中子活化煤质在线分析及β辐射伏特核电池能量输运研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪随着核科学的发展及相关材料科学、制造工艺的进步,核技术应用在我国得到快速的发展,目前在国防、工业、农业、材料、生命、信息科学、环保和人类健康等方面核技术应用发挥着重要的作用。核技术总体分为两大类:核能利用类和非核能利用类。核能利用主要有核电、核武、核动力、核电池等。非核能利用主要有核分析技术、核成像技术、放射性药物、辐射加工、辐射检查、放射性示踪等。
     本论文课题方向为核技术应用,具体研究内容有两部分:核分析技术应用于煤质在线分析的课题:中子活化煤质在线分析研究;核电源应用于MEMS能源的课题:β辐射伏特核电池能量输运研究。
     一、中子活化煤质在线分析研究
     本论文针对国内燃煤电厂煤质成分实验室分析存在的不足,调研了国内外中子活化煤质在线分析设备,分析其性能、工业化等方面的优、缺点,研制了中子活化煤质在线分析系统。
     首先,对中子活化煤质在线分析测量系统进行设计:
     (1)增加了平煤器,减少煤流波动过大对测量稳定性的影响,同时防护煤流过高对系统的损伤;增加水份仪,直接测量煤质水份,解决在煤质工业指标计算过程中由氢元素到水份含量计算时存在的问题。
     (2)采用大体积BGO探测器,提高探测效率,同时为BGO探测器安装温控系统,减小温度变化对BGO性能的影响,提高系统的稳定性和测量精度。
     (3)采用了反射式的测量模式,与透射式测量模式相比,能有效消除煤流厚度对测量结果的影响;
     (4)采用蒙卡模拟方法,设计测量系统的辐射防护单元。
     本工作的核心是建立了一种新的实验谱库最小二乘法,该方法用于热中子俘获和快中子非弹的煤质在线分析,能有效降低谱库非线性的影响。在这种方法中,首先根据我国各大矿区煤种的元素含量,设置60个能代表全国煤种的煤样,通过这60个煤样的中子活化测量谱,采用最小二乘法建立20套单元素谱库,每套单元素谱库对应一个常见煤种。基于以上的20套单元素谱库,采用最小二乘法分析一个未知煤样,获得该煤样的初始估值。以初始估值为基础,采用谱库创建和样品分析的迭代方法建立一个新单元素谱库,建立该谱库的煤样与分析煤样的元素含量非常接近。因此这种实验谱库最小二乘法能尽可能的降低谱库非线性的影响。
     建立的实验谱库最小二乘法使用在本论文设计的煤质在线分析测量系统上,系统测量精度达到:灰份、水份、挥发、分热值分别为1.0wt%,0.5wt%,1.0wt%,350KJ/Kg。
     二、β辐射伏特核电池能量输运研究
     近年来,国内外对β辐射伏特核电池进行了大量研究,主要集中于换能器件的三维结构和新型半导体材料方面。β辐射伏特核电池的能量输运是电池设计、优化的重要依据之一。本文采用蒙特卡罗模拟程序Geant4,研究了β粒子在辐射伏特核电池中的能量输运,模拟分析主要为五个方面:
     (1)研究了单能电子在靶材料中的射程。分析得到了射程与能量、靶材料的经验公式。研究结果为设计核电池换能器件敏感区域厚度及核电池防护材料的最低厚度提供指导。
     (2)研究单能电子在靶材料表面的能量反散射系数与电子能量、入射角和靶材料的关系。结果表明①能量反散射系数随电子能量的增大而缓慢减少,核电池设计中以增大β源能量来减少反散射引起的能量损失是有限的;②能量反散射系数随入射角的增大而增大,入射角在00到250之间,能量反散射系数较小,增速也很慢,因此在核电池源的设计时,可以通过控制β粒子在换能器件表面的入射角尽可能的小,这样使更多的能量进入换能器件;③能量反散射系数随靶材料的平均原子序数增大而增大,在换能器件的材料选择时,低原子序数的靶材料更能获得较高的能量转换效率。
     (3)研究了放射源的自吸收。①给出了~3H(1.2、1.8、2.0吸氚比的钛化氚)、~(63)Ni(20%、80%、100%的~(63)Ni丰度)、~(147)Pm(100%的147Pm丰度)β面源的表面最大活度、表面最大输出功率;②给出了以上源的最佳质量厚度及相应的表面出射活度和表面出射功率;③研究结果表明随源质量厚度的增加,表面出射粒子能谱中心向高能偏移。以上结果有助于核电池放射源的制备以及换能器件设计。
     (4)研究了单能电子在靶材料中的能量沉积规律。结果表明:①单能准直电子在材料中的能量沉积率随入射深度先增大后减少,有一个明显的能量沉积主要区域;②随电子能量增加,电子能量沉积的主要区间所在的深度增大;③随电子能量增加,电子在材料中的能量沉积率降低。该结果能指导核电池换能器件的几何尺寸设计,让电子能量沉积的主要区域与换能器件敏感区域尽量吻合。
     (5)研究了~3H(1.8吸氚比的钛化氚)、~(63)Ni(80%的~(63)Ni丰度)和~(147)Pm(100%的~(147)Pm丰度)β面源在半导体材料(Si、SiC、GaAs)中的能量沉积。①结果表明随靶材料的深度增加,β射线的能量沉积率下降,源平均能量越低下降越快;②三种源在Si材料中的能量沉积表明:在常规核电池几何设计下~(63)Ni有最高的能量沉积率;③~3H在三种材料中的能量沉积表明:SiC较适合作为~3H的换能器件材料。
     本工作系统地从粒子输运和能量沉积的角度对辐射伏特核电池的几何尺寸、转换效率和输出功率进行详细研究。得到常规β辐射伏特核电池的理论参数和β粒子能量损失分布,总结出β辐射伏特核电池在结构和材料方面的一些优化方向。
In the21st century, along with the development of nuclear science and theimprovement of materials science and the manufacturing technology, nucleartechnique has been quickly developed and plays a vital role in industry, agriculture,national defence and science-technology. Nuclear technique belongs to twomaincategorises: the utilization of nuclear energy and the utilization of non-nuclear energy.The utilization of nuclear energy consists mainly of nuclear power, nuclear weaponand nuclear battery. The utilization of non-nuclear energy consists mainly of nuclearanalysis technique, nuclear imaging system, radiopbarmaceutical etl.
     The main purpose of this thesis is to study nuclear technique application, which isspecifically the research on the on-line coal analysis based on neutron activation andthe β-voltaic nuclear battery.
     1. The research on the on-line coal analysis based on neutron activation:
     We have studied the development of the on-line coal analysis system and havedeveloped the on-line coal analysis system based on neutron activation. Ourdevelopment aims at the shortage of the laboratorial analysis in coal-powercompanies.
     1) We adopt the coal-smoothing device which smoothes coal on the conveyer beltand protects instrument from hitting by the coal and reduces the fluctuation of coalflow. This module helps keep the precision of the whole system. As a solution of theproblem that the moisture can not be calculated considering both water and alkenescontain the element hydrogen, the moisture meter is employed by the system.
     2)A Φ127mm*127mm BGO detector with a temperature controller is adopted bythe system, wich decreases the Influences of the Temperature Changes and increasesthe stability and measurement accuracy of the system.
     3)The system adopt the back-scattering measurement model. which can decreasethe effect of coal fluctuate compared with the transmission measurement model.
     4) The moderating and shielding system has been designed based on the MonteCarlo simulation.
     A new experiment-library least-squares (experiment-LLs) method used in theneutron inelastic-scattering and thermal-capture analysis (NITA) technique for on-linecoal analysis was developed, which has significantly decreased the non-linearradiation effects. In this method, sixty samples with preset elemental contents weremade, from whose experiment spectra twenty single-element spectrum librariescorresponding to twenty kinds of coal were built by least-squares method. Thespectrum of unknown sample was analyzed based on these twenty libraries to estimateits element contents. With the initial estimated result, the procedure of developinglibrary and analysis was iterated to build a new library with the closest elementcontents to the unknown sample. Hence the experiment-LLs method can reducesnon-linear radiation effects as possible. The experiment-LLs method was performedon an improved coal analysis system which was equipped with a long-life14MeVpulsed-neutron generator, a bulk BGO detector with a temperature controller, amoisture meter and coal-smoothing device. The precision of this system for ashcontent, water content, volatile content and calorific value have reached1.0wt%,0.5wt%,1.0wt%,350Kj/Kg, respectively.
     2. The research on the energy transport of β-voltaic nuclear battery:
     In recent years, the β-voltaic nuclear battery has been extensively investigated,mostly focusing on the new three-dimensional structure and material ofsemiconductor of the energy conversion device. In fact, the energy transportation ofthe β-particle in the battery is the foundation for the design and optimization of theβ-voltaic nuclear battery. This work employed the Monte Carlo method to simulatethe β-particle energy transportation using the Geant4program, which included fiveparts of work as below:
     1) Estimated the flight range of the single-energy electron in the battery materialand analyzed the relation between the flight range and the energy and battery materialusing the experience formula. The result would be helpful for the design of the depthfor both the sensitive area and the radioprotection material of the β-voltaic nuclearbattery.
     2) We have researched the dependence of the energy backscattering ratio on the energy, the injection angle and the material of semiconductor device for thesingle-energy electron. The energy backscattering ratio increases with the injectionangle and the increasing rate also increases with the injection angle. The energybackscattering ratio is12.34while the injection angle is from00to250and50.22from640to890. The energy backscattering ratio decreases with the electron energyslowly expert for the material Au. The result of decreasing the energybackscattering ratio is quit limited by increasing the energy of electron. Theenergy backscattering ratio increases with the average atomic number of devicematerial. The small average atomic number makes contribution to the highenergy conversion efficiency and the SiC is most suitable for the three materialsconsidering this aspect.
     3)①The research of the source absorption presents the suitable thickness and themaximum surface output power of β sources.②.The energy spectra of β particleemitted from the source surface are different to that of β particle emitted fromradioactive isotopes. The peak of spectrum is moving to the center and the electronwith low energy becomes less with the thickness of source. The self absorption ofthese three β sources are more than55%which affect seriously the energy utilizationefficiency and the maximum output power of the nuclear battery. Reduction the selfabsorption and improving the surface output power are important for optimization thenuclear battery.
     4) The relationship between the deposited energy and the depth in the nuclearbattery for the single-energy electron indicates that①.The deposited energy is afunction of the depth in the silicon. The energy deposition rate of the single energyelectron increases firstly and then decreases with the device depth. There is oneobvious region in which most energy of electron deposits.②.The higher the energy ofelectron, the deeper the region is. In design the nuclear battery, we should focuson the electron with energies more than5keV and the sensitive region of deviceshould fit to the energy deposition region.
     5) The distribution of deposited energy has been studied.The β sources are3H (the titanium-tritium ratio:1.8)、63Ni(the purity:80%)、147Pm(the purity:100%).The materials are Si、SiC、GaAs.①.The energy deposition rate decreases with thedepth increasing. The lower the average energy of β source, the bigger the energydeposition rate and the decreasing rate.②.The deposited energy distribution of threeβ sources in the material Si indicates that63Ni is the suitable source and has thehighest utilization ratio of energy.③. The deposited energy distribution of3H βsources in three materials indicates that SiC is the suitablematerial and has the highestutilization ratio of energy.
     The energy transport of β particle in general β-voltaic nuclear batteries has beensimulated. Some theoretical parameters about these nuclear batteries has beenpresented, such as the suitable thickness and the maximum surface output power of βsources, the possible values of the deposited energy and the deposition ratio in thesensitive region of these batteries, etc.. Some advice about the optimization ofstructure and material of nuclear batteries has been summarized from these laws ofenergy transport. These parameters and advice are useful in the further study ofβ-voltaic nuclear batteries.
引文
[1]王乃彦.大力发展军民两用的核技术应用为国防现代化和国民经济建设服务.核技术及应用”发展战略研讨会.
    [2]王乃彦.核技术应用的前景.第四届中国核学会省市区“三核”论坛.2007.
    [3] PAGE N N, KSHISAGAR J T. DEVELOPMENT OF CANNED MOTORPUMP FOR NUCLEAR APPLICATION.17thInternational Conference onNuclear Engineering. Brussels, BELGIUM,2009.
    [4] SCHINZEI G E. INTEGRATION OF RISK INSIGHTS INTO NUCLEATPOWER PLANT OPERATIONS.16th International Conference on NuclearEngineering. Orlando, FL,2008.
    [5]赵彦生译胡鸣怡校. MEMS设备使用的微型核电池。2003年
    [6]邹宇黄宁康.伏特效应放射性同位素电池的原理和进展.核技术,2006,(29):432-436.
    [7]桑海峰,王福利,刘林茂.基于优化BP神经网络的中子法检测煤中碳含量[J].计量学报,2006,27(1):73-76.
    [8]夏萍.基于虚拟仪器和图像处理技术的树木年轮微密度研究及其应用[D].合肥:安徽农业大林学与园林学院,2007.
    [9]周居熙.呼气相胸片和先心病胸片的处理与研究.南京:南京航空航天大仪器科学与技术,2004.
    [10]胡杰勋.便携式数字X线诊断仪系统设计.杭州:浙江大学生物医学工程与仪器科学学院,2006.
    [11]何清抗.降质X射线数字图像的增强和复原处理研究.长沙:中南大学,医学院,2005.
    [12]蒋国辉.核技术在新药研究中的应用[D].北京:中国协和医科大学中国医学科学院,1994.
    [13] BENNIK ROELOF J, TULCHINSKY MARK. Liver Function Testing withNuclear Medicine Techniques Is Coming of Age. SEMINARS IN NUCLEARMEDICINE2012,42(2):124-137.
    [14] SERAVALLI E., ROBERT C.. Monte Carlo calculations of positron emitteryields in proton radiotherapy. PHYSICS IN MEDICINE AND BIOLOGY.2012,57(6):1659-1673.
    [15]王进.单源双能量X射线安全检查系统.南京:东南大学医学院,2005.
    [16] LLIC R,SKVARC J,GOLOVCHENKO AN. Nuclear tracks: present andfuture perspectives.21st International Conference on Nuclear Tracks in Solids.NEW DELHI, INDIA,2003.
    [17]陈绍勇.应用核技术的海洋化学研究[D].厦门:厦门海洋大学海洋化学,2002.
    [18]徐淑艳.蒙特卡洛方法在核物理中的应用.北京:原子能出版社,2006.
    [19]毛孝勇,陈金象,沈冠仁.蒙特卡罗方法在中子能谱研究中的应用[J].原子能科学技术,2002,36(1):32-35.
    [20]付广智,何彬,章喜喜等. BF3中子探测器阵列探测效率的蒙特卡罗计算[J].核电子学与探测技术,2006,26(1):65-67,107.
    [21]张锋,王新光.脉冲中子全能谱测井闪烁探测器响应特性的蒙特卡罗模拟[J].原子能科学技术,2009,43(1):90-96.
    [1]李英华.煤质分析应用技术指南.北京:北京中国标准出版社,1999.
    [2]宋兆龙等.基于中子活化技术的煤炭全元素在线分析系统的研究.中国电机工程学报,2001(1):89-93.
    [3]于大海.入炉煤在线检测系统的探讨.山东电力技术,2007,(4):53-55.
    [4]王崇君,王瑞敏,周广文.浅谈在线灰份检测仪的作用.中国煤炭,2002,(28):49-50.
    [5]陈伯显,何景华,刘建成等.中子感生瞬发γ射线煤多元素分析研究[J].核电子学与探测技术,1996,16(l):6-120.
    [6] L Dep, M Belbot, G Vourvopoulos, et al. Pulsed neutron-based on-line coalanalysis[J]. Journal of Radioanalytical and Nuclear Chemistry,1998,(234)):107-112.
    [7] Gu Deshan, Jing Shiwei, Sang Haifeng, et al.. Detection of low caloric power ofcoal by pulse fast-thermal [J]. Journal of Radioanalytical and Nuclear Chemistry,2004,(262):493-496.
    [8]刘雨人,景士伟.中子感生瞬发γ射线在线分析技术的进展(1988~2002).同位素2003,(16):106-109.
    [9] Jing Shi-wei, Liu Yu-ren. Progress of neutron induced prompt gamma analysistechnique in1988~2003. Nuclear Science and Techniques,2004,(15):119-122.
    [10] C. S. Lim, D. A. Abernethy. On-line coal analysis using fast neutron-inducedgamma-rays [J]. Applied Radiation and Isotopes,2005,(63):697–704.
    [11]李中伟,卢洪波,郭景富等.14MeV脉冲中子非弹性散射γ谱的测量[J].物理实验,2002,(22):8-10.
    [12]谷德山,程道文,伊杰等,脉冲中子煤质快速分析仪的研制与应用[J].同位素,2005,(18):87-90.
    [13]屈国普,龚学余,金杰坤. NaI(Tl)晶体对面源全能峰效率刻度的点源模拟法[J].核电子学与探测技术,1999,(19):312-313.
    [14]伊杰,程道文,谷德山等. BGO探测器制冷保温系统的制作和应用[J].同位素,2005,(18):47-49.
    [15] Jing Shi-Wei, Liu Lin-Mao, Coal analysis using the pulsed neutron generator.Unclear Science and Techniques,2003,(14):265-267.
    [16] Robin P.Gardner, Xu Libai, Status of the Monte Carlo libraryleast-squares(MCLLS) approach for non-linear radiation analyzer problems.Radiation Physics and Chemistry,2009(78):843-851.
    [17] J.I.TROMBKA, R.LSCHMADECK, A METHOD FOR THE ANALYSIS OFPULSE-HEIGHT SPECTRA CONTAINING GAIN-SHIFT AND ZERO-DRIFTCOMPENSATION. Nuclear Instruments and Methods,1968,(62):253-261.
    [18]复旦大学,清华大学,北京大学.原子核物理实验方法.北京:原子能出版社1997.
    [19]宁平治,李磊,闵德芬.原子核物理基础[M].北京:高等教育出版社,2003.
    [20]卢希庭.原子核物理[M]:第2版.北京:原子能出版社,2001.
    [21]丁厚本,王乃彦.中子源物理[M],北京:科学出版社,1984.
    [22] Guo Weijun, Gardner R. P., Using the Monte Carlo–Library Least-Squares(MCLLS) approach for the in vivo XRF measurement of lead in bone. NuclearInstruments and Methods in Physics Research A,2004,(16):586–593.
    [23] Han, X., Gardner, R.P., a Monte Carlo simulation code for normal andcoincidence prompt gamma-ray neutron activation analysis(PGNAA). NuclearScience and Engineering,2007,(155):143-153.
    [24] Gardner, R.P., Sood, A., A Monte Carlo simulation approach for generating NaIdetector response functions(DRFs) that accounts for nonlinearity and variableflat continua. Nuclear Instruments and Methods in Physics Research B,(2004)87-99
    [25] CHENG Dao-Wen, GU De-Shan, LIU Lin-Mao. et al. Improvement of thedetermination of hydrogen content in a multicomponent sample by D-Tgenerator[J]. Chinese Physics C,2010,(34):606-609.
    [26] M. Borsaru, M. Biggs, W. Nichols, et al. The application of prompt-gammaneutron activation analysis to borehole logging for coal [J]. Applied Radiationand Isotopes,2001(54):335-343.
    [27]杨伟罡,李元景.煤对γ射线的吸收与散射及对中子瞬发γ能谱的修正[J].核电子学与探测技术,2003,(23):142-146.
    [28]王建光. X射线能量谱分布的研究.北京:首都师范大学物理学院,2005.
    [29] Xu W C, Kumagai M. Nitrogen evolution during rapid hydropymlysis of coal[J].Fuel,2002,8l(18):2325-2334.
    [30] Tang L H, zhu z B, zhu H B, et a1. Study of coal flash hydropyrolysisdenitrogenation[J]. Fuel Process Technol.,2003,81(2):103-108.
    [31] M. Borsaru, Z. Jecny. Application of PGNAA for bulk coal samples in a4πgeometry [J]. Applied Radiation and Isotopes,2001,(54):519-526.
    [32] M. Borsaru, M. Berry, M. Biggs, et al. In situ determination of sulphur in coalseams and overburden rock by PGNAA [J]. Nuclear Instruments and Methods inPhysics Research B,2004,(213):530–534.
    [33]李铁柱. PGNAA元素在线分析中蒙卡谱库最小二乘法的研究[D].北京:清华大学工程物理系,2003。
    [34]桑海峰.快热中子感生瞬发γ射线法检测煤中发热值Q_(net ar).长春:东北师范大学物理学院,2003
    [35]迟艳涛.快热中子感生瞬发γ射线法检测煤中的全水份(M_t).长春:东北师范大学物理学院,2005.
    [36]程道文.利用中子感生瞬发γ射线分析方法检测煤的灰份.长春:东北师范大学物理学院,2005.
    [37]伊杰.快热中子感生瞬发γ射线法检测煤的挥发分(V_(daf).长春:东北师范大学物理学院,2005.
    [38]王鑫.脉冲中子煤质快速分析装置慢化屏蔽体设计的计算机模拟.长春:东北师范大学物理学院,2007.
    [39]张文.杰中子吸收法测量硼浓度的技术研究.南京:南华大学物理学院,2007.
    [40]邓杰. γ射线子弹炮弹缺失检测系统研发.成都:成都理工大学物理学院,2009.
    [41]刘珺.中子煤质分析实验中应用蒙特卡罗模拟方法进行煤层厚度变化的研究.长春:东北师范大学物理学院,2009.
    [42]陈伟. PET中心患者源项的辐射防护优化研究.上海:上海交通大学,2011.
    [43]连亚琴. CT射束硬化校正算法研究.太原:中北大学,2009.
    [44]白云飞.中低放射性废物危险元素探测方法研究.上海:上海交通大学物理学院,2010.
    [45]马霄云.氟化钡探测器的设计组装和性能测试.兰州:兰州大学物理学院,2007.
    [46]姜校亮.252Cf中子源慢化及屏蔽系统的蒙特卡罗模拟研究.长春:吉林大学物理学院,2010.
    [47] Sang Hai-feng, Wang Fu-li, Detection of element content in coal by pulsedneutron method based on an optimized back-propagation neural network.Nuclear Instruments and Methods in Physics Research B,2005,(239):202-208.
    [48] Naqvi, A.A., Garwan, M.A., Respone of a PGNAA setup for pozzolan–basedcement concrete specimens. Applied Radiation and Isotipes,2010,(68):635-638.
    [49] Shi Feiyue, Ma Jiayi, Simulation study of the channel on correcting neutronself-shield effect in bulk coal. J Radioanal Nucl Chem,2010,(284):327-331
    [50] Xu W C, Kumagai M. Nitrogen evolution during rapid hydropymlysis of coal[J].Fuel,2002,8l(18):2325-2334.
    [51] Naqvi, A.A., Nagadi, M.M., Prompt gamma analysis of chlorine in concrete forcorrosion study. Applied Radiation and Isotopes,2006,(62):283-289.
    [52]陈晓文. PGNAA应用于煤质成份在线检测的方法研究.兰州:兰州大学物理学院,2006.
    [53] C. L. Lee, X. L. Zhou, J. F. Harmon, et al. Thermal neutron flux mapping in ahead phantom [J]. Nuclear Instruments and Methods in Physics Research A,1999,(422):106-110.
    [54] Borsaru, M., Biggs, M., The application of prompt-gamma neutron activationanalysis to borehole logging for coal. Applied Radiation and Isotipes,2001,(54):335-343.
    [55] Silvia Pesente, Giancarlo Nebbia, Marcello Lunardon, et al. Detection of hiddenexplosives by using tagged neutron beams with sub-nanosecond time resolution[J]. Nuclear Instruments and Methods in Physics Research A,2004,(531):657–667.
    [56] M. Nezamzadeh, Sh. Alavi, M. Lamehi-rachti, et al. Comparison between (n-γ),(γ-γ) and natural g-ray activity techniques for ash measurement of coal samples[J]. Applied Radiation and Isotopes,1999,50:685-691.
    [57]刘镇洲,陈金象. AmBe中子源辐射场周围剂量当量与吸收剂量的计算[J].原子能科学技术刊,2009,43(1):11-15.
    [58]吕俊涛,魏晓云,谷德山,程道文等.中子元素分析中干扰γ射线屏蔽研究[J].东北师大学报(自然科学版),2009,(41):79-81.
    [59]张文仲,张晓敏,骆亿生.中子慢化材料特性研究[J].原子能科学技术,2006,40(5):525-528.
    [60]时飞跃,刘圣康,张治平.用中子散射幅度谱研究石蜡厚度响应的初探[J].同位素,2005,18(1-2):108-109.
    [61]郭洪生,李恩平,何锡钧等.含硼聚乙烯对D-T中子的屏蔽研究[J].核电子学与探测技术,2004,24(5):466-468.
    [1]赵彦生译胡鸣怡校. MEMS设备使用的微型核电池。2003年
    [2]邹宇黄宁康.伏特效应放射性同位素电池的原理和进展.核技术,2006,(29):432-436.
    [3] Qiao Da-Yong. Yuan Wei-Zheng, Demonstration of a4H SiC BetavoltaicNuclear Battery Base on Schottky Barrier Diode, CHIN.PHYS.LETT,2008,(25:)3798-3800.
    [4] Guo H, Lal A. Nano power betavoltaic microbatteries.[C]//the12th internationalconference on solid state sensors. Boston: Actuators and Micro systems,2003.
    [5] Guo H, Yang H, Zhang Y. Betavoltaic microbatteries using porous silicon[C]//Proceedings of MEMS, Japan: Kobe,2007:867-870.
    [6]郭航.微型核电池的研究,第十四届全国核电子学与探测技术学术年会,2009年.
    [7]罗顺忠王关全张华明辐射伏特效应同位素电池研究进展.同位素.2011,(24):1-11.
    [8] M.V.S.Chandrashekhar, Demonstration of a4H SiC betavoltaic cell,Appl. Phys.Lett.,2006,(88):033506-1033506-4.
    [9] K.Kumagai. S.Tanuma, Energy dependence of electron stopping powers inelemental solids over the100eV to30keV energy range, Nucl. Ins.&Meth. inPhys. Res. B,2009,(267):167-170.
    [10] Guanquan Wang,The effect of temperature changes on electrical performanceof the betacoltaic cell, Applied Radiation and Isotopes,2010,(68):2214-2217.
    [11]孙磊苑伟政乔大勇.基于MEMS的放射性同位素电池的设计与实现,微细加工技术.2006,(3):32-35.
    [12]褚金奎朴相镐吴红超.基于β辐射伏特效应的同位素微电池理论模型研究,2006年12月
    [13]秦冲苑伟政乔大勇安飞.基于β辐生伏特效应的同位素微能源研究,2008,(28):294-298.
    [14] J.P.Carmo. R.P.Rocha,A thin-film rechargeable battery for integration instand-alone Microsystems, Procedia Chemistry2009,(1):453-456.
    [15] Y.Kawada. T.Yamada, Observation of β-ray spectra after penetrating absorbingmaterials, Applied Radiation and Isotopes,2008,(66):819-822
    [16] M. V. S., Chandrashekhar, Rajesh Duggirala, Michael G. Spencer, and AmitLal. Appl. Phys. Lett.2007,(91):053511-1053511-3.
    [17]沈劲鹏,郭文平. SiC电子输运的蒙特卡罗研究,功能材料,2007,(38):542-545.
    [18]杨玉青.王关全,辐射伏特效应同位素电池换能单元的初步设计,核技术,2010,(33):197-200.
    [19] Blanchard J, Henderson D, Lal A. A nuclear microbattery for MEMS (Final)DE-FG07-99ID13781[R/OL]. US: department of energy award.http://homepages.cae.wisc.edu/~blanchar/res/batteries.htm.FinalScientific/Technical Report.
    [20] Deus S. Tritium powered betavoltaic batterys based on amorphous silicon [C],proceedings of28thPVSEC, USA: IEEE,2000,1246-1249.
    [21] Guo Hang, Li Hui, Lal Amit. Nuclear Microbatteries for Micro and NanoDevice.20089TH INTERNATIONAL CONFERENCE ON SOLID-STATEAND INTERGATED-CIRCUIT TECHNOLOGY2008,(1-4):2357-2362
    [22] M. Gong, S. Fung, C. D. Beling, et al. A deep level transient spectroscopystudy of electron irradiation induced deep levels in p-type6H–SiC JOURNALOF APPLIED PHYSICS199,(85):7120-7122.
    [23] X.D.Chen, S.Fung, C.C.Ling, et al. Deep level transient spectroscopic study ofneutron-irradiated n-type6H–SiC JOURNAL OF APPLIED PHYSICS,2003,(94):3004-3010.
    [24] T. Wacharasindhu,1J. W. Kwon. Radioisotope microbattery based on liquidsemiconductor. APPLIED PHYSICS LETTERS,2099(95):014103-1014103-4.
    [25] A.Kavetskiy, G.Yakubova. Promethium-147capacitor. Applied Radiation andIsotopes,2009,(67):1057-1062.
    [26] A. A. Pustovalov, V. V. Gusev.63Ni-BASED β-ELECTRIC CURRENTSOURCE. Atomic Energy,2007,(103):939-942
    [27]复旦大学,清华大学,北京大学.原子核物理试验方法,北京:原子能出版社,1997.
    [28]陈盘训,半导体器件和集成电路的辐射效应,北京:国防工业出版社,2005
    [29]赖祖武,抗辐照电子学-辐照效应及加固原理,北京:国防工业出版社,1998.
    [30]张玉明,张义门,罗晋生,SiC、GaAs和Si的高温特性比较,固体电子学研究与进展,1997,(17):305-309.
    [31]尚也淳,张义门,张玉明.6H-SiC反型层电子迁移率的Monte Carlo模拟.电子学报,2001,(29):13-15.
    [32]常远程.SiC肖特基二极管的温度特性,西安:西安电子科技大学材料学院,2001.
    [33]张玉明.SiC材料和器件研究,西安:西安交通大学材料学院,1998
    [34]尚也淳,张义门,张玉明. SiC抗辐照特性的分析.西安电子科技大学学报,1999,(26):807-810