离子注入制备4H-SiC器件及其温度特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)材料具有热导率高、电子的饱和速度大、击穿电压高等优点,是制备高温、大功率、高频等半导体器件的理想材料。由于杂质在SiC中的扩散系数很小,离子注入掺杂是除了外延掺杂以外的唯一可行的方法,离子注入工艺的良好解决有助于SiC材料的进一步推广应用,使SiC器件的制备更加灵活。在高温肖特基二极管(SBD)器件和金属半导体场效应晶体管(MESFET)器件的制备方面,离子注入具有使制备工艺简单、降低成本等优点。目前,国内外在SiC材料的研制、器件的制备方面发展较快,一系列制约SiC材料应用的瓶颈问题正逐步得到解决,但是SiC材料的离子注入工艺仍然存在较多的问题,如注入缺陷的消除、激活率的提高等问题有待于研究解决。在理论方面,随着离子注入制备工艺的使用,器件特性的分析、模型的建立等问题急需加以解决,本研究对离子注入制备4H-SiC器件及其温度特性进行了系统的理论和实验研究,研究内容及结果如下。
     由于界面层、表面态的存在,实际的SBD器件的势垒高度受界面层、表面态的影响很大。目前对这两个参数没有很好的提取方法,严重妨碍着对器件特性的分析和模型的建立。本研究在热电子发射模型的基础上,提出了一种简单提取4H-SiC SBD器件特性参数的理论模型,基于这个模型,对制备的Ti/4H-SiC SBD器件,可以计算得出理想因子、串联电阻、零电场势垒高度、表面态浓度、界面层电容、表面态中性能级等参数。本方法的特点是模型较为简单,可以计算出4H-SiC SBD器件的界面层电容,表面态中性能级等参数,这些参数的提取未见报道。
     SiC材料是宽禁带半导体,杂质的电离能较大,在室温下杂质是非完全离化。对4H-SiC施主掺杂(掺氮)的非完全离化进行了研究,引入电场强度对杂质的离化率的影响(PF效应),通过计算给出了完全离化、非完全离化考虑PF效应和非完全离化不考虑PF效应等情况下的4H-SiC MESFET器件的夹断电压随温度的变化。给出了一种计算4H-SiC MESFET夹断电压的精确模型,考虑杂质的非完全离化、界面态、反向漏电流等的影响。给出了考虑非完全离化时的4H-SiC MESFET栅电容的C-V特性,并计算了温度的影响。
     通过研究离子注入的理论和工艺特性,以及蒙特卡洛分析软件TRIM对氮离子注入4H-SiC的能量、深度和偏差等参数的分析,在注入层的能带理论分析的基础上,提出了计算离子注入4H-SiC MESFET器件的沟道深度的方法,以及离子注入工艺参数,包括能量、剂量的确定方法。给出了两种离子注入的设计方案,即三次、四次离子注入,以及欧姆接触区的离子注入设计。说明了注入掩膜层SiO_2
    
    离子注入制备4H一SIC器件及其温度特性研究
    的厚度的计算方法,并给出了各次离子注入的掩膜层厚度。设计了一种离子注入
    制备4H一SIC SBD器件、MESFET器件的版图,包括:SBD器件、MESFET器件、
    欧姆测试TLM图形、HALL图形、标记等。
     在大量查阅文献并结合国内制备条件的基础上,确定本实验采用的欧姆接触
    和肖特基接触的制备方案。设计了离子注入制备4H一SIC器件的基本工艺流程。
     在国内现有的条件下,研究了离子注入制备4H一SIC欧姆接触、SBD器件和
    MESFET器件,摸索出了可行的制备工艺条件和完整的用离子注入制备SIC器件
    的工艺流程。
     运用欧姆接触测试图形TLM结构对欧姆接触进行了测试,得到了三次和四
    次离子注入的欧姆接触的比电阻、注入层的方块电阻。测试了SBD器件的I一V和
    C一V特性,得到三次和四次离子注入层上习4H一siC SBD的势垒高度、激活率。测
    试了离子注入MESFET器件的I一V特性。在分析实验结果和工艺条件的基础上,
    总结了实验的不足,并给出了改进的措施。
     用热电子发射理论对T订4H一SIC SBD器件的I一V特性进行模拟,得到三次和
    四次离子注入层上T订4H一siC SBD的势垒高度、理想因子和串联电阻等参数。建立
    了离子注入层上制备的Ti/4H一siC SBD器件的C一V特性模型,理论模拟时考虑沟
    道的离子注入分布、器件的非完全离化、PF效应等的影响,得到了与实验曲线符
    合较好的模型。在分析物理模型的基础上,对离子注入4H一siC MESFET器件的I一v
    特性进行了理论分析,得到了器件的解析模型。用模型分析了激活率、衬底掺杂
    浓度、温度等因素对器件特性的影响。
    关键词:碳化硅金属半导体场效应晶体管肖特基二极管表面态
     非完全离化退火离子注入半导体工艺
Silicon carbide (SiC) has outstanding properties such as high thermal conductivity, high saturated electron drift velocity and high electric breakdown field, and is a very promising material to fabricate high-temperature, high-power and high-frequency semiconductor devices. Because thermal diffusion rates of most dopants are very slow in SiC, ions implantation of dopants has been recognized as the only feasible method of selective area doping other than controlled doping during epitaxial-layer growth. Ion-implantation technique can make the fabrication processes of SiC devices more flexibility so that the application of SiC materials becomes a wider range. On the high-temperature devices such as Schottky Barrier Diode (SBD) and Metal Semiconductor Field Effect Transistor (MESFET), the utilizing of ion-implantation can make fabrication processes simpler and the expenses cheaper. At present, researches on SiC material and the fabrication of its devices increase rapidly at home and abroad, many troubles about the application of SiC material have been solved. But the technique of ion-implantation of SiC material still have a lot of problems, such as the removing of defaults after implantation and the increasing of ions activation rate, waiting to be solved. On the theory research, the analysis of characteristics of devices and the model for the ion-implanted devices are urgent to be solved with the utilizing of ion-implantation technique. This study gives a series researches on 4H-SiC devices fabricated by ion-implantation and their temperature characteristics theoretically and experimentally. The research areas and main contributions are as follows.An actual SBD is a metal-semiconductor contact with a thin film and surface states between them, which has an effect on the barrier height. At present no way can extract these two parameters, which has seriously hampered the analysis of characteristics of devices and the building of model. Based on the thermionic emission theory, a simple method to extract parameters of 4H-SiC SBD is given in this study. Using this model, the ideality factor, series resistance, zero-field barrier height, surface state density, interface oxide capacitance and the neutral level of the surface states of Ti/4H-SiC SBD fabricated can be extracted. The method has a character of simplicity and can calculate the interface oxide capacitance and the neutral level of the interface states, that aren't extracted as far as we know.SiC material is a wide bandgap semiconductor and the impurities have high value of ionization energies, so the impurities are not completely ionized at room temperature. The incomplete ionization of donors of nitrogen in 4H-SiC has been studied with the
    
    effects of electric field on the ionization rate (PF effect). The pinch-off voltages of 4H-SiC MESFET under the conditions of complete ionization, incomplete ionization with and without the PF effect are calculated at different temperatures. A more precise model of the pinch-off voltage of 4H-SiC MESFET is given, with the effects of incomplete ionization of dopants, the interface states and the reverse current are considered. The C-V characteristics of gate capacitance of 4H-SiC MESFET are calculated with the effect of incomplete ionization and its temperature characteristics.From the analysis of theory and technique character of ion-implantation and the energies, the implant range and straggle of nitrogen ions in 4H-SiC calculated by TRIM, the method to calculate the channel depth of 4H-SiC MESFET is present based on the energy diagram's analysis of implanted layer. The method of determining parameters of ion-implantation, such as the energies and doses, are also given. Two designs of ion-implantation, such as 3 times and 4 times implantations and the implantation-range of Ohmic contact are given. The method to calculate the thickness of resist mask SiO_2 is given and the thickness of SiO_2 for every implantation is calculated. According the characteristics of ion-implantation and the parameters needed to be extracted, the layout
引文
[1.1] Suzuki H., Prospects for research on SiC and related materials, Key Engineering Materials 1999, Vols. 159-160, pp11-16
    [1.2] Allen S.T. etc.4H-SiC MESFETs on high resistivity substrates with 30GHz finax.53rd Dev.Res.Conf.Charlottesville.VA. 1995
    [1.3] Sriram S. 4H-SiC MESFETs with 42 GHz finax. IEEE EDL. 1996. vol. 17(7). pp369.
    [1.4] Khemka V. etc. Voltage handling capability and microwave performance of a 4H-SiC MESFET-a simulation study.Materials Science Forum. 1998.Vols(264-268). pp961.
    [1.5] Lebedev A.A., High power SiC devices-new result and prospects, High Temperature Electronic Materials, Devices and Sensors conference, 1998, pp29-39
    [1.6] Moore K. etc.Temperature dependent small and large signal performance of 4H-SiC MESFETs. Materials Science Forum. 1998.Vols(264-268).pp957.
    [1.7] 张玉明,张义门,罗晋生,SiC、GaAs和Si的高温特性比较,固体电子学研究与进展,1997.Vol.17(3).pp305-309.
    [1.8] Casady J.B, Johnson R.W, Status of Silicon Carbide as a wide-bandgap semiconductor for high-temperature applications: a review, Solid-St Electron. 1996, vol.39(10),ppl409-1422
    [1.9] Palmour J.W, Singh R, Glass R.C etc, Silicon carbide for power devices, IEEE International Symposium on Power Semiconductor Devices and IC's, 1997.5,pp25-32.
    [1.10]Wurfi J, Recent advances in GaAs devices for use at high temperatures, High-Temperature Electronic Materials, Devices and Sensors Conference, 1998.2,ppl06-116.
    [1.11]Schwierz F. etc.Theoretical investigation of the electrical behavior of SiC MESFETs for microwave power amplification. Materials Science Forum. 1998.Vols(264-268).pp973-976.
    [1.12]Yoon S.P, SiC materials and devices, Semiconductors and semimetals vol52, San Diego: Academic Press, 1998, pp207-212.
    [1.13]Roschke M, Schwierz F, Paasch G etc, Evaluating the three common SiC polytypes for MESFET applications, Materials Science Forum, 1998, vols(264-268).pp965-968.
    
    [1.14]Nilsson H.E, Bertilsson K, Dubaric E etc, Numerical simulation of Field Effect Transistors in 4H and 6H-SiC, 3~rd International Conference on Novel Applications of Wide Bandgap Layers, 2001.1,pp 199-200
    [1.15] Itoh A., Matsunami H.,Analysis of schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices Phys.stat.sol.(a), 1997, vol.162, pp389-408
    [1.16]Svensson SG, Hallen A, Doping of Silicon Carbide by ion implantation, Materials Science Forum, 2001, Vol353-356, pp549-554
    [1.17]Frusin L.G., Nickel ohmic contacts to p- and n-type 4H-SiC,Electron letters, 2001,vol.27(17), ppl092-1093
    [1.18]Crofton J., High temperature ohmic contacts to p-type SiC, Fourth International High temperature electronics conference, 1998, pp84-85
    [1.19]Ramungul N., Charge trapping in nitrogen implanted 6H-SiC N+P junctions, Power Semiconductor Device and IC's, 1997, pp 161-164
    [1.20]Patel R., Phosphorus-implanted high voltage N+P 4H-SiC junction rectifiers, Power Semiconducter Devices and ICs, 1996, ppl 15-118
    [1.21] Tang Y., An implanted emitter 4H-SiC bipolar transistor with high current gain, Device Research Conference, 2000, ppl31-132
    [1.22]Tang Y, The effect of emitter implant and anneal on high-voltage 4H-SiC BJTs, Device Research Conference, 2001, pp209-210
    [1.23] Pan J.N., Thin oxide silicon gate self aligned 6H-SiC MOSFET's fabricated with a low temperature source/drain implant activation anneal, IEEE Electron Device Letter, 1997,18(7), pp349-351
    [1.24]Lan M.P., Effects of nitrogen implant activation on the SiC/SiO_2 interface of 6H-SiC self-aligned NMOSFET's, Electron Device, IEEE Trans. On, 1998, vol.45(2), pp565-567
    [1.25] Spitz J., 2.6 kV 4H-SiC lateral DMOSFET's, IEEE Electron Device Letters, 1998, 19(4), pp100-102
    [1.26] Spitz J., 2.7kV epitaxial lateral power DMOSFETs in 4H-SiC, Device Research Conference, 2000, pp127-128
    [1.27]Shenoy J.N., High voltage double implanted power MOSFET's in 6H-SiC, IEEE Electron Device Letters, 1997, vol. 18(3), pp93-95
    [1.28]Peters D., An 1800V triple implanted vertical 6H-SiC MOSFET, IEEE Trans.Electron Dev., 1999, vol.46(3), pp542-545
    [1.29] Peters D., Electrical performance of triple implanted vertical silicon carbide
     MOSFETs with low on resistance, Power Semiconductor Devices and ICs, 1999, ppl03-106
    
    [1.30]Vathulya V.R., Characterization of inversion and accumulation layer electron transport in 4H and 6H-SiC MOSFETs on implanted P-type regions, IEEE Trans.Electron Dev., 2000, pp2018-2023
    [1.31] Khan I.A., High voltage UMOSFETs in 4H-SiC, Power Semiconductor Devices and ICs, 2002, pp 157-160
    [1.32] Pan J N, Cooper J A, Melloch M R.Thin-oxide silicon-gate self-aligned 6H-SiC MOSFET's fabricated with a low-temperature source/drain implant activation anneal.IEEE EDL, 1997, vol. 18(7): 349.
    [1.33]Vathulya V R, Shang H, White M H.A novel 6H-SiC power DMOSFET with implanted p-well spacer. IEEE EDL, 1999, 20(7): 354-359
    [1.34] Peters D, Schorner R, Friedrichs P et al, An 1800V triple implanted vertical 6H-SiC MOSFET. IEEE ED, 1999, vol.46(3): 542-546
    [1.35]K.Chatty, High voltage lateral RESURF MOSFET's on 4H-SiC, IEEE Electron Device Letters, 21(7), 2000, pp356-258
    [1.36]Banerjee S., Improved implanted RESURF MOSFETs in 4H-SiC, Device Research Conference, 2000, pp 129-130
    [1.37]Ryu S., K.T.Kornegay, J.A.Cooper etc, Monolithic CMOS Digital Integrated Circuits in 6H-SiC Using an Implanted P-Well Process, IEEE.EDL, 1997, Vol 18(5), ppl94-196
    [1.38]Ryu Sei-Hyung,Kevin T.Kornegay, A.Cooper etc, Digital CMOS ICs 6H-SiC Operating on a 5-V Power Supply, IEEE.Trans.ED,Vol 1998, vol.45(l), pp45-53
    [1.39]Lam M.P., Kornegay K.T., Recent progress of submicron CMOS using 6H-SiC for smart power applications, IEEE Trans.Electron.Dev., 1999, vol46(3), pp546-553
    [1.40]Itoh A., Excellent reverse blocking characteristics of high voltage 4H-SiC schottky rectifiers with Boron implanted edge termination, Electron Device Letters, 1996,ppl39-141
    [1.41]Zappe S., Advanced SPICE-modelling of 6H-SiC-JFETs including substrate effects, Fourth international high temperature electronics conference, 1998, pp261-264
    [1.42]Zhao J.H., Vertical power JFET in 4H-SiC with an implanted and trenched gate, Semiconductor device research symposium, 2001, pp235-238
    [1.43] Zhao J.H., 1710-V 2.77-mQcm2 4H-SiC trenched and implanted vertical junction field effect transistors, IEEE Electron Device Letters, 2003,24(2), pp81-83
    
    [1.44]Agarwal A.K., Ion implanted static induction transistors in 4H-SiC, Device Research Conference Digest, 1998, pp94-95
    [1.45] Rao M. V., Maturing ion-implantation technology and its device applications in SiC, Semiconductor Device Research Symposium, 2001, pp519-522
    [1.46]Rao M.V., Tucker J., Holland O.W., Donor ion-implantation doping into SiC, J.Electron.Mater., 1999, vol28(3), pp334-340
    [1.47]Kaindl W., Lades M., Kaminski N. etc, Experimental characterization and numerical simulation of the electrical properties of nitrogen, aluminum and boron in 4H/6H-SiC, J.Electron.Mater, 1999, vol28(3), pp 154-160
    [1.48]Tone K., Zhao J.H., A comparative study of C plus Al complatation and Al implantation in 4H- and 6H- SiC, IEEE Trans.Electron.Dev., vol46(3), pp612-618
    [1.49]Capano M A, Ryu S, Cooper J A et al. Surface roughening in ion implanted 4H-silicon carbide., J.Electron.Mater, 1999, vol.28(3), pp214-218
    [1.50]Khemka V., Patel R., Ramungul N., Characterization of phosphorus implantation in 4H-SiC, J.Electron.Mater., 1999, vol28(3), ppl67-174
    [1.51]Capano M.A., Ryu S., Melloch M.R., Dopant activation and surface morphology of ion implantation 4H- and 6H- silicon carbide, J.Electron.Mater., 1998, vo127(4), pp370-376
    [1.52]Kimoto T., Takemora O., Matsunami H., Al and B implantations into 6H-SiC epilayers and application to PN junction diodes, J.Electron.Mater., 1998, vol27(4), pp358-364
    [1.53]Ohno T., Onose H., Sugawara Y, Electron microscopic study on residual defects of Al or B implanted 4H-SiC, J.Electron.Mater., 1999, vol28(3), ppl80-l85
    [1.54]Ueno K, Asai R, Tsuji T.4H-SiC MOSFET's utilizing the H2 surface cleaning technique. IEEE EDL, 19(7): 244.
    [1.55]Afanas'ev V V, Stesmans A, Bassler M et al. Elimination of SiC/SiO2 interface states by preoxidation ultraviolet-ozone cleaning.Appl.Phys.Lett, 1996, 68(15), pp2141-2167
    [1.56]Ramachandran V, Brady M F, Smith A S et al. Preparation of atomically flat surfaces on silicon carbide using hydrogen etching. J.Electron.Mater, 1998, vol.27(4): 308.
    [1.57]Handy E.M., Rao M.V., Jones K.A., Effectiveness of A1N encapsulant in annealing ion-implanted SiC, J.Appl.Phys., 1999, vo!86(2), pp746-751
    [1.58]Chakrabarti P., Shrestha NX., Srivastava S. etc, An Improved Model of Ion-Implanted GaAs OPFET, IEEE.Trans.ED., 1992,Vol39(9):2050-2059
    
    [1.59] Suzuki K., Sudo R., Fendel T., Compact and comprehensive database for ion-implanted As profile, IEEE Trans. Electron. Dev., 2000, vol47(1), pp44-49
    [2.1] 李名復,半导体物理学,北京:科学出版社,1991
    [2.2] Streetman B. G., Banerjee S., Solid State Electronic Devices, 5th edition, New Jersey: Prentice Hall, 2000,
    [2.3] Card H C, Rhoderick E H, Studies of tunnel MOS diodes—interface effects in silicon schottky diodes, 1971, J. Phys. D: Appl. Phys., Vol4, pp1589-1601
    [2.4] Bardeen J, Phys. Rev. 1947, Vol71, p717
    [2.5] Andrews J M, Lepselter M P, Reverse current-voltage characteristics of metal silicide schottky diodes, 1970, Solid-St. Electron, Vol13, pp1011-1023
    [2.6] Zhu Y, Ishimaru Y, Takahashi N, Correlation between current-voltage and capacitance-voltage characteristics of schottky barrier diodes, IEEE Trans. Electron. Dev., 1998, Vo145(9), pp2032-2036
    [2.7] Barus M, Donoval D., Analysis of Ⅰ-Ⅴ measurements on CrSi2-Si schottky structures in a wide temperature range, Sol. St. Electron, 1993, Vo136(7), pp969-974
    [2.8] 方俊鑫,固体物理学(下册),上海:上海科技出版社,1981
    [2.9] Lou Y. S., Wu C. Y., A self-consistent characterization methodology for schottky barrier diodes and Ohmic contacts, IEEE Trans. Electron. Dev., 1994, Vo141(4), pp558-566
    [2.10] Chattopadhyay P., Capacitance technique for the determination of interface state density of metal semiconductor contact, Solid-State Electronics, 1996, Vo139(10), pp1491-1493
    [2.11] Ahaitouf A, Losson E, Bath A, On the determination of interface state density in n-InP schottky structure by current-voltage measurements comparison with DLTS results, 2000, Solid-St. Electron, Vo144, pp515-520
    [2.12] Maeda K., Ikoma H., Sato K., Current voltage characteristics and interface state density of GaAs Schottky barrier, Appl. Phys. Lett., 1993, Vol62(20), pp2560-2562
    [2
    
    [2.13] Turut A., Yalcin N., Saglam M., Parameter extraction from non-ideal C-V characteristics of a Schottky diode with and without interfacial layer, Solid-State Electronics, 1992, Vol35(6), pp835-841
    [2.14] 陈治明,王建农,半导体器件的材料物理学基础,北京:科学出版社,1999
    [2.15] Sze S M, Physics of Semiconductor Devices, New York: Wiley, 1981
    [2.16] Wu C. Y., Interfacial layer-thermionic diffusion theory for the Schottky barrier diode, J. Appl. Phys., 1982, Vol53(8), pp5947-5950
    [2.17] Padovani F. A., Stratton R., Field and thermionic-field emission in Schottky barriers, Solid-St. Electron., 1966, vol9, pp695-707
    [2.18 ]Crowell C. R., Sze S. M., Current transport in metal-semiconductor barriers, Solid-St. Electron.,1966, vo19, pp1035-1048
    [2.19] 常远程,SiC肖特基二极管的温度特性,西安:西安电子科技大学硕士论文,2001
    [2.20] 张玉明,SiC材料和器件研究,西安;西安交通大学博士论文,1998
    [2.21] Crowell C R, Roberts G I, Surface state and interface effects on the capacitance voltage relationship in schottky barriers, 1969, J. appl. Phys., Vol40, pp3726-3730
    [2.22] Maeda K, Umezu I, Nonideal J-V characteristics and interface states of an a-Si: H Schottky barrier, J. Appl. Phys., 1990, Vol68(6), pp2856-2867
    [2.23] Dhar S., Balakrishnan V. R., Kumar V., etc, Determination of energetic distribution of interface states between gate metal and semiconductor in sub-micron devices from current-voltage characteristics, IEEE Trans. Electron. Dev., 2000, Vol47(2), pp282-287
    [3.1] Kaindl W, Lades M, Kaminski N, Experimental characterization and numerical simulation of the electrical properties of nitrogen, aluminum and boron in 4H/6H-SiC, J. Electron. Mater. 1999, 28, pp154-160
    
    [3.2] Pensl G, Choyke W J, Electrical and optical characterization of SiC, Physica B: Condensed Matter, 1993, Vol 185(1-4), pp264-283
    [3.3] Smith S R, Evwaraye A O, Mitchel W C, Shallow acceptor levels in 4H- and 6H-SiC, J. Electron. Mater. 1999, 28, pp 190-195
    [3.4] Shang Y C, et al., 2000 Acta Phys. Sin. 49 1786(in Chinese)
    [3.5] 张玉明,SiC材料和器件研究,西安:西安交通大学博士论文,1998
    [3.6] Pelaz L., Orantes J. L., Vincente J. etc, The Poole-Frenkel effect in 6H-SiC diode characteristics, IEEE Trans. Electron. Dev., 1994, Vol41 (4), pp587-591
    [3.7] Royet A. S., Ouisse B., Cabon B. etc, Self-heating effects in silicon carbide MESFETs, IEEE Trans. Electron. Dev., 2000, Vo147(11), pp2221-2227
    [3.8] Tseng H H, Wu C Y. A simple technique for measuring the interface-state density of the Schottky barrier diode using the current-voltage characteristics. J. Appl. Phys., 1987, vol61 (1), pp299-304.
    [3.9] Tseng H H, Wu C Y. A simple interfacial-layer model for the nonideal Ⅰ-Ⅴ characteristics of the Schottky-barrier diode. Solid-St. Electron., 1987, vol30(4), pp383-390.
    [3.10] Weitzel C E, Palmour J W, Carter C H. 4H-SiC MESFET with 2.8 W/mm power density at 1.8 GHz. IEEE Electron Device Lett., 1994, vol15(10), pp406-408.
    [3.11] Wong H, Liang C, Cheung N W. On the temperature variation of threshold voltage of GaAs MESFET's. IEEE Tran. Electron Device, 1992, vol39(7), pp1571-1577.
    [3.12] Itoh A, Matsunami H. Analysis of Schottky barrier heights of metal/SiC Contacts and its possible application to high-voltage rectifying devices. Phys. Stat. Sol.(a),1997,162, pp389-408.
    [3.13] Schomer R, Friedrichs P, Peters D. Significantly improved performance of MOSFET's on silicon carbide using the 15R-SiC polytype. IEEE Electron Device Lett., 1999, vol20(5), pp241-244.
    [3.14] Schoen K J, Woodall J M, Cooper J A. Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers. IEEE Tran. Electron Device, 1998, vo145(7), pp 1595-1604.
    
    [4.1] Moore K E, Weitzel C E, Nordquist K J, et al. 4H-SiC MESFET with 65.7% power added efficiency at 850 MHz, IEEE Electron Device Lett., 1997, voll8(2),pp69-70
    [4.2] Moore K, Bhatnagar M, Weitzel C, et al. Temperature dependent small- and large- signal performance of 4H-SiC MESFET's, Materials Science Forum, 1998,264-268,pp957-960
    [4.3] Siriex D, Noblanc O, Barataud D, et al. A CAD-oriented nonlinear model of SiC MESFET based on pulsed I(V),pulsed S-parameters measurements, IEEE Trans.Electron Devices, 1999, 46(3),pp580-584
    [4.4] Sze S M, Physics of Semiconductor Devices, Now York: Wiley, 1981
    [4.5] Ruff M, Mitlehner H, Helbig R, SiC devices: physics and numerical simulation, IEEE Trans.Electron Devices, 1994,4 l(6),pp 1040-1054
    [4.6] Wright N G, Johnson C M, O'Neill A G, Cell geometry optimisation of 4H-SiC power UMOSFETs by electrothermal simulation, Solid-St.Electron, 1999,43 ,pp515-520
    [4.7] Seshadri S, Eldridge G W, Agarwal A K, Comparison of the annealing behavior of high-dose nitrogen-,aluminum-,and boron-implanted 4H-SiC, Appl.Phy.Lett., 1998,72(4),pp2026-2028
    [4.8] Deamaley G., Freeman J.H., Nelson R.S. etc, Ion implantation, Amsterdam: North-Holland publishing company, 1973, pp20-42
    [4.9] Mahajan S., Harsha K.S., Principles of growth and processing of semiconductors, New York: McGraw-Hill, 1999, pp378-407
    [4.10] Rao M.V., Tucker J., Holland O.W., Donor ion-implantation doping into SiC, J.Electron.Mater., 1999, vol28(3), pp334-340
    [4.11]Kaindl W, Lades M., Kaminski N. etc, Experimental characterization and numerical simulation of the electrical properties of nitrogen, aluminum and boron in 4H/6H-SiC, J.Electron.Mater., 1999, vol28(3), pp 154-160
    [4.12]Stief R.,Range studies of Aluminum, Boron, and Nitrogen implants in 4H-SiC,Fifth international high temperature electronics conference, 1999, pp760-761
    [4.13] Rubia T.D., Gilmer G.H., Structural transformations and defect production in ion implanted silicon: a molecular dynamics simulation study, Phys.Rev.Lett., 1995, vol74,pp2507-2510
    [4.14] Bratschun A., The application of rapid thermal processing technology to the
     manufacture of integrated circuit-an overview, J. Electron. Mater., 1999, vol28(12), pp1328-1332
    [4
    
    [4.15] Handy E M, Rao M V, Effectiveness of AIN encapsulant in annealing ion-implanted SiC, J. Appl. Phy., 1999, 86(7), pp746-751
    [4.16] 北京市辐射中心,北京师范大学低能核物理研究所离子注入研究室,离子注入原理与技术,北京:北京出版社,1982
    [4.17] Shur M., Physics of semiconductor devices, New Jersey: Prentice Hall, 1990, pp204-217
    [4.18] Cox R. H., Strack H., Ohmic contacts for GaAs devices, Solid-St. Electron., 1967, vol10, pp1213-1218
    [4.19] Kuphal E., Low resistance ohmic contacts to n- and p- InP, Solid-St. Electron., 1981, vol24, pp69-78
    [4.20] Proctor S. J., Linholm L. W., A direct measurement of interfacial contact resistance, IEEE Electron. Dev. Lett., 1982, vol3(10), pp294-301
    [4.21] Reeves G. K., Specific contact resistance using a circular transmission line model, Solid-St. Electron., 1979, vol23, pp487-490
    [4.22] Berger H. H., Models for contacts to planar devices, Solid-St. Electron., 1972, vol 15, pp 145-158
    [4.23] 张玉明,罗晋生,张义门,n 型6H-SiC体材料欧姆接触的制备,半导体学报,1997,18(9),pp718-720
    [4.24] Chaddha A K, Parsons J D, Kruaval G B, Thermally stable low specific resistance TiC Ohmic contacts to n-type 6H-SiC, Appl. Phys. Lett., 1995, 166(6), pp760-762
    [4.25] Lundberg N, Ostling M, Thermally stable low ohmic contacts to p-type 6H-SiC using Cobalt Silicides, Solid-State Electron, 1996, 39(11), pp 1559-1565
    [4.26] Oder T N, Williams J R, Bozack M J, et al. High Temperature Stability of Chromium Boride Ohmic Contacts to p-Type 6H-SiC, J. Electron. Mater., 1998, 27(4), pp324-329
    [4.27] Iliadis A A, Andronescu SN, Yang W, et al. Pt and W Ohmic Contacts to p-6H-SiC by Focused Ion Beam Direct-Write Deposition, J. Electron. Mater., 1999, 28(3), pp136-140
    [4.28] Kassamakova L, Kakanakov R D, Kassamakov ⅠⅤ , et al. Temperature Stable Pd Ohmic Contacts to p-Type 4H-SiC Formed at Low Temperatures, IEEE Trans. Electron Device, 1999, 46(3), pp605-611
    [4.29] Lee S K, Zetterling C M, Ostling M, et al. Low resistivity ohmic titanium carbide contacts to n-and p-type 4H-silicon carbide, Solid-State Electron, 2000, 44, pp 1179-1186
    [4
    
    [4.30] Itoh A, Matsunami H, Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices, Phys. Stat. Sol.(a), 1997, 162, pp389-408
    [4.31] Waldrop J R, Grant R W, Wang Y C, Metal Schottky barrier contacts to alpha 6H-SiC, J. Appl. Phys., 1992, 72(10), pp4757-4760
    [4.32] Bhatnagar M, McLarty P K, Baliga B J, Silicon Carbide High-Voltage(400V) Schottky Barrier Diodes, IEEE. EDL., 1992, 13(10), pp501-503
    [4.33] Waldrop J R, Grant R W, Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H-SiC: crystal face dependence, Appl. Phys. Lett., 1993, 62(21), pp2685-2686
    [4.34] Lundberg N, Ostling M, Formation and characterization of cobalt 6H-silicon carbide Schottky contacts, Appl. Phys. Lett., 1993, 63(22), pp3069-3071
    [4.35] Bhatnagar M, Baliga B J, Kirk H R, Effect of surface inhomogeneities on the electrical characteristics of SiC Schottky contacts, IEEE Trans. Electron Devices, 1996, 43 (1), pp 150-156
    [4.36] Im H J, Kaczer B, Pelz J P, Ballistic electron emission microscopy study of Schottky contacts on 6H- and 4H-SiC, Appl. Phys. Lett. 1998, 72(7), pp839-841
    [4.37] Li B, Cao L, Zhao J H, Evalution of damage induced by inductively coupled plasma etching of 6H-SiC using Au Schottky barrier diodes, Appl. Phy. Lett., 1998, 73(5), pp653-655
    [4.38] 张玉明,张义门,罗晋生,SiC肖特基势垒二极管的研制,半导体学报,1999,20(11),pp1040-1042
    [4.39] Saxena V, Su J N, Steckl A J, High voltage Ni and Pt SiC Schottky diodes utilizing metal field plate termination, IEEE Trans. Electron Devices, 1999, 46(3), pp456-463
    [4.40] Defives D, Noblanc O, Dua C, Barrier inhomogeneities and electrical characteristics of Ti/4H-SiC Schottky rectifiers, IEEE Trans. Eleetron Devices, 1999, 46(3), pp449-454
    [4.41] Lee S K, Zetterling C M, Ostling M, Schottky diode formation and characteriz-ation of titanium tungsten to n-and p-type 4H silicon carbide, J. Appl. Phy., 2000, 87(11), pp8039-8044
    [5.1] Ruska W. S., Microelectronic processing, New York: McGraw Hill, 1987
    
    [5.2] Crofton J., Porter L.R., Williams J.R., The physics of ohmic contacts to SiC, Phys. Stat. Sol.(b), 1997, vol202, pp581-603
    [5.3] Itoh A., Matsunami H., Analysis of schottky barrier heights of metal SiC contacts and its possible application to high-voltage rectifying devices, Phys. Stat. Sol.(a), 1997, vol 162, pp389-408
    [5.4] 陈治明,王建农,半导体器件的材料物理学基础,北京:科学出版社,1999,PP282-288
    [5.5] Svensson B. G, Hallen A, Linnarsson M. K etc, Doping of Silicon Carbide by ion implantation, Materials Science Forum, 2001, vols. 353-356, pp549-554.
    [6.1] 艾罗拉N.(奥地利),张兴(翻译),用于VLSI模拟的小尺寸MOS器件模型理论与实验,北京:科学出版社,1999,pp5-15
    [6.2] Nilsson P. A., Saroukhan A. M., Svedberg J.O. etc, Characterization of SiC MESFETs on conducting substrates, Materials Science Forum, 2000, vols 338-342, pp1255-1258
    [6.3] Roschke M., Schwierz F., Paasch G.. etc, Evaluating the three common SiC polytypes for MESFET applications, Materials Science Forum, 1998, vols264-268, pp965-968
    [6.4] Tsap B., Silicon carbide microwave field-effect transistor: effect of fielf dependent mobility, Solid-State Electronics, 1995, vol38(6), pp1215-1219
    [6.5] Ytterdal T., Moon B. J., Fjeldly T. A. etc, Enhanced GaAs MESFET CAD model for a wide range of temperatures, IEEE Trans. Electron. Dev., 1995, vol42(10), pp 1724-1734
    [6.6] Royet A. S., Ouisse B., Cabon B. etc, Self-heating effects in silicon carbide MESFETs, IEEE Trans. Electron. Dev., 2000, vol47(11), pp2221-2227
    [6.7] Itoh A., Matsunami H., Analysis of schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices, Phy. Stat. Sol.(a), 1997, vol162, pp398-408
    [6.8] Saxena V., Jian N., Stechkl A.J., High-voltage Ni- and Pt-SiC schottky diodes utilizing metal field plate termination, IEEE Trans. Electron. Dev., 1999, vol46(3), pp456-463
    [6.9] Card H. C., Rhoderick E. H., Studies of tunnel MOS siodes-interface effects in silicon schottky diodes, 1971, J. Phys. D: Appl. Phys. vol4, pp1589-1601
    [6.10] Ohno T., Onose H., Sugawara Y. et al, Electron microscopic study on residual defects of Al or B implanted 4H-SiC, J. Electron. Mater. 1999, vol28 (3), pp 180-185
    
    [6.11]Capano M.A., Ryu S., Melloch M.R. et al, Dopant activation and surface morphology of ion implantation 4H- and 6H- silicon cabide, J. Electron. Mater., 1998, vol27 (4), pp370-376
    [6.12]Capano M.A., Ryu S., Cooper J.A. et al, Surface roughening in ion implanted 4H-silicon carbide, J. Electron. Mater., 1999, vol28 (3), pp214-224
    [6.13] Wang J.J., Lambers E.S., Pearton S.J. et al, ICP etching of SiC, Solid-State Electron., 1998,42 (12), pp2283-2288
    [6.14]Constantinidis G., Kuzmic J., Michelakis K. et al, Schottky contacts on CF4/H2 reactive ion etched β-sic, Solid-State Electron., 1998, vol42 (2), pp253-256
    [6.15]Turut A., Yalcin N., Saglam M., Parameter extraction from non-ideal C-V characteristics of a schottky diode with and without interfacial layer, Solid-State Electron., 1992, vol35(6), 835-841
    [6.16]Hudait M.K., Krupanidhi S.B., Effects of thin oxide in metal-semiconductor and metal-insulator-semiconductor epi-GaAs Schottky diodes, Solid-State Electron. 2000, vol44(6), pp 1089-1097
    [6.17]S. M. Sze, Physics of Semiconductor Devices, New York : Wiley, 1981
    [6.18] Ruff M., Mitlehner H., Helbig R., SiC devices:physics and numerical simulation, IEEE Trans.Electon Devices, 1994, vol.41, ppl 040-1054
    [6.19]Morkoc H., Strite S., Gao G. B. ect, Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies, J Appl.Phys., 1994, vol78, pp 1363-1398
    [6.20] Roschke M., Schwierz F., Paasch G.., Evaluating the three common SiC polytypes for MESFET Applications, Materials Science Forum, 1998, vols264-268, pp965-968
    [6.21] Wright N. G., Johnson C. M., O'Neill A. G., Cell geometry optimisation of 4H-SiC power UMOSFETs by electrothermal simulation, Solid-St.Electron., 1999, vol.43 pp515-520
    [6.22] Pelletier J., Gervais D., Pomot C, Application of wide-gap semiconductors to surface ionization:work functions of A1N and SiC single crystals, J.Appl.Phys., 1984, vol.55, pp994-1002
    [6.23] Moore K., Bhatnagar M., Weitzel C, Temperature dependent small- and large- signal performance of 4H-SiC MESFET's, Materials Science Forum, 1998, vols264-268, pp957-960