Mfn2基因促进血管平滑肌源性泡沫细胞胆固醇外排机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分外源性Mfn2基因表达抑制平滑肌源性泡沫细胞形成
     1.目的
     研究平滑肌源性泡沫细胞内外源性Mfn2基因表达水平对于泡沫细胞形成的影响,对细胞内胆固醇流出的影响,研究其可能存在的分子机制。
     2.方法
     收集新鲜血清,采用密度梯度离心法提取LDL,铜离子氧化为ox-LDL后,与平滑肌细胞共培养24h或者48h,油红O染色观察泡沫细胞形成,体外构建平滑肌源性泡沫细胞模型。采用不同滴度水平的Adv-Mfn2(20pfu/cell、40pfu/cell和60pfu/cell)干预平滑肌细胞模型24h后,观察泡沫细胞形成的变化情况;酶化学法检测细胞内总胆固醇和游离胆固醇含量;采用WesternBlot方法检测胆固醇外转运蛋白ABCA1、ABCG1及核受体蛋白PPARγ蛋白磷酸化水平。
     3.结果
     重组腺病毒Adv-Mfn2(60pfu/cell)转染到平滑肌细胞内作用24小时后,平滑肌源性泡沫细胞脂滴明显减少,酶化学法检测证实细胞内总胆固醇含量下降,胆固醇酯/总胆固醇比例明显下降。WesternBlot证实重组腺病毒Adv-Mfn2干预组PPARγ蛋白磷酸化水平下降,胆固醇转运蛋白ABCA1、ABCG1表达水平上调。
     4.结论
     细胞内外源Mfn2基因在在适当水平的表达可以干预泡沫细胞内胆固醇的蓄积从而可以降低泡沫细胞形成,这一机制是通过调节PPARγ磷酸化活性及其下游的胆固醇外转运蛋白ABCA1和ABCG1的表达来实现。
     第二部分外源性Mfn2基因对泡沫细胞形成丝裂原活化蛋白激酶信号通路的影响
     1.目的
     研究外源性Mfn2基因在平滑肌细胞内不同表达水平对于平滑肌源性泡沫细胞内与PPARγ活性相关的丝裂原活化蛋白激酶(MAPKs)信号通路的影响,研究外源性Mfn2基因抑制平滑肌源性泡沫细胞形成的分子信号通路。
    
     2.方法
     利用不同滴度水平重组腺病毒Adv-Mfn2(20pfu/cell、40pfu/cell和60pfu/cell)转染大鼠主动脉平滑肌细胞24h,然后加入ox-LDL与平滑肌细胞共培养48小时,采用WesternBlot检测ERK1/2、JNK、p38MAPKs信号通路蛋白磷酸化水平,统计学分析上述蛋白磷酸化水平的差异。3.结果
     WesternBlot结果显示重组腺病毒Adv-mfn2在60pfu/cell水平转染大鼠平滑肌细胞条件下,ERK1/2、p38蛋白磷酸化水平明显下调,而与JNK磷酸化水平无关。
     4.结论
     外源性Mfn2基因在平滑肌细胞内适度表达水平能抑制泡沫细胞的形成,这一机制是通过抑制与PPARγ活性相关MAPK相关信号通路中的ERK1/2、p38信号通路蛋白磷酸化水平来实现,而与JNK信号通路无关。
PartⅠ The mechanism of Mfn2gene inhibits foam cell formation
     1. Purpose
     To explore the effect of expression of exogenous Mitofusin2(Mfn2) levels on rats vascluar smooth muscle-derived foam cells and the molecular mechanism of cellular cholesterol efflux that may exist.
     2. Methods
     The flesh serum of healthy individuals were collected and oxidated by copper ion after seperated LDL by density gradient centrifugation. Rats vascluar smooth muscle cells (rVSMCs) were co-cultured with oxidated LDL in vitro to induct the formation of foam cell, we make the intervention in different concentration of Adv-Mfn2(20pfu/cell,40pfu/cell, and60pfu/cell) in the induction of rVSMCs derived foam cells model. Foam cells were stained with oil red O and observed under a light microscope. The cholesterol level of foam cells were detected in the enzyme-chemical method and the ratio of total cholesterol to free cholesterol were calculated. The Cholesterol transporters adenosine trip hosphate-binding cassette subfamily A member1(ABCAl) and adenosine triphosphate-binding cassette subfamily G member1(ABCGl)and the phosphorylation of PPARy protein level were dectect by Western blot.
     3. Results
     While the rVSMCs were transfected with Adv-Mfn2(60pfu/cell) for24h with oxidated ldl(80ug/mL), the lipid droplets in foam cells were reduced significantly. The ratio of intracellular free cholesterol ester compared to total cholesterol levels dropped significantly detected by chemical-enzyme assay. The phosphorylation level of PPARy protein decreased and the expression level of ABCA1and ABCG1increased detected by Western blot.
     4. Conclusions
     Adv-Mfn2could significantly reduce the formation of foam cells after transfected at the appropriate level, and furthermore it could decreases the intracellular cholesterol levels to prompt the expression of cholesterol transport protein ABCA1and ABCG1.
     PartⅡ The effect of exogenous Mfn2gene on mitogen-activated protein kinase signaling pathway in foam cell formation
     1. Purpose
     To investigate the the mechanism of different expression concentration of mitofusin2gene on the phosphorylation level of MAPKs signaling pathway related to the formation of smooth muscle-derived foam cells.
     2. Methods
     rVSMCs were transfected different titers of adv-Mfn2(20,40and60pfu/cell) for24h, and then it were co-cultured with the ox-LDL and for24hours. The phosphorylation level of ERK1/2, JNK and p38signaling pathway proteins were detected by Western blot. Statistical significances were compared using Tukey-Kramer post hoc test and student t-test by SPSS12.0. Differences were considered significant when P<0.05.
     3. Results
     The Western Blot results showed that when foam cells were transfected with60pfu/cell, the phosphorylation levels of ERK1/2of p38proteins of the rVSMC derived foam cells were significantly reduced, regardless of the phosphorylation level of JNK.
     4. Conclusions
     The moderate level of exogenous Mfn2expression in rVSMC derived foam cells could inhibit the induction of foam cell formation with oxidiated ldl in vitro, which were achieved by reducing the the phosphorylation level of ERK1/2and p38signaling pathway, and independent of the phosphorylation level of JNK signaling pathway.
引文
1. Vinereanu, D. Risk factors for atherosclerotic disease:present and future. Herz,2006;31Suppl3:5-24.
    2. Kanazawa, T., S. Yu, T. Osanai, et al. Transformation of cultured human monocytes by peroxidized low-density lipoprotein. Pathobiology,1995;63:143-7.
    3. Yan, P., C. Xia, C. Duan, et al. Biological characteristics of foam cell formation in smooth muscle cells derived from bone marrow stem cells. Int J Biol Sci,2011;7:937-46.
    4. Horvai, A., W. Palinski, H. Wu, et al. Scavenger receptor A gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Natl Acad Sci U S A,1995;92:5391-5.
    5. Makinen, P. I, J. P. Lappalainen, S. E. Heinonen, et al. Silencing of either SR-A or CD36reduces atherosclerosis in hyperlipidaemic mice and reveals reciprocal upregulation of these receptors. Cardiovasc Res,2010;88:530-8.
    6. Liu, W. L., X. Guo, and Z. G. Guo. Oxidized low-density lipoproteins induce apoptosis in vascular smooth muscle cells. Zhongguo Yao Li Xue Bao,1998;19:245-7.
    7. Galis, Z. S., G. K. Sukhova, R. Kranzhofer, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A,1995;92:402-6.
    8. Lipton, B. A., S. Parthasarathy, V. A. Ord, et al. Components of the protein fraction of oxidized low density lipoprotein stimulate interleukin-1alpha production by rabbit arterial macrophage-derived foam cells. J Lipid Res,1995;36:2232-42.
    9. Fournier, N., N. Attia, D. Rousseau-Ralliard, et al. Deleterious impact of elaidic fatty acid on ABC Al-mediated cholesterol efflux from mouse and human macrophages. Biochim Biophys Acta,2012;1821:303-12.
    10. Liu, S. M., A. Cogny, M. Kockx, et al. Cyclodextrins differentially mobilize free and esterified cholesterol from primary human foam cell macrophages. J Lipid Res,2003;44:1156-66.
    11. Yang CM,Chiu CT,Wang CC, et al.Activation of mitogen-activated protein kinase by oxidized low-density lipoprotein in canine cultured vascular smooth muscle cells.Cell Signal,2000,12(4):205-14.
    12. Zhao, M., Y. Liu, X. Wang, et al. Activation of the p38MAP kinase pathway is required for foam cell formation from macrophages exposed to oxidized LDL. APMIS,2002;110:458-68.
    13. Evans, C. E., S. Mylchreest, V. Charlton-Menys, et al. The role of hydrostatic pressure in foam cell formation upon exposure of macrophages to LDL and oxidized LDL Atherosclerosis,2008;197:596-601.
    14. Ye, Q., Y. Chen, H. Lei, et al. Inflammatory stress increases unmodified LDL uptake via LDL receptor:an alternative pathway for macrophage foam-cell formation. Inflamm Res,2009;58:809-18.
    15. Park, Y. M., M. Febbraio, R. L. Silverstein. CD36modulates migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the arterial intima. J Clin Invest,2009;119:136-45.
    16. Yu, J., Y. Li, M. Li, et al. Oxidized low density lipoprotein-induced transdifferentiation of bone marrow-derived smooth muscle-like cells into foam-like cells in vitro. Int J Exp Pathol,2010;91:24-33.
    17. Akiyama TE,Sakai S,Lambert G, et al.Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1, ABCG1, and apoE in macrophages and reduced cholesterol efflux. Mol Cell Biol,2002,22(8):2607-19.
    18. Adams M, Reginato MJ, Shao D, et al. Transcriptional activation by peroxisome prolifera tor-activated receptor gamma is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. J Biol Chem,1997,272(8):5128-5132.
    19. Werman A, Hollenberg A, Solanes G, et al. Ligand-independent activation domain in the N terminus of peroxisome prolifera tor-activated receptor gamma(PPARgamma). Differential activity of PPARgamma1and2isoforms and influence of insulin. J Biol Chem,1997,272(32):20230-5
    20. Hsi LC, Wilson L, Nixon J, et al.15-lipoxygenase-1metabolites down-regulate peroxisome prolifera tor-activated receptor gamma via the MAPK signaling pathway. J Biol Chem,2001,276(37):34545-34552
    21. Camp HS, Tafuri SR. Regulation of peroxisome proliferator-activated receptor gamma activity by mitogen-activated protein kinase. J Biol Chem,1997,272(16):10811-10816
    22. Prieur, X., T. Roszer, M. Ricote. Lipotoxicity in macrophages:evidence from diseases associated with the metabolic syndrome. Biochim Biophys Acta,2010;1801:327-37.
    23. Kusuhara, M., A. Chait, A. Cader, et al. Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol,1997;17:141-8.
    24. Chatterjee, S., A. K. Bhunia, A. Snowden, et al. Oxidized low density lipoproteins stimulate galactosyltransferase activity, ras activation, p44mitogen activated protein kinase and c-fos expression in aortic smooth muscle cells. Glycobiology,1997;7:703-10.
    25. Ptasinska, A., S. Wang, J. Zhang, et al. Nitric oxide activation of peroxisome proliferator-activated receptor gamma through a p38MAPK signaling pathway. FASEB J,2007;21:950-61.
    26. Lee, J., E. Jung, S. Huh, et al. Anti-adipogenesis by6-thioinosine is mediated by downregulation of PPAR gamma through JNK-dependent upregulation of iNOS. Cell Mol Life Sci,2010;67:467-81.
    27. Thatcher, J. D. The Ras-MAPK signal transduction pathway. Sci Signal,2010;3:trl.
    28. Chen, K. H., X. Guo, D. Ma, et al. Dysregulation of mitofusin2gene in rats vascular smooth muscle cells triggers vascular proliferative disorders. Nat Cell Biol,2004;6:872-83.
    29. Zhou, W., K. H. Chen, W. Cao, et al. Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin2. Atherosclerosis,2010;211:216-23.
    30. Guo, Y. H., K. Chen, W. Gao, et al. Overexpression of Mfn2gene decreased oxidized low-density lipoprotein reduced atherosclerotic lesion formation and promoted vascular smooth muscle cell proliferation in rats. Biochem Biophys Res Commun,2007;363:411-7.
    1. Eura. Y., N. Ishihara, T. Oka, et al. Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J Cell Sci,2006;119:4913-25.
    2. Ishihara. N., Y. Eura, and K. Mihara. Mitofusin1and2play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci,2004;117:6535-46.
    3. Liao. H., J. Gong, W. Zhang, et al. Valsartan inhibits angiotensin Ⅱ-induced proliferation of vascular smooth muscle cells via regulating the expression of mitofusin2. J Huazhong Univ Sci Technolog Med Sci,2012;32:31-5.
    4. Webb, N. R. K. J. Moore. Macrophage-derived foam cells in atherosclerosis:lessons from murine models and implications for therapy. Curr Drug Targets,2007;8:1249-63.
    5. Yu, H. Y., Y. H. Guo,.[Mitochondrial fusion protein Mfn2and cardiovascular diseases]. Sheng Li Ke Xue Jin Zhan,2010;41:11-6.
    6.Chen, K. H., X. Guo, D. Ma, et al. Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol,2004;6:872-83.
    7. Cai, X. Regulation of smooth muscle cells in development and vascular disease:current therapeutic strategies. Expert Rev Cardiovasc Ther,2006;4:789-800.
    8. Frohlich, J. A. Al-Sarraf. Cardiovascular risk and atherosclerosis prevention. Cardiovasc Pathol,2012;
    9. Bloch, M. J. J. Basile. Clinical insights into the diagnosis and management of atherosclerotic renal artery disease. Curr Atheroscler Rep,2006;8:412-20.
    10. Greenspan, P., H. Yu, F. Mao, et al. Cholesterol deposition in macrophages:foam cell formation mediated by cholesterol-enriched oxidized low density lipoprotein. J Lipid Res,1997;38:101-9.
    11. Palmer, A. M., N. Murphy, et al. Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) Al from human macrophage foam cells. Atherosclerosis,2004;173:27-38.
    12. Yancey, P. G., H. Yu, M. F. Linton, et al. A pathway-dependent on apoE, ApoAI, and ABCA1determines formation of buoyant high-density lipoprotein by macrophage foam cells. Arterioscler Thromb Vasc Biol,2007;27:1123-31.
    13. De Brito, O. M., L. Scorrano. Mitofusin2:a mitochondria-shaping protein with signaling roles beyond fusion. Antioxid Redox Signal,2008;10:621-33.
    14. Jiang, G. J., M. Han, et al. Hyperplasia suppressor gene associates with smooth muscle alpha-actin and is involved in the redifferentiation of vascular smooth muscle cells. Heart Vessels,2006;21:315-20.
    15. Guo. X., K. H. Chen, Y. Guo, et al. Mitofusin2triggers vascular smooth muscle cell apoptosis via mitochondrial death pathway. Circ Res,2007;101:1113-22.
    16. Pawlikowska, P. B. Gajkowska, A. Orzechowski. Mitofusin2(Mfn2):a key player in insulin-dependent myogenesis in vitro. Cell Tissue Res,2007;327:571-81.
    1. Boring, L., J. Gosling, M. Cleary, et al. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature,1998;394:894-7.
    2. Wang, C., Y. Zhang, Q. Yang, et al. A novel cultured tissue model of rat aorta:VSMC proliferation mechanism in relationship to atherosclerosis. Exp Mol Pathol,2007;83:453-8.
    3. Kuliczkowska-Plaksej, Bednarek-Tupikowska, R. Plaksej, et al. Scavenger receptor CD36:its expression, regulation, and role in the pathogenesis of atherosclerosis. Part Ⅰ. Postepy Hig Med Dosw (Online),2006;60:142-51.
    4. Liao, D.X. Wang, M. Li, et al. Human protein S inhibits the uptake of AcLDL and expression of SR-A through Mer receptor tyrosine kinase in human macrophages. Blood,2009;113:165-74.
    5. Uint. L., A. Sposito, L. I. Brandizzi, et al. Cellular cholesterol efflux mediated by HDL isolated from subjects with low HDL levels and coronary artery disease. Arq Bras Cardiol,2003;81:39-41,35-8.
    6. Yu, X., K. Murao, H. Imachi, et al. Hyperglycemia decreases ABCA1expression in human vascular smooth muscle cells. Horm Metab Res,2010;42:241-6.
    7. Jiang, Z. R., J. Gong, Z. N. Zhang, et al. Influence of acid and bile acid on ERK activity, PPARgamma expression and cell proliferation in normal human esophageal epithelial cells. World J Gastroenterol,2006;12:2445-9.
    8. Liu. W., P. He, B. Cheng, et al. Chlamydia pneumoniae disturbs cholesterol homeostasis in human THP-1macrophages via JNK-PPARgamma dependent signal transduction pathways. Microbes Infect,2010;12:1226-35.
    9. Ptasinska, S. Wang, J. Zhang, et al. Nitric oxide promotion of peroxisome proliferator-activated receptor gamma through a p38MAPK signaling pathway. FASEB J,2007;21:950-61.
    10. Lawrence, A. Jivan, C. Shao, etal. The roles of MAPKs in disease. Cell Res,2008;18:436-42.
    11. Owens, D. M., S. M. Keyse. Differential adjustment of MAP kinase signal pathway by dual-specificity protein phosphatases. Oncogene,2007;26:3203-13.
    12. Raman, W. Chen, M. H. Cobb. Differential regulation and properties in macrophage of MAPKs. Oncogene,2007;26:3100-12.
    13. Su. W., A. Sun, D. Xu, et al. Tongxinluo inhibits oxidized low-density lipoprotein-induced maturation of human dendritic cells via activating peroxisome proliferator-activated receptor gamma pathway. J Cardiovasc Pharmacol,2010;56:177-83.
    14. Chahine, Blackwood, E. Dibrov, et al. Oxidized LDL affects smooth muscle cell growth through MAPK-mediated actions on nuclear protein import. J Mol Cell Cardiol,2009;46:431-41.
    15. Xu. Y., F. Lai, Y. Wu, et al. Mycophenolic acid decreases ATP-binding cassette transporter A1expression by the way of PPARgamma-LXRalpha-ABCA1. Biochem Biophys Res Commun,2011;414:779-82.
    16. Ozasa. H., M. Ayaori, M. Iizuka, et al. Pioglitazone enhances cholesterol transport from macrophages by reducing the ABCA1/ABCG1expressions via PPARgamma/LXRalpha pathway from in vitro and ex vivo studies. Atherosclerosis,2011;219:141-50.
    17. Huwait, E. A., K. R. Greenow, N. N. Singh, et al. A novel role for c-Jun N-terminal kinase and phosphoinositide3-kinase in the liver X receptor-mediated induction of macrophage gene expression. Cell Signal,2011;23:542-9.
    1. Kalra, P. A., H. Guo, D. T. Gilbertson, et al. Atherosclerotic renovascular disease in the United States. Kidney Int,2010;77:37-43.
    2. Kalra, P. A., H. Guo, A. T. Kausz, et al. Atherosclerotic renovascular disease in United States patients aged67years or older:risk factors, revascularization, and prognosis. Kidney Int,2005;68:293-301.
    3. Guerin, M. Reverse cholesterol transport in familial hypercholesterolemia. Curr Opin Lipidol,2012;
    4. Fielding, C. J., P. E. Fielding. Molecular physiology of reverse cholesterol transport. J Lipid Res,1995;36:211-28.
    5. Von Bergmann, K., T. Sudhop, D. Lutjohann. Cholesterol and plant sterol absorption: recent insights. Am J Cardiol,2005;96:10D-14D.
    6. Rothblat, G. H., M. C. Phillips. Mechanism of cholesterol efflux from cells. Effects of acceptor structure and concentration. J Biol Chem,1982;257:4775-82.
    7. Phillips, M. C., W. J. Johnson, G. H. Rothblat. Mechanisms and consequences of cellular cholesterol exchange and transfer. Biochim Biophys Acta,1987;906:223-76.
    8. Mullick, A. E., W. Fu, M. J. Graham, et al. Antisense oligonucleotide reduction of apoB-ameliorated atherosclerosis in LDL receptor-deficient mice. J Lipid Res,2011;52:885-96.
    9. Tadin-Strapps, M., L. B. Peterson, A. M. Cumiskey, et al. siRNA-induced liver ApoB knockdown lowers serum LDL-cholesterol in a mouse model with human-like serum lipids. J Lipid Res,2011;52:1084-97.
    10. Liao, D., X. Wang, M. Li, et al. Human protein S inhibits the uptake of AcLDL and expression of SR-A through Mer receptor tyrosine kinase in human macrophages. Blood,2009;113:165-74.
    11. Xie, C., J. Kang, J. R. Chen, et al. Lowbush blueberries inhibit scavenger receptors CD36and SR-A expression and attenuate foam cell formation in ApoE-deficient mice. Food Funct,2011;2:588-94.
    12. Ditiatkovski, M., B. H. Toh, A. Bobik. GM-CSF deficiency reduces macrophage PPAR-gamma expression and aggravates atherosclerosis in model of ApoE-deficient mice. Arterioscler Thromb Vasc Biol,2006;26:2337-44.
    13. Geng, Y., T. Kodama, G. K. Hansson. Differential expression of scavenger receptor isoforms during monocyte-macrophage differentiation and foam cell formation. Arterioscler Thromb,1994;14:798-806.
    14. Fukuhara-Takaki, K., M. Sakai, Y. Sakamoto, et al. Expression of class A scavenger receptor is enhanced by the environment of high glucose in vitro and under diabetes in vivo: one way for an increased ratio of atherosclerosis in diabetes. J Biol Chem,2005;280:3355-64.
    15. Suzuki, H., Y. Kurihara, M. Takeya, et al. The mechanism for macrophage scavenger receptors in atherosclerosis and susceptibility to infection in human. Nature,1997;386:292-6.
    16. Whitman, S. C., A. Daugherty, S. R. Post. Macrophage colony-stimulating factor rapidly enhances beta-migrating very low density lipoprotein metabolism in macrophages through activation of a Gi/o protein signaling pathway. J Biol Chem,2000;275:35807-13.
    17. Pluddemann, A., C. Neyen, S. Gordon, et al. A sensitive solid-phase assay for identification of class A macrophage scavenger receptor ligands using cell lysate. J Immunol Methods,2008;329:167-75.
    18. Whitman, S. C., A. Daugherty, S. R. Post. Regulation of acetylated low density lipoprotein uptake in macrophages by pertussis toxin-sensitive G proteins. J Lipid Res,2000;41:807-13.
    19. Babaev, V. R., L. A. Gleaves, K. J. Carter, et al. Decreased atherosclerotic lesions in mice deficient for whole or macrophage-specific expression on scavenger receptor-A. Arterioscler Thromb Vasc Biol,2000;20:2593-9.
    20. Wang, W., B. He, W. Shi, et al. Deletion of scavenger receptor A protects mice from progressive nephropathy independent of lipid control during diet-induced hyperlipidemia. Kidney Int,2012;
    21. Berglund, L., T. E. Petersen, J. T. Rasmussen. Structural characterization of bovine CD36from the milk fat globule membrane. Biochim Biophys Acta,1996;1309:63-8.
    22. Stewart, C. R., L. M. Stuart, K. Wilkinson, et al. CD36ligands promote sterile inflammation through assembly of a Toll-like receptor4and6heterodimer. Nat Immunol,2010;11:155-61.
    23. Alessio, M., L. De Monte, A. Scirea, et al. Synthesis, processing, and intracellular transport of CD36during monocytic differentiation. J Biol Chem,1996;271:1770-5.
    24. Thorne, R. F., C. J. Meldrum, S. J. Harris, et al. CD36forms covalently associated dimers and multimers in platelets and transfected COS-7cells. Biochem Biophys Res Commun,1997;240:812-8.
    25. Pravenec, M., V. Zidek, M. Simakova, et al. Genetics of Cd36and the clustering of multiple cardiovascular risk factors in spontaneous hypertension. J Clin Invest,1999;103:1651-7.
    26. Wieclawska, B., M. Rozalski, Z. Trojanowski, et al. Modulators of intraplatelet calcium concentration affect the binding of thromb ospondin to blood platelets in healthy donors and patients with type2diabetes mellitus. Eur J Haematol,2001;66:396-403.
    27. Miao, W. M., E. Vasile, W. S. Lane, et al. CD36associates with CD9and integrins on human blood platelets. Blood,2001;97:1689-96.
    28. Noble, J. M., G. A. Ford, T. H. Thomas. Effect of aging on CD11b and CD69surface expression by vesicular insertion in human polymorphonuclear leucocytes. Clin Sci (Lond),1999;97:323-9.
    29. Stewart, B. W.,S. Nagarajan. Recombinant CD36inhibits oxLDL-induced ICAM-1-dependent monocyte adhesion. Mol Immunol,2006;43:255-67.
    30. Seizer, P., S. Schiemann, T. Merz, et al. CD36and macrophage scavenger receptor a modulate foam cell formation via inhibition of lipid-laden platelet phagocytosis. Semin Thromb Hemost,2010;36:157-62.
    31. Dhaliwal, B. S.,U. P. Steinbrecher. Scavenger receptors and oxidized low density lipoproteins. Clin Chim Acta,1999;286:191-205.
    32. Endemann, G., L. W. Stanton, K. S. Madden, et al. CD36is a scavenger receptor for different oxidized low density lipoproteins. J Biol Chem,1993;268:11811-6.
    33. Li, K., W. Yao, X. Zheng, et al. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage. Cell Res,2009;19:1006-17.
    34. Nicholson, A. C., D. P. Hajjar. CD36, ox-LDL and PPARgamma:pathological interactions in macrophages, vascular smooth muscle cells and atherosclerosis. Vascul Pharmacol,2004;41:139-46.
    35. Kavanagh, I. C., C. E. Symes, P. Renaudin, et al. Degree of oxidation of low density lipoprotein affects expression of CD36and PPARgamma, but not cytokine production, by human monocyte-macrophages. Atherosclerosis,2003;168:271-82.
    36. Bieghs, V., F. Verheyen, P. J. van Gorp, et al. Internalization of Modified Lipids by CD36and SR-A Leads to Hepatic Inflammation and Lysosomal Cholesterol Storage in Kupffer Cells. PLoS One,2012;7:e34378.
    37. Helming, L., J. Winter, S. Gordon. The scavenger receptor CD36plays a role in cytokine-induced macrophage fusion. J Cell Sci,2009;122:453-9.
    38. Hu, Y. F., H. I. Yeh, H. M. Tsao, et al. Impact of circulating monocyte CD36level on atrial fibrillation and subsequent catheter ablation. Heart Rhythm,2011;8:650-6.
    39. Puente Navazo, M. D., L. Daviet, E. Ninio, et al. Identity on human CD36of a domain gene region associated in binding oxidized low-density lipoproteins. Arterioscler Thromb Vasc Biol,1996;16:1033-9.
    40. Nicholson, A. C., S. Frieda, A. Pearce, et al. Oxidized LDL binds to the scavenger receptor CD36on human monocyte-derived macrophages and transfected cell lines. Evidence implicating for the role of lipid moiety of lipoprotein as an binding site. Arterioscler Thromb Vasc Biol,1995;15:269-75.
    41. Podrez, E. A., T. V. Byzova, M. Febbraio, et al. Platelet CD36links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med,2007;13:1086-95.
    42. Febbraio, M., E. A. Podrez, J. D. Smith, et al. Targeted disruption of the scavenger receptor CD36protect for atherosclerotic development in mice. J Clin Invest,2000;105:1049-56.
    43. Silverstein, R. L. and M. Febbraio. CD36-TSP-HRGP interactions in the regulation of angiogenesis. Curr Pharm Des,2007;13:3559-67.
    44. Lip sky, R. H., D. M. Eckert, Y. Tang, et al. The carboxyl-terminal cytoplasmic domain of scavenger receptor CD36is important for oxidized low-density lipoprotein regulation of NF-kappaB activity by tumor necrosis factor-alpha. Recept Signal Transduct,1997;7:1-11.
    45. Ibanez, B., C. Giannarelli, G. Cimmino, et al. Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type). Atherosclerosis,2012;220:72-7.
    46. Saumet, A., N. de Jesus, C. Legrand, et al. Association of thrombospondin-1with the actin cytoskeleton of human thrombin-activated platelets through an alphaⅡbbeta3-or CD36-independent mechanism. Biochem J,2002;363:473-82.
    47. Park, Y. M., M. Febbraio, R. L. Silverstein. CD36adjusts migration of mouse and human macrophages in response to oxidized LDL and may contribute to macrophage trapping in the human arterial intima. J Clin Invest,2009;119:136-45.
    48. Baranova, I. N., T. G. Vishnyakova, A. V. Bocharov, et al. Serum amyloid A binding to CLA-1(CD36and LIMPⅡ analogous-1) mediates serum amyloid A protein-induced activation of ERK1/2and p38mitogen-activated protein kinases. J Biol Chem,2005;280:8031-40.
    49. Baranova, I. N., R. Kurlander, A. V. Bocharov, et al. Role of human CD36in bacterial recognition, phagocytosis, and pathogen-induced JNK-mediated signaling. J Immunol,2008;181:7147-56.
    50. Katayama, I., Y. Hotokezaka, T. Matsuyama, et al. Ionizing radiation induces macrophage foam cell formation and aggregation through JNK-dependent activation of CD36scavenger receptors. Int J Radiat Oncol Biol Phys,2008;70:835-46.
    51. Triantafilou, M., F. G. Gamper, R. M. Haston, et al. Membrane sorting of toll-like receptor (TLR)-2/6and TLR2/1heterodimers at the cell surface determines heterotypic associations with CD36and intracellular targeting. J Biol Chem,2006;281:31002-11.
    52. Farhat, K., S. Riekenberg, H. Heine, et al. Heterodimerization of TLR2with TLR1or TLR6expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol,2008;83:692-701.
    53. Thyberg, J., F. Calara, P. Dimayuga, et al. Role of caveolae in cholesterol transport in arterial smooth muscle cells exposed to lipoproteins in vitro and in vivo. Lab Invest,1998;78:825-37.
    54. Levitan, I. and K. J. Gooch. Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics:actions of oxLDL. Antioxid Redox Signal,2007;9:1519-34.
    55. Wu, C. C., S. H. Wang, Kuan, II, et al. OxLDL upregulates caveolin-1expression in macrophages:Role for caveolin-1in the adhesion of oxLDL-treated macrophages to endothelium. J Cell Biochem,2009;107:460-72.
    56. Fielding, C. J., P. E. Fielding. Relationship between cholesterol trafficking and signaling in rafts and caveolae. Biochim Biophys Acta,2003;1610:219-28.
    57. Makarewich, C. A., R. N. Correll, H. Gao, et al. A caveolae-targeted L-type Ca(2) channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res,2012;110:669-74.
    58. Fujiwara, Y., N. Kiyota, K. Tsurushima, et al. Tomatidine, a tomato sapogenol, ameliorates hyperlipidemia and atherosclerosis in apoE-deficient mice by inhibiting acyl-CoA:cholesterol acyl-transferase (ACAT). J Agric Food Chem,2012;60:2472-9.
    59. Yuan, Y., P. Li, J. Ye. Lipid homeostasis and the formation of human macrophage-derived foam cells in atherosclerosis. Protein Cell,2012;
    60. Silva, W. I, H. M. Maldonado, G. Velazquez, et al Caveolin isoform expression during differentiation of C6glioma cells. Int J Dev Neurosci,2005;23:599-612.
    61. Silva, W. I., H. M. Maldonado, M. P. Lisanti, et al. Identification of caveolae and caveolin in C6glioma cells. Int J Dev Neurosci,1999;17:705-14.
    62. Li, J., A. Scherl, F. Medina, et al. Impaired phagocytosis in caveolin-1deficient macrophages. Cell Cycle,2005;4:1599-607.
    63. Schroeder, F., H. Huang, A. L. McIntosh, et al. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking. Subcell Bio chem,2010;51:279-318.
    64. Dasari, A., J. N. Bartholomew, D. Volonte, et al. Oxidative stress increases premature senescence by stimulating caveolin-1gene transcription by the signal pathway of p38mitogen-activated protein kinase/Spl-mediated activation of two GC-rich promoter elements. Cancer Res,2006;66:10805-14.
    65. Lungu, A. O., Z. G. Jin, H. Yamawaki, et al. Cyclosporin A inhibits flow-mediated activation of endothelial nitric-oxide synthase by altering cholesterol content in caveolae. J Biol Chem,2004;279:48794-800.
    66. Matveev, S., D. R. van der Westhuyzen, E. J. Smart. Co-expression of scavenger receptor-B CD36and caveolin1protein is associated with promoted selective cholesteryl ester uptake in THP-1macrophages. J Lipid Res,1999;40:1647-54.
    67. Chao, W. T., S. H. Tsai, Y. C. Lin, et al. Cellular localization and interaction of ABCA1and caveolin-1in aortic endothelial cells after HDL incubation. Biochem Biophys Res Commun,2005;332:743-9.
    68. Azhar, S., A. Nomoto, S. Leers-Sucheta, et al. Simultaneous induction of an HDL receptor protein (SR-BI) and the selective uptake of HDL-cholesteryl esters in a physiologically relevant steroidogenic cell model. J Lipid Res,1998;39:1616-28.
    69. Reaven, E., Y. Lua, A. Nomoto, et al. The selective pathway and a high-density lipoprotein receptor (SR-BI) in ovarian granulosa cells of the mouse. Biochim Biophys Acta,1999;1436:565-76.
    70. Cherian-Shaw, M., M. Puttabyatappa, E. Greason, et al. Expression of scavenger receptor-BI and low-density lipoprotein receptor and differential use of lipoproteins to support early steroidogenesis in luteinizing macaque granulosa cells. Endocrinology,2009;150:957-65.
    71. Akpovi, C. D., S. R. Yoon, M. L. Vitale, et al. The predominance of one of the SR-BI isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res,2006;47:2233-47.
    72. Herijgers, N., M. Van Eck, S. J. Korporaal, et al. Relative importance of the LDL receptor and scavenger receptor class B in the beta-VLDL-induced uptake and accumulation of cholesteryl esters by peritoneal macrophages. J Lipid Res,2000;41:1163-71.
    73. Iatan, I., D. Bailey, I. Ruel, et al. Membrane microdomains modulate oligomeric ABCA1function:impact on apoAI-mediated lipid removal and phosphatidylcholine biosynthesis. J Lipid Res,2011;52:2043-55.
    74. Cameron, J., T. Ranheim, B. Halvorsen, et al. Tangier disease caused by compound heterozygosity for ABCA1mutations R282X and Y1532C. Atherosclerosis,2010;209:163-6.
    75. Prosser, H. C., M. K. Ng, C. A. Bursill. The role of cholesterol efflux in mechanisms of endothelial protection by HDL. Curr Opin Lipidol,2012;
    76. Ma, L., F. Dong, M. Denis, et al. Ht31, a protein kinase A anchoring inhibitor, induces most cholesterol efflux and reverses macrophage derived foam cell formation through ATP-binding cassette transporter sub-family A. J Biol Chem,2011;286:3370-8.
    77. Nandi, S., L. Ma, M. Denis, et al. ABC Al-mediated cholesterol efflux generates microparticles in addition to HDL through processes governed by membrane rigidity. J Lipid Res,2009;50:456-66.
    78. Karadeniz, M., M. Erdogan, Z. Ayhan, et al. Effect Of G2706A and G1051A polymorphisms of the ABCA1gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystic ovary syndrome. Lipids Health Dis,2011;10:193.
    79. Koschinsky, M. L., S. M. Marcovina, L. F. May, et al. Analysis of the mechanism of lipoprotein(a) assembly. Clin Genet,1997;52:338-46.
    80. Robinet, P., B. Vedie, G. Chironi, et al. Characterization of polymorphic structure of SREBP-2gene:role in atherosclerosis. Atherosclerosis,2003;168:381-7.
    81. Yuan, H. Y., S. Y. Kuang, X. Zheng, et al. Curcumin inhibits cellular cholesterol accumulation by regulating SREBP-1/caveolin-1signaling pathway in vascular smooth muscle cells. Acta Pharmacol Sin,2008;29:555-63.
    82. Kazawa, T., T. Kawasaki, A. Sakamoto, et al. Expression of liver X receptor alpha and lipid metabolism in granulocyte-macrophage colony-stimulating factor-induced human monocyte-derived macrophage. Pathol Int,2009;59:152-60.
    83. Li, N., R. C. Salter, and D. P. Ramji. Molecular mechanisms underlying the inhibition of IFN-gamma-induced, STAT1-mediated gene transcription in human macrophages by simvastatin and agonists of PPARs and LXRs. J Cell Biochem,2011;112:675-83.
    84. He, H., K. M. MacKinnon, K. J. Genovese, et al Chicken scavenger receptors and their ligand-induced cellular immune responses. Mol Immunol,2009;46:2218-25.
    85. Zhang, Y., C. Shen, D. Ai, et al. Upregulation of Scavenger Receptor BI by Hepatic Nuclear Factor4alpha through a Peroxisome Proliferator-Activated Receptor gamma-Dependent Mechanism in Liver. PPARRes,2011;2011:164925.
    86. Chinetti, G., S. Lestavel, V. Bocher, et al. PPARa and PPARy activators induce cholesterol effusion from human macrophage derived foam cells by increasing the expression of the ABCA1pathway. Nat Med,2001;7:53-8.
    87. Kannan-Thulasiraman, P., D. D. Seachrist, G. H. Mahabeleshwar, et al. Fatty acid-binding protein5and PPARbeta/delta are critical mediators of epidermal growth factor receptor-induced carcinoma cell growth. J Biol Chem,2010;285:19106-15.
    88. Chen, N. N., Y. Li, M. L. Wu, et al. CRABP-Ⅱ-and FABP5-independent all-trans retinoic acid resistance in COLO16human cutaneous squamous cancer cells. Exp Dermatol,2012;21:13-8.
    89. Chandra, V., P. Huang, Y. Hamuro, et al. Structure of the intact PPAR-gamma-RXR-nuclear receptor complex on DNA. Nature,2008;456:350-6.
    90. Temple, K. A., R. N. Cohen, S. R. Wondisford, et al. An intact DNA-binding domain is not required for peroxisome proliferator-activated receptor gamma (PPARgamma) binding and activation on some PPAR response elements. J Biol Chem,2005;280:3529-40.
    91. Gorla-Bajszczak, A., C. Juge-Aubry, A. Pernin, et al. Conserved amino acids in the ligand-binding and tau(i) domains of the peroxisome proliferator-activated receptor alpha are necessary for heterodimerization with RXR. Mol Cell Endocrinol,1999;147:37-47.
    92. Qi, C., Y. Zhu, J. K. Reddy. Peroxisome proliferator-activated receptors, the coactivators, and its downstream targets. Cell Biochem Biophys,2000;32Spring:187-204.
    93. Kaplan, J. M., P. W. Hake, A. Denenberg, et al. Phosphorylation of extracellular signal-regulated kinase (ERK)-1/2Is associated with the down-regulation of peroxisome proliferator-activated receptor (PPAR)-gamma during polymicrobial sepsis. Mol Med,2010;16:491-7.
    94. Moore, K. J., E. D. Rosen, M. L. Fitzgerald, et al. The action of PPAR-gamma in differentiation and cholesterol uptake of macrophage. Nat Med,2001;7:41-7.
    95. Burgermeister, E., T. Friedrich, I. Hitkova, et al. The Ras inhibitors caveolin-1and docking protein1promote peroxisome proliferator-activated receptor gamma through spatial relocalization at helix7of its ligand-binding domain. Mol Cell Biol,2011;31:3497-510.
    96. Ren, S., P. Hylemon, D. Marques, et al. Effect of increasing the expression of cholesterol transporters (StAR, MLN64, and SCP-2) on bile acid synthesis. J Lip id Res,2004;45:2123-31.
    97. Erickson, R. P., K. Larson-Thome, L. Weberg, et al. The variatiey in NPC1, the gene encoding Niemann-Pick C1, a protein engaging in intracellular cholesterol transport, is associated with Alzheimer disease and/or aging in the European population. Neurosci Lett,2008;447:153-7.
    98. Ma, X., Y. W. Hu, Z. C. Mo, et al. NO-1886up-regulates Niemann-Pick C1protein (NPC1) expression through liver X receptor alpha signaling pathway in THP-1macrophage-derived foam cells. Cardiovasc Drugs Ther,2009;23:199-206.
    99. Matsuura, F., N. Wang, W. Chen, et al. HDL from CETP-deficient subjects shows enhanced ability to promote cholesterol efflux from macrophages in an apoE-and ABCG1-dependent pathway. J Clin Invest,2006;116:1435-42.
    100. Huuskonen, J., V. M. Olkkonen, M. Jauhiainen, et al. The effects of phospholipid transfer protein (PLTP) on nHDL metabolism. Atherosclerosis,2001;155:269-81.
    101. Nakamoto, M., M. Fukasawa, S. Orii, et al. Cloning and expression of medaka cholesterol side chain cleavage cytochrome P450during gonadal development. Dev Growth Differ,2010;52:385-95.
    102. Merkel, M., J. Heeren, W. Dudeck, et al. Inactive lipoprotein lipase alone promotes selective cholesterol ester uptake in vivo, and in the presence of active LPL it also promotes triglyceride hydrolysis and the uptake of whole particle lipoprotein. J Biol Chem,2002;277:7405-11.