离心压缩机轴位移故障自愈调控及密封改进增效技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文基于机械装备复杂系统故障自愈原理,针对石油化工等过程工业的心脏设备高压离心压缩机运转过程中存在由于转子轴向位移过大而引起的联锁停车问题和压缩机内泄漏大等重大问题,提出了轴位移故障自愈调控系统以及平衡盘密封改进方案,并对此进行了系统的理论与技术可行性论证,为解决石化以及其它过程设备的长周期与高效率运转提供了具有创新性的理论和技术基础。
     高压离心压缩机是很多大型过程工业的心脏设备,其安全可靠性是整个过程装置安全可靠性中最关键的一个环节;压缩机又是高耗能装置,其运行效率往往是决定产品能耗的主要因素。从上世纪60年代开始,国际工程科技界开发了设备故障监测诊断技术,在工业企业逐步推行预知维修和智能维修,并推广采用紧急停车联锁系统。大型过程装置由个别设备发生故障而引起的非计划停车,不但会给企业带来巨大的经济损失以及对环境的污染,而且由于停车后装备的动态信息立即消失,很不利于对装备故障的判断及消除,往往导致在停车检修后重新启动时又有可能带来新的故障。
     但是,根据系统故障自愈原理,某些过程设备的故障是不必停车就可以“治愈”的。具体到离心压缩机轴位移故障发生的原因和条件,本文指出主要是:离心压缩机转子的残余轴向力的影响因素众多,一方面在设计阶段的计算不易准确,导致压缩机固有的可靠性低;另一方面在压缩机运行过程中,由于工况的波动以及自身结构参数的变化往往会使残余轴向力增大,从而导致轴位移故障。在故障自愈理论的指导下,本文提出了轴位移故障自愈调控系统;基于计算流体力学理论和计算机数值分析技术,在本文中开发的转子轴向推力精确分析技术可以精确计算多种因素对转子轴向推力的影响,并且可以证明通过动态调整转子的残余轴向力使得转子保持轴向稳定是可行的;在本文中提出了将平衡盘的迷宫密封结构改变为迷宫-干气组合密封结构,不但有利于动态调整转子的残余轴向力,还可使压缩机的效率提高4%;论文还进行了基于流-热-固耦合的干气密封可靠性分析。论文的主要研究内容和具有技术创新性的研究成果如下:
     (1)阐述了故障自愈理论并提出轴位移故障自愈调控系统。基于故
Based on the principles of Fault Self-Recovering (FSR) for complex mechanical system, and aiming at the solutions of problems, which are existing during operation of high-pressure centrifugal compressors, such as the interlock shutdown of the whole set of processing facilities caused by rotor's excessive axial displacement, and the lower energy-efficiency caused by large internal leakage through the balance drum seal, in this dissertation an axial displacement fault self-recovering system and a balance drum sealing improvement are presented, systematically analyzed and demonstrated. These studies could solve the above two important problems and provide theoretical and technical foundations for processing facilities to work with longer cycles and higher energy-efficiency.
    High-pressure centrifugal compressor is the key device in most process industries. Its reliability is the controlling factor for the reliability of the whole set of processing facilities to continuously work with long period. And also, its energy- efficiency is the determinative factor of product cost because of its high-energy consumption ratio. In 1960's, equipment monitoring and diagnosing technologies were developed, and prognoses maintenance and intelligent maintenance were introduced into industry use. Interlock emergency shutdown was widely used. The non-planned emergency shutdown of processing facilities caused by a fault in an individual machine will result in heavy economic loss and environment pollution. Moreover, when a machine is shutdown, most important dynamic information disappears resulting in big difficulties in fault diagnosis and fault recovery. Also, after an emergency shutdown, new fault may emerge during the next start-up.
    However, based on the principles of FSR, many machine faults can be cured without the necessity to shutdown the machine. As for the conditions under which a rotor axial displacement fault will develop in a centrifugal compressor, it is pointed out in this dissertation that it is the dynamic change
引文
[1] Hartmut Krain. Review of Centrifugal Compressor's Application and Development[J]. Journal of Turbomachinry, 2005, 127:25-34
    [2] 高金吉.装备系统故障自愈原理研究[J],中国工程科学,2005,7(5):43-48
    [3] Gao Jinji, Jiang Zhinong. Research on Fault Self-recovery Engineering[A] IMS2004 proceedings s2-c, Aries France 2004
    [4] Michael Krok, Kai Goebel. Prognostics for Advanced Compressor Health Monitoring[A]. Proc. Of SPIE: System Diagnosis and Prognosis-Security and Condition Monitoring Issues[C] Ⅲ, 2003, 1-12
    [5] TABATA Hifumi, SANO Mitsuo. Study of High Efficiency Turbo Compressor. Ishikawajima-Harima Engineering Review, 2004, 44(5) :301-305.
    [6] 钱学森.建立系统学[M].太原:山西人民出版社,2001
    [7] 思格尔.需要新的医学模型:对生物医学的挑战[J].医学与哲学,1980,(3):88
    [8] 沈禄庚.系统科学概要[M].北京:北京广播学院出版社,2000
    [9] 高金吉.未来装备医工程思维[J].中国工程科学,2003,5(12):30-35
    [10] 郭保全,候宏花,潘玉田.智能材料和结构的应用及展望[J].科技情报开发与经济,2005,15(6):131-132
    [11] 徐滨士,张伟,刘世参,等.现代装各智能自修复技术[J].中国表面工程,2004,17(1):1-4
    [12] 陶宝祺,智能材料 结构[M].北京:国防工业出版社,1997
    [13] 权渭锋,毛剑琴,李超.智能结构与智能控制在振动主动控制中的应用[J].信息与电子工程,2004,2(3):232-237
    [14] 姚熊亮,顾玉钢,杨志国.压电类智能结构在船体振动控制方面的应用研究[J].哈尔滨工程大学学报,2004,25(6):695-699
    [15] 于勇,施斌,徐洪钟等.基于仿生学的建筑物智能结构系统初探[J].防灾减灾工程学报,2004,24(4):412-416
    [16] Paul C.Hanlon著,郝点译.压缩机手册[M].北京,中国石化出版社,2003
    [17] Heinz K. Muller, Bernard S. Nau, 程传庆译.流体密封技术—原理与应用[M].北京:机械工业出版社,2002
    [18] Stephen L. Ross, Raymond F. Beckinger. Compressor Seal Selection and Justification[J]. Precedings of the Thirty-second Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2003, 157-166
    [19] 黄钟岳,王晓放.透平式压缩机[M].北京,化学工业出版社,2004
    [20] Moor, J. J., Walker, S. T., and Kuzdzal, M. J., Rotordynamic Stability Measurement During Full-Load, Full-Pressure Testing of a 6000PSI Rejinction Centrifugal Compressor[J]. Precedings of the Thirty-first Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2002, 29-38
    [21] Stephen L. Ross. M. Theodore Gresh, Robert M. Kranz. Compressor Seals for Hydrogen Recycle Service[J]. Precedings of the Thirty-first Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2002, 29-38
    [22] Ed Wilcox, David P. O'Brien. Determing the Root Causes of Subsynchronous Instability??Problems in Two Centrifugal Compressors[J]. Precedings of the Thirty-second Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2003,157-166
    
    [23] John Stahely, Mechanical Upgrades to Improve centrifugal compressor operation and reliability[J]. Precedings of the Thirty-second Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2003,157-166
    
    [24] John K.Whalen, Eduardo Alvarez, Lester P.Palliser. Thermoplastic Labyrinth Seals For Centrifugal Compressor[J]. Precedings of the Thirty-third Turbomacinery Symposium, Turbomachinery Laboratory, Texas A&M University, College Station, Texas, 2004,113-126
    
    [25] Stahley,J.S.. Design, Operation and Maintenance Considerations for Improved Dry Gas Seal Reliability in Centrifugal Compressors [J]. Preceedings of the Thirtieth Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M university, Collage Station, Texas, 2001, 203-207
    
    [26] 彭建.螺旋槽干气密封的优化设计[J], 流体机械, 1995, (23):9-12
    
    [27] Gero L.R., Ettles C.M.M., An Evaluation of Finite Difference and Finite Element Methods for The Solution of The Reynolds Equation[J]. ASLE Transactions, 1986, 29, 166-172
    [28] James D.D., Potter A.F., Numerical Analysis of the Gas Lubricated Spiral Groove Thrust Bearing Compressor[J]. ASME Jour, of Lubr. Tech., 1967, 439-444
    [29] Kowalski C.A., Basu P., Reverse Rotation Capability of Spiral Groove Gas Face Seals[J]. Tribology Transactions, 1995, 38, 549-556
    [30] Zuk J., Renkel H.E. Numerical Solutions for the Flow and Pressure Fields in an Idealized Spiral Grooved Pumping Seal[J]. Proc. of Fourth International Conference on Fluid Sealing, 1970, 290-301
    [31] Murata S., Miyake Y., Kawabata N.. Exact Two Dimensional Analysis of Circular Disk Spiral Groove Bearing[J]. ASME Jour, of Lubr. Tech., 1979, 101, 424-430
    [32] Murata S., Miyake Y., Kawabata N., Exact Two Dimensional Analysis of Circular Disk Spiral Groove Bearing( Part II)[J]. ASME Jour, of Lubr. Tech., 1979, 101. 431-436
    [33] Walowit J.A., Pinkus O., Analysis of Face Seals With Shrouded Pockets [J]. ASME Jour, of Lubr. Tech., 1982, 104, 262-230
    [34] Ikecuchi K., Mori H., Nishida T. A., Face Seal with Circumferential Pumping Grooves and Rayleigh Steps[J]. ASME Jour, of Tribology, 1988, 110, 313-319
    [35] Lipschitz A., Basu P., Johnson R.P.. A Bi_Directional Gas Thrust Bearing[J]. Tribology Transactions, 1991, 34, 9-16
    [36] Basu P.. Analysis of a Radial Groove Gas Face Seal[J]. Tribology Transactions, 1992, 35, 11-20
    [37] Bonnearu D, Huitric J, Tourneri B. Finite Element Analysis of Groove Gas Thrust Bearings and Groove Gas Face Seals[J]. ASME Journal of Tribology, 1993,115:348-354
    [38] Clienicke J., Launert A., Schlums H. Gasgeschmierte Axialgleitringdicht_ ungen fur hohe p.v_Werte[J].Konstruktion, 1994, 46, 17-23
    [39] Kowalski C.A., Basu P., Reverse Rotation Capability of Spiral Groove Gas Face Seals[J]. Tribology Transactions, 1995, 38, 549-556
    [40] Shifeng Wu, Ray Clark. Positioning of Hydrodynamic Lift Features on Non-Contacting??Mechanical Gas Seal Rings[J]. Tribology Transactions, 2000, 43, 498-506
    [41] Kudriavtsev. Vladimir, Braun M. Jack, Hendricks, Robert C. Computational analysis of 3D fluid flow and pressure in a spiral groove seal[A], ASME Vessels and Piping Conferennce[C], Atlanta, GA, United States, Jul 22-26 2001
    [42] Bauer, F. Hass, W. PTFE lip seals with spirl groove-The penetration behavior, Hydronamic flow back pumping mechanisms[A]. 18th International Conference of Fluid Sealing[C], Antwerp, Belgium. 2005, 10:12-14
    [43] Brad A. Miller, Itzhak Green. Numerical Techniques for computing Rotordynamic Properties of Mechanical Gas Face Seals[J]. ASME Journal of Tribology, 2002, 124(4) :755-761
    [44] Brad A. Miller, Itzhak Green. Numerical Formulation for the Dynamic Analysis of Spiral-Grooved Gas Face Seals[J]. ASME Journal of tribology, 2001, 123(2) :395-403
    [45] 王美华.可控膜机械密封机理和特性研究[D]..上海:上海交通大学博士论文,1990
    [46] 王建荣,顾永泉,陈弘.圆弧槽气体润滑非接触式机械密封的特性.流体工程,1991,(3):1-6
    [47] 蔡文新,朱报祯.螺旋槽气体密封的研究[J].流体机械,1994,22(9):2-6
    [48] 彭建,左孝桐,顾永泉.螺旋槽干气密封的优化设计[J].流体机械,1995,23(3):24-27
    [49] 胡丹梅,吴宗祥.直线槽端面气体密封分析计算[J].流体机械,1996,24(9):16-22
    [50] 杨梦辰.平面螺旋槽气体止推轴承的研究[J].机械设计,1998(2):9-11
    [51] 刘雨川,徐万孚,陈国林等.端面气膜密封的高性能端面结构[J].航空学报,2000,21(2):187-190
    [52] 张国渊,浅槽式螺旋槽密封性能数值研究[D].西安:西北工业大学硕士学位论文,2003
    [53] 李双喜.螺旋槽气体端面密封稳态特性的有限元分析[D].北京:北京化工大学硕士学位论文,2003
    [54] 陈志,李建明.干气密封的流动数值模拟[J].四川大学学报,2005,37(3):133-137
    [55] 将小文.螺旋槽干气密封数值模拟及其槽形参数优化[D].江苏:南京工业大学硕士学位论文,2004
    [56] 南小妮.螺旋槽气体端面密封的三维稳态数值分析[D].北京:北京化工大学学报,2005
    [57] 徐万孚,刘雨川,李福春等.用于高(焦) 炉煤气风机的非接触螺旋槽干气密封的设计与分析[J].机械工程学报,2005,56(8):195-197
    [58] 潘广斌,刘楠.干气密封灾循环氢压缩机上的应用[J].流体机械,2005,33(10):48-50
    [59] 马栖林.干气密封在离心机上的应用[J].林业机械与木工设备,2005,33(4):42-43
    [60] 王学军,张海涛.干气密封在LPG撞车泵上的应用[J].化工设计,2005,15(2):38-40
    [61] 黄钟岳.高压离心式压缩机轴向推力的分析[J].化工机械,1981,2:5-11
    [62] 闻苏平,阎宏,张楚华.离心叶轮外侧间隙内的流动计算.流体机械,2004,32(6):13-15
    [63] 闻苏平,朱报桢,苗永淼.高压离心压缩机轴向推力计算[J].西安交通大学学报,1998,32(11):63-67
    [64] 闻苏平,李景银,刘秋洪.离心压缩机外部损失的联合计算[J].流体机械,2004,32(8):14-18
    [65] Han Zhenxue, Paul G, A, Cizmas, A CFD Method for Axial Thrust Load Prediction of??Centrifugal Compressor, International Journal of Turbo and Jet Engines, 2003, 20: 1-16
    [66] Zenglin Guo, Toshio Hirano, R. Gordon Kirk, Application of Computational Fluid Dynamic Analysis for Rotating Machinery-Part Ⅰ: Hydrodynamic, Hydrostatic Bearing and Squeeze Film Damper, Journal of Engineering for Gas Turbines and Power, 2005, 127: 445-451
    [67] Toshio Hirano, Zenglin Guo, R. Gordon Kirk, Application of Computational Fluid Dynamic Analysis for Rotating Machinery-Part Ⅱ: Labyrinth Seal Analysis. Journal of Engineering for Gas Turbines and Power, 2005, 127:820-826
    [68] Marjan Gantar, Dusan Florjancic, Brahe Sirok. Hydraulic Axial Thrust in Multistage Pumps-Origins and Solutions[J]. Journal of Fluids Engineering, 2002, 124:336-341
    [69] 王福军.计算流体力学软件、原理与应用[M],北京:清华大学出版社,2004
    [70] J. H. Horlock, J. D. Denton. A review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective[J]. Journal of Turbomachinery, 2005, 127:5-13
    [71] Joseph T. Hamrick. A Review of the History of the National Advisory Committee for Aeronautics Centrifugal Compressor Program and Arrival at Current Computational Design Procedures[J]. Journal of Fluids Engineering, 2005, 127:95-96
    [72] Moore, J. Jeffrey. Three Dimensional CFD Rotordynamics Analysis of Gas Labyrinth Seal[J]. Journal of Vibration and Accoustics, 2003, 125:427-433
    [73] 高金吉.离心压缩机转子的气动推力与轴位移[J].风机技术,1984.6
    [74] 王克阁.K480透平压缩机轴位移增大原因分析[J].化工设备与腐蚀,2002,(5):351-352
    [75] 杨若峰.大型机组控制系统误报警、误联锁的原因分析[J].石油化工设备技术,1997,18(5):43-45
    [76] 陈宗华,梁晓刚,秦云龙等.大型离心式压缩机常见故障原因分析及处理措施[J].化工设备及防腐蚀,2004,1:45-51
    [77] 窦希良 苯酐装置压缩机止推轴承磨损原因分析及对策[J],石油化工,2005,34:800-802
    [78] 高红丽,江伟,殷建军等.大型旋转机组轴向力在线监控测力弹性元件的结构方案设计[J].浙江工业大学学报,2001,29(1):34~39
    [79] 高金吉,王维民,江志农.高速透平机械轴位移故障自愈调控系统研究[J],机械科学与技术,2005,24(11):1261-1264
    [80] Glavatskikh S B. Steady state performance characteristics of a tilting pad thrust bearing[J]. Journal of Tribology, 2001, 123:608-615
    [81] Martin F A. Tilting pad thrust hearings: rapid design aids[J]. Tribology Convention Proc. Inst. Mech. Eng, 1970, 184:120-138
    [82] 黄文斌,刘文涛.气压缩机干气密封的改造及应用[J].石油化工设备技术,2002,23(4):53-56
    [83] 王汝美.新型密封—气体密封[J].流体工程,1990(6):34-36
    [84] 顾永泉.机械密封实用技术[M],北京:机械工业出版社,2001
    [85] Gabriel, Ralph P. Fundamental of Spiral Groove Noncontacting Face Seals[J]. Lubrication Engineering, 1994, 50(3) :215-224
    [86] Rhode, D. L. and Hibbs, R. I.. Tooth Thickness Effect on the performance of Gas Labyrinth Seals[J]. ASME Journal of Tribology, 1992, pp. 161-169
    [87] Rhode, D. L. and Hibbs, R. I., Clearance Effects on the Performance of Gas Labyrinth??Seals[J]. ASME Journal of Tribology, pp. 791-795
    [88] Peletti, J. A comparison of experimental result and theoretical predictions for the rotordynamics coefficients of short(L/D=1/6) labyrinth seals[J]. M. S. M. E. Thesis, Texas A&M University and Turbomachinery Laboratory Report No. TL-SEAL-1-90. 1990
    [89] 顾建中.热学教程(修订本)[M].北京:高等教育出版社,1995,12-26
    [90] 林兆福.气体动力学[M].北京:北京航空航天大学出版社,1988,4-7
    [91] Shaft Sealing Systems for Centrifugal and Rotary Pumps. API-682, American Petroleum Institute, 1994
    [92] Constantinescu V N. Gas Lubrication[M]. ASME. United Engineering Center, 1960, 8-20
    [93] Xiaoqing Zheng, Gerald Berard. Development of Non-contacting, Film Riding Face Seal for Large-Diameter Gas Engines[J], AIAA papers, 2001-3624
    [94] 王冒成,邵敏,有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997
    [95] R Courant. Varaiational Methods for the Solution of Problems of Equilibrium and Virbrations[J]. Bulletin of the American Mathematical Society, 1943, 49
    [96] R W Clough. The Finite Element Method in Plane Stress Analysis[A]. Proceedings of the Second Conference on Electric Computation[C]. American society of Civil Engineers, New York, 1960
    [97] 廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应[M],北京:机械工业出版社,2004
    [98] 邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38
    [99] Gordnier, R. E., Visbal, M. R.. High-fidelity computational simulation of nonlinear fluid-structure interactions[J]. Aeronautical Journal, 2005, 107(1097) : 31-41
    [100] Amabili. Marco, Paidoussis. Michael P.. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical sheds and panels, with and without fluid-structure interaction[J], Applied Mechanics Reviews, 2003, 56(4) :349-356
    [101] Tijsseling, A. S.. Fluid-structure interaction in liquid-filled pipe systems: A review[J]. Journal of Fluids and Structure, 1996, 10(2) : 109-146
    [102] Allen, M. Reliability-based shape optimization of structures undergoing fluid-structure interaction phenomena[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(30-33) :3472-3495
    [103] 徐朝晖.高速离心泵的全流道三维流动及其流体诱发压力脉动研究[D].北京:清华大学,2004
    [104] 国家自然科学基金委员会.自然科学学科发展战略报告—力学.北京:科学出版社,1997
    [105] 杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [106] 宋鹏云、陈匡民、董宗玉、吴旨玉.螺旋槽气膜润滑机械密封用作泵停车密封的解析计算[J].流体机械.1999,27(6):21-23
    [107] Zeus D. Viscous Friction in Small Gap Calculation for Non-contacting liquid or Gas End Face Seals[J]. Tribology Trans. 1990, 33(3) : 454-462
    [108] 龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003
    [109] 彭旭东,谢友柏,顾永泉.机械密封端面温度的确定[J],化工机械,1996,23(26):333-338
    [110] 洪先志,董宗五,顾永泉.机械密封端面力变形的解析计算[J].化工设计,2002,12(2):37-39[111] Green, Itzhak. A transient dynamic analysis of mechanical seals including asperity contact and face deformation[J]. Tribology Transactions, 2002, 45(3) :37-44
    [112] 顾永泉.机械端面密封的密封面顶开现象和升举特性[J].石油化工设备,2003,32(4):26-29
    [113] 程建辉,葛培琪,刘鸣.机械密封环温度场的有限元分析与试验研究[J],山东大学学报,2002,32(4):385-388
    [114] 王胜军,郝木明,张书贵.机械密封温度场计算[J].化工机械,2004,31(4):203-207
    [115] 王胜光,张炳闻,陈长征.涡轮增压器密封环的温度场及热变形研究[J].润滑与密封,2005,1:44-46
    [116] 朱学明,刘正林,朱汉华等.高压机械密封动态温度场分析研究[J].船海工程,2005,2:52-55