响。
     研究了SiC的晶体结构,分析了SiC中杂质的不完全离化现象以及SiC中空穴迁移率的拟和公式;用解一维poisson方程的方法分析了SiC PMOS空间电荷区的电特性;
     本论文重点分析了界面态分布和源漏串联电阻对SiC PMOS器件特性的影响。提出了一个价带附近的界面态分布模型,用该模型较好地描述了SiC PMOS器件阈值电压随温度的变化关系、C-V特性曲线以及亚阈特性曲线;分析了源漏寄生电阻对SiC PMOS器件输出特性、转移特性以及有效迁移率的影响;
     论文中用模拟软件Medici模拟了SiC PMOS器件的输出特性和漏击穿特性,分别模拟了室温下和300℃时SiC PMOS器件的输出特性,分析了栅电压、接触电阻、界面态以及其他因素对SiC PMOS击穿特性的影响。
     以上研究,揭示了SiC PMOSFET中的问题,为进一步的研究奠定了基础。
Because of the great potential of SiC MOSFETs and circuits, in this paper, the characteristics of 6H-SiC PMOSFETs are studied systematically, emphasizing on the effects of interface state and S/D series resistance on SiC PMOSFETs
    Firstly, the crystal structure of silicon carbide, the phenomena of incomplete ionization of the impurity and the fitting formula of hole mobility are presented. The characterization in space-charge region of SiC PMOS structure is analyzed by solving one dimension poisson equation.
    Secondly, the effects of interface density distribution and S/D series resistance on the characterization of SiC PMOSFETs are studied. A model of the interface state density distribution near by valence band is presented, and the dependence of the threshold voltage on temperature, the C-V characteristics and the subthreshold characteristics are predicted exactly with this model; the effects of S/D series resistance on the output characteristics , transfer characteristics and effective mobility of SiC PMOSFETs are analyzed.
    Thirdly, the output characteristics and the drain breakdown characteristics are modeled with the procedure Medici. The output characteristics in the room temperature and 300癈 are simulated, and the effects of gate voltage .contact resistance, interface state and other factors on SiC PMOS drain breakdown characteristics are analyzed.
    The research in this paper has uncovered the problems in the SiC PMOSFETs, and provided the ground for the further research.
引文
1.张义门,张玉明,“碳化硅器件的需求背景及其发展现状”,电子科学技术评论,No.2,1996
    2.张玉明,张义门,“SiC功率器件”,电子科技导报,No.29,1996
    3.张玉明,张义门,罗晋升,“SiC、GaAs和Si的高温特性的比较”,固体电子学研究与进展,1997.3,17(3),pp.305~310
    4.H.Morkoc,S.Strite,"Special Issue on High-Temperature Electronics",J.Appl.Physics,1994.8,76(3),pp.1363-1398
    5.杨克武,潘静,杨银堂,“SiC半导体材料及其器件应用”,半导体情报,2000.4,37(2),pp.13-15
    6.彭军,“SiC材料与器件”,半导体技术,1995.10,pp.33-40
    7. Philip G. Neudeck, "SiC TECHNOLOGY", NASA Lewis Research Center,1998
    8. H.Moissan, C.R. Acad,Sci.Paris,140, 405,(1905)
    9. H.J.Round, "A Note on Carborundum", Elec. World, 1907. 10, 19(10), pp.309-312
    10. J.W. Palmour,R. Singh,R.C.Glass,O. Kordian,and C. H. Carter, Jr, "Silicon Carbide for Power Devices",1997 IEEE International Symposium on, Page(s):25-32
    11. L.A. LIPKIN and J.W. PALMOUR,"Improved Oxidation Procedures for Reduced SiO_2/SiC Defects",J. Electronic Materials,1996.5, 25(5), pp.909-915
    12. S.Sridevan and B.J.Baliga "Inversion Layer Mobility in SiC MOSFETs",Material Science Forum,1998, Vol.264-268, pp. 997-1000
    13. J.Crofton,L. Beyer,T. Hogue, "High Temperature Ohmic Contacts to P-Type SIC", High Temperature Electronics Conference, 1998, HITEC, 1998 Fourth International
    14. Sei-Hyung Ryu, Anant K. Agarwal, Ranbir Singh, and John W. Palmour, "3100V, Asymmetrical, Gate Turn-off(GTO) Thyristors in 4H-SiC", IEEE Electron Device Letters, 2001, 22(3), pp. 127-129
    15.张玉明,张义门,罗晋尘,6H-SiC JFET高温解析模型,电子学报,1998,26(8),p117.
    16.尚也淳,张义门,张玉明,“SiC MOS结构空间电荷区杂质离化的研究”,半导体学报(收录).
    
    
    17.尚也淳,张义门,张玉明:“杂质不完全离化对SiC MOSFET的影响”,半导体学报,2001,22(7):888-891
    18.尚也淳,张义门,张玉明,“6H-SiC反型层电子迁移率的Monte Carlo模拟”,电子学报,2001,29(2),p13.
    19.尚也淳,张义门,张玉明,“6H-SiC反型层电子库仑散射的研究”,西安电子科技大学学报.(录用)
    20.张玉明,罗晋尘,“n型6H-SiC体材料欧姆接触的制备”,半导体学报,1997.9,18(9),p718.
    21.张玉明,张义门,“6H-SiC MOS场效应晶体管的研制”,固体电子学研究与进展,2000.1,20(1),p1.
    22.张玉明,张义门,罗晋升,“SiC肖特基势垒二极管的研制”,半导体学报,1999.11,20(11)PP.1040~1043
    23. ZHANG Yu-ming, ZHANG Yi-men,P. Alexandrov and J.H.Zhao,"Fabrication of 4H-SiC Merged PN-Schottky Diodes", Chinese Journal of Semiconductors,2001.3, 22(3), pp. 265-270
    24. Sei-Hyung Ryu,Kevin T. Kornegay,James A.Cooper,Jr.,Michael R. Melloch,"Digital CMOS IC's in 6H-SiC Operating on a 5-V Power Supply,"IEEE Trans.Electron Devices,1998, 45(1): 45-52.
    25. Man Pio Lam and Kevin T.Kornegay,"Recent Progress of Submicron CMOS Using 6H-SiC for Smart Power Applications," IEEE Trans.Electron Devices,1999, 46(3): 546-552
    26. JUlrich Schmid,Scott T. Sheppard,and Wolfgang Wondrak,"High Temperature Performance of NMOS Integrated Inverters and Ring Oscillators in 6H-SiC, "IEEE Trans.Electron Devices,2000, 47(4): 687-691
    27. N.S.Rebello,F. S. Shoucair,J. W. Palmour, "6H Silicon carbide MOSFET modeling for high temperature analogue integrated circuits(25℃-500℃)", IEE Pro. Circuits Devices Syst.,1996.3, 143(2), pp.115-122
    28. Slater, D.B., Jr.; Johnson, G.M.;Lipkin, L.A.; Suvorov, A.V.; Palmour, J.W.,"Demonstration of a 6H-SiC CMOS technology",Device Research Conference,1996. Digest.54th Annual,pp.162-163
    29.张玉明,“SiC材料和器件的研究,西安交通大学博士论文”,1998.
    30.C.J.Scozzie,f.B.Mclean,J.M.Mcgarrity,"Modeling the temperature response of 4H silicon carbide junction field-effect transistors", J.Appl. Phys, 1997,81(11), p7687
    31. F.B.Mclean,C.W.Tipton, J.M.Mcgarrity, Modeling the electrical characteristics
    
    of n-channel 6H-SiC junction-field-effect transistors as a fucntion of temperature, J.Appl.Phys, 1996, 79(1) , p545.
    32. 常远程,“碳化硅肖特基势垒二极管静态特性的研究”,西安电子科技大学 硕士论文,2001
    33. N. T. Son, W. M. Chen, O. Kordina, et al, Appl. Phys. Lett, 1995, Vol. 66, pp. 1074
    34. W. KAINDL, M. LADES, N. KAMINSKI, E.NIEMANN, and G. WACHUTKA, "Experimental Characterization and Numerical Simulation of the Electrical Properties of Nitrogen, Aluminum, and Boron in 4H/6H-SiC", Journal of Electronic Materials, 1999. 3, 28(3) , pp. 154-160
    35. 尚也淳,“SiC材料和器件特性及其辐照效应的研究”,西安电子科技大学 博士论文,2001
    36. Mrinal K. Das, Benjamin S. Um and James A. Cooper, Jr, "Anomalously High Density of Interface States Near the Conduction Band SiO2/4H-SiC MOS Devices, " Materials Science Forum, Vols. 338-342(2000) , pp. 1069-1072.
    37. John Campi, Yan Shi, Yanbin Luo, Feng Yan, and Jian H. Zhao, "Study of Interface State Density and Effective Oxide Charge in Post-Metallization Annealed SiO2/SiC Structures", IEEE Transactions on Electron Devices, 1999, 46(3) : 511-519
    38. V. V. Afanasev, M. Bassler, G. Pensl, and M. Schulz, "Intrinsic SiC/SiO2 Interface State", phys. stat. Sol. (a), 1997, Vol. 162, pp. 321-337
    39. N. S. fSakes, S. S. Mani and A. K. Agaraval, "Interface Trap Profiles Near the Band Edges in 6H-SiC MOSFETs, " Materials Science Forum, 2000, Vols. 338-342, pp. 1113-1116.
    40. Vickram R. Vathulyu, Marvin H. White, "Characterization of Inversion and Accumulation Layer Electron Transport in 4H and 6H-SiC MOSFETs on Implanted P-Type Regions," IEEE Trans. Electron Devices, 2000, 47(11) : 2018-2023
    41. E. Arnold, N. Ramungul, T. P. Chow and M. Ghezzo, "Interface States and Field-Effect Mobility in 6H-SiC MOS Transistors, " Materials Science Forum, 1998, Vols. 264-268, pp.1013-1016.
    42. G. Baccarani, and G. A. Sai-Halasz, "Spreading Resistance in Submicron MOSFETs", IEEE Electron Devece Letters, 1983. 2, Vol. EDL-4, No. 2, pp. 27-29
    
    
    43. S. Ryu, K. T. Kornegay, J. A. Cooper. Jr. and M. R. Melloch, "Monolithic CMOS Digital Integrated Circuits in 6H-SiC Using an Implanted P-Well Process", IEEE Electron Device Letters. 1997. 5, 18(5) , pp. 194-196