电动轮汽车制动集成控制策略与复合ABS控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在环保、节能等方面的巨大优势,电动汽车的研发与应用成为了汽车研究领域发展的重要方向,而其主动安全性与能量回收领域的研究水平也日益提高。普通的电动汽车往往传承了传统内燃机汽车的液压制动系统,这种制动模式忽略了驱动电机再生制动能够有效回收制动能量这一因素,因此当今许多车辆采用了电机再生制动与传统液压制动相结合的复合制动系统。而电动汽车复合制动系统的ABS往往继承了传统汽车的液压ABS,而单独使用液压ABS浪费了电机易于控制,并能快速、准确调节电机转矩的自身优势。因此本文针对四轮独立驱动电动轮汽车,提出了基于复合制动力分配与纯电机ABS控制的制动集成控制策略,同时提出了基于电机ABS控制与液压ABS控制协调工作的复合ABS控制理论。
     制动集成控制策略方案综合考虑了在不同制动模式下车辆的制动稳定性、制动效率与能量回收,并合理协调了电机再生制动力、液压制动力与纯电机ABS控制之间的关系。提出四种ABS控制方法,即基于门限值库的逻辑门限值控制方法;基于等时轮加速度增幅进行路面判断的变逻辑门限值控制方法;基于逻辑门限法路面判断的变参数PID控制方法;PID主控制且逻辑门限值法辅助控制的并联控制方法。上述方法考虑了在不同路面制动时,车辆最佳滑移率不同。通过综合判断制动时的车速、目标制动强度、实时路面系数等条件,改变传统ABS控制门限值或者控制参数单一固定的特点,针对不同制动工况选择不同的控制门限值或控制参数,使车轮滑移率处于理想值附近,提高制动稳定性。后三种控制方法在控制初期利用逻辑门限值方法判断路面,根据分析等时轮加速度的增幅大小估计路面系数,使路面识别更准确。通过搭建AMESim与Simulink的电动轮汽车联合仿真模型,对控制策略进行仿真分析。通过设计和改造,搭建了基于双dSPACE仿真平台的硬件在环实时平台,对基于逻辑门限法路面判断的变参数PID控制方法进行了硬件在环试验。本文还提出了基于电机ABS与液压ABS协调工作的电动轮汽车复合ABS控制理论,并进行仿真分析。该理论通过判断制动工况切换ABS控制模式。本文通过模型仿真与硬件在环研究,验证了制动控制策略,能够有效识别制动工况,并能及时合理的控制,控制效果较好,为研究电动轮汽车主动安全集成控制奠定了基础。本文的具体研究内容包括:
     一、针对四轮独立驱动电动汽车的驱动特性与动力性能,设计了驱动电机的参数并选择电机。在分析了国内外电动车复合制动理论与ABS控制方法的基础上,提出了电动轮汽车制动集成控制方案。该方案结合理想制动力分配曲线,根据目标制动强度切换制动模式,兼顾制动的稳定性与回收能量。当处于低强度制动时,充分考虑到制动能量的回收,单独使用电机再生制动力完全能满足制动需求。当处于中强度制动时,使用以电机再生制动为主,液压摩擦制动为辅的制动方式。而当处于高强度制动时,通过估计当前路面附着系数,计算出当前路面条件下,车轮不抱死时的最大制动力,通过对该制动力数值进行分析调整作为液压制动力,而不足部分由电机再生制动力补充。该制动模式充分考虑了低制动强度下的能量回收,中等制动强度下的制动效率和高制动强度下的车辆稳定性要求,有针对的切换制动模式。根据以上的四轮独立驱动电动汽车的复合制动力分配形式,提出以控制四个轮毂电机的制动转矩来实现ABS功能的纯电机防抱死控制方式。在低中制动强度下,电机制动扭矩的变化范围完全能够使施加在车轮上的总的制动扭矩不会继续使车轮发生抱死行为。而当目标制动强度比较大时,当车轮处于抱死状态下,该轮上所需的制动力较大。而由于电机产生的制动转矩有限,因此使用以电机制动为主、液压制动为辅的分配方式难以通过单独调节电机转矩实现ABS功能。因此采用不抱死液压力作为主要控制方式,不足部分由电机制动转矩补充,通过单独改变电机制动转矩实现ABS功能。
     二、针对电动轮汽车的复合制动系统及纯电机ABS控制模式,提出了四种ABS控制方法。即基于门限值库的逻辑门限值控制方法;基于等时轮加速度增幅进行路面判断的变逻辑门限值控制方法;基于逻辑门限法路面判断的变参数PID控制方法;PID主控制且逻辑门限值法辅助控制的并联控制方法。上述方法考虑了在不同路面制动时,车辆最佳滑移率不同。通过综合判断制动条件,改变传统ABS控制门限值或者控制参数单一固定的特点,针对不同制动工况选择不同的控制门限值或控制参数,使车轮滑移率处于理想值附近,提高制动稳定性。其中基于门限值库的逻辑门限值控制方法将路面附着系数估计模块中估算的路面附着系数作为门限值设置的参考条件,根据估算的当前路面和车速等条件进行逻辑门限值设置,通过将设置好的门限值输入给ABS控制核心实现实时的ABS控制。后三种控制方法在控制初期利用逻辑门限值方法判断路面,根据分析等时轮加速度的增幅大小估计路面系数,使路面识别更准确。并联控制方法在默认状态下使用PID控制,而PID失效模块一直在判断PID控制的效果。一旦PID控制失效,则系统切换到逻辑门限值控制,该方法能规避PID控制方法单独使用时的不稳定性和抗干扰能力差的问题。
     三、基于AMESim与Simulink建立了十五自由度的车辆动力学仿真模型,并针对上述四种不同ABS控制方法进行了仿真分析。
     四、提出了基于逻辑门限值方法的四轮驱动电动轮汽车的复合ABS控制理论。该理论不同于制动集成控制的纯ABS控制方法,而是将电机ABS控制与液压ABS控制协调工作的控制理论。通过分析不同的制动工况进行ABS控制模式切换,并进行了仿真分析,分析了参数变化对控制性能的影响。
     五、针对纯电机ABS控制模式下的基于逻辑门限法路面判断的变参数PID控制方法,在本课题组传统汽车制动防抱死试验平台的基础上进行设计和改造,建立了基于双dSPACE仿真平台的硬件在环试验台。该硬件在环仿真平台采用了一台计算机作为主机,两台dSPACE仿真平台作为目标机的实时仿真平台。其中一台dSPACE仿真平台用于对车辆动力学模型进行实时仿真,另一台dSPACE仿真平台用于对制动集成控制系统进行仿真。通过硬件在环仿真试验与离线仿真试验验证本研究的控制算法能够有效识别制动工况,并能及时合理的控制,控制效果较好,为研究电动轮汽车主动安全集成控制奠定了基础。
Because there have huge advantages in environmental protection and energy saving, the research and application of electric vehicle became an important direction of vehicle research field, the research level of active safety and energy recovery in this field also increasing day by day. Common electric vehicle often inherits the traditional internal combustion engine vehicle's hydraulic brake system, the braking mode ignores the factor that the motor regenerative braking can effectively recycling braking energy, so many vehicles use the composite brake system that motor regenerative braking combined with traditional hydraulic braking. ABS of EV composite brake system is often inherited from the hydraulic ABS of traditional vehicles, but some electric motor's advantages will be wasted by using hydraulic ABS individually, such as easy to control, regulate the torque quickly and accurately. A vehicle with four electric wheels was studied, and brake integrated control strategy based on composite braking force distribution and pure electric motor ABS control was proposed, also a composite ABS control theory based on motor ABS works together with hydraulic ABS was proposed.
     Braking stability, braking efficiency and energy recovery of vehicle in different braking modes were considered, and the relationship between regeneration braking force, hydraulic braking force and pure motor ABS was rational regulated in the program of brake integrated control strategy. Four ABS control methods were proposed. They are logic threshold control based on threshold library, variable logic threshold control based on road determine by the increase of wheel acceleration in equal times, variable parameters'PID control based on road determine by the logic threshold method, the parallel control of PID primary control with logic threshold method auxiliary control. The feature that best slip-rate are different according to road condition was considered in the methods above. Through comprehensive determining vehicle speed, target braking strength and real-time road conditions, to changing the characteristics that control thresholds or control parameters were fixed, and to selecting different threshold values or control parameters by different conditions. So the wheel slip-rate was near the ideal value, and the brake stability was improved. The latter three methods used logic threshold method to determine the road at the beginning, according to analysis the increase of the wheel acceleration to estimate the road, so that the road identification was more accurate. The co-simulation model of electric wheel vehicle based on AMESim and Simulink was built, the control strategy was simulated. Through design and renovation, a hardware in the loop real-time platform based on two dSPACE simulate platform was built, and the variable parameters'PID control based on road determine by the logic threshold method hardware in the loop test was carried out. Composite ABS control theory of electric wheel vehicle based on motor ABS coordinate work with hydraulic ABS was also proposed, and simulation analysis was carried out. By judging brake conditions, ABS control mode been switched. Based on simulation and hardware in the loop studies, it can be proved that the control strategy can effectively identify the braking conditions, and take timely reasonable control, the control effect is better, so the article lays the foundation for the study of electric wheel vehicle active safety integrated control. Specific research contents of this paper are as follows.
     1. According to the driving characteristics and dynamic performance of four-wheel independent drive electric vehicles, parameters of motor are designed and the electric motor is chosen. On the analysis of the domestic and international electric vehicle composite braking theory and ABS control method, put forward on the basis of electric wheels vehicle brake integrated control scheme. The scheme combined with ideal braking force distribution curve, according to the target braking strength switching braking mode, the stability and recycling braking energy are both considerated. When in low intensity braking, give full consideration to the braking energy recovery, motor regenerative braking force is used alone, and it can fully satisfy braking requirements. When in medium intensity braking, the braking mode is chosen that the motor regenerative braking is given priority, and the hydraulic friction braking as the auxiliary. And when in high intensity braking, by estimating the current road friction coefficient, we calculates the maximum braking force of wheel don't locked in the current road conditions, through analyzing and adjusting the braking force as hydraulic braking force, and the insufficient part used regenerative braking force to supply. The braking mode has fully considered the energy recovery in the low brake strength, brake efficiency in medium braking strength, and the braking stability in the high strength, to switching braking mode. According to the above four-wheel independent drive electric vehicle's composite braking force distribution mode, pure electric motor ABS control method that through control the electric motor braking torque to achieve antilock functions is proposed. In the low strength braking and the medium strength braking, the change range of the motor brake torque can fully satisfy that the total braking torque won't continue to make the wheel locked. And when the target braking strength is large, when vehicle in lock state, a single wheel required braking force is bigger. And because the motor brake torque is limited, it is hard to use distribution methods that the motor braking as primarily, hydraulic braking as the auxiliary to separately adjust motor torque to realize ABS function. Therefore the unlocked hydraulic braking force is adopt as the main control mode, and the electric motor braking force as auxiliary, by regulating electric motor braking torque to realize ABS function.
     2. According to the composite brake system for electric car wheel and pure motor ABS control mode, put forward four kinds of ABS control methods. They are logic threshold control based on threshold library, variable logic threshold control based on road determine by the increase of wheel acceleration in equal times, variable parameters' PID control based on road determine by the logic threshold method, the parallel control of PID primary control with logic threshold method auxiliary control. Among them, logic threshold control method based on threshold library put the road friction coefficient estimate in the road friction coeffient module as the threshold setting reference condition, according to estimates current road surface, speed and other conditions for logic threshold settings, to achieve real-time ABS control. Three control methods after initial use logic threshold method to judge road conditions, according to the analysis judgment road conditions of the acceleration of growth when round the size, road coefficient estimates more accurate identification. For parallel control methods PID control is in use by default, and PID control failure module has been in judging PID control effect. Once the PID control is failure, the system switches to logic threshold method, this method can avoid the problems such as instability and the ability of anti-interference is poor when used PID control method alone.
     3. Based on AMESim and Simulink established 15 dof vehicle dynamics simulation model, and in view of the above four different ABS control methods on the simulation analysis.
     4. Composite ABS control theory is put forward based on logical threshold method all-wheel drive electric wheels car. This theory is different from the pure ABS braking integrated control method, but with hydraulic motor ABS control coordination ABS control theory. Through the analysis of different braking conditions for ABS control mode switch, and simulation analysis, analyzed the parameters on the control performance influence.
     5. For pure motor ABS control mode based on logical threshold method under judgment of the variable parameters of road, PID control method in our traditional automobile brake antilock brake on the basis of test platform designed and renovated, based on double the hardware in the loop test-bed dSPACE. The hardware in the loop simulation platform used a computer as host, two dSPACE simulation platform as the target machine of real-time simulation platform. One of those dSPACE simulation platform of vehicle dynamics model for real-time simulation, the other dSPACE simulation platform for brake integrated control simulation. Through the hardware in the loop simulation experiment and off-line simulation test this study control algorithm can effectively identify brake operating conditions, and can be reasonable control, the control effect is good, as research electric wheels car active safety integrated control laid a foundation.
引文
[1]成品油历次价格调整走势图(2003.7-2009.11). http://202.103.11.102/read.asp?id=9962
    [2]中国社会经济调查研究中心.中国纯电动汽车行业市场调查分析报告[R].2008.
    [3]节能与新能源汽车产业规划(2011-2010)意见稿.http://wenku.baidu.com/view/39b0674733687e21ae45a905.html
    [4]崔胜民.现代汽车系统控制技术[M].北京:北京大学出版社,2008.
    [5]高红波.电动汽车技术的现状及前景[J].中国新技术新产品,2008(12):108.
    [6]孙逢春,张承宁,祝嘉光.电动汽车——21世纪的重要交通工具[M].北京:北京理工大学出版社,1997.
    [7]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005.
    [8]WAKEFIELD EH,叶云屏,孙逢春译.电动汽车发展史[M].北京:北京理工大学出版社,1997.
    [9]CAIMS E J. A new mandate of energy conversion:zero emission (electric) vehicles[J]. Power Sources Symposium,1992. IEEE35th International,1992:310-313.
    [10]HORI Y, MEMBER S. Future vehicle driven by electricity and Control——research on four-wheel-motored"UOT electric march"[J]. Industrial Electronics, IEEE Transactions on,2004, 51(5):954-962.
    [11]CHAN C C. The challenges and opportunity in the new century——clean, efficient and intelligent electric vehicles[J]. Electrical Machines and Systems, Sixth International Conference on,2003, 1:ⅩⅢ一ⅩⅩⅪ.
    [12]曹秉刚,张传伟,白志峰等.电动汽车技术进展和发展趋势[J].西安交通大学学报,2004,38(1):1-5.
    [13]胡骅,宋慧.电动汽车[M].北京:人民交通出版社,2002.
    [14]陈勇.电动轮电动车动力学控制策略研究[D].北京:北京理工大学,2002.
    [15]宋佑川,金国栋.城市公共交通[J].1980(4):16-18.
    [16]张缓缓.采用电动轮驱动的电动汽车转矩协调控制研究[D].长春:吉林大学,2008.
    [17]顾云青,张立军.电动汽车电动轮驱动系统开发现状与趋势[J].汽车研究与开发,2004(12).
    [18]WU H X, CHENG S K. A controller of brushless DC motor for electric vehicle[J]. Magnetics, IEEE Transactions on,2005,41(1):509-513.
    [19]ZHENG P, LIU Y, WANG Y, et al. Magnetization analysis of the brushless DC motor used for hybird electric vehicle[J]. Magnetics, IEEE Transactions on,2005,41(1):522-524.
    [20]MAHDI J K, FARHAD B. Sliding mode traction control of an electric vehicle with four separate wheel drives[J]. Emerging Technologies and Factory Automation,2003. Proceedings. IEEE Conference,2003, 2:291-296.
    [21]CHEN C K, WANG Y C. Fuzzy control for the anti-lock brake system[J]. Fuzzy Systems Symposium, Proceedings of the 1996 Asian,1996:67-72.
    [22]TERASHIMA M, ASHIKAGA T, MIZUNO T, et al. Novel motors and controllers for high performance electric vehicle with 4 in-wheel motors[J]. IEEE 0-7803-2775-6/96,1996:20-27.
    [23]SHIMIZU H, HARADA J, BLAND C, et al. Advanced Concepts in Electric Vehicle Design, IEEE Transactions on industrial electronics, Vol.44[J].1997,2 (1):14-18.
    [24]GMC. GM's autonomy concept vehicle reinvents automobile[J/OL]. http://www.gm.com.cn/chinese/other/search_frame.htm.2002.
    [25]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[D].北京:北京理工大学,2002.
    [26]汤双清,廖道训.电动汽车的核心技术及发展展望[J].机械科学与技术,2003,22(2):189-192.
    [27]DUOBA M, BOHN T and BUSCH H L Investi-gating Possible Fuel Economy Bias Due To Regenerative Braking in Testing HEVs on 2WD and 4WD Chassis Dynamometers[J]. SAE paper,2005 (01):0685.
    [28]HE J J, CROLLA D A, LEVESLEY M C and MANNING W J. Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability[C]. SAE 2004-01-1071.
    [29]YEO H and KIM H. Hardware-in-the-loop simulation of regenerative braking for a hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2002,11(216):855-864.
    [30]OZAKI M, SHINPO T, FURUKAWA N. A combined brake system for energy regeneration[C]. Brussels, Belgium:The 15 Th International Electric Vehicle Symposiums and Exposition,1998.
    [31]吕奉阳.纯电动客车再生制动与气压制动协调控制策略研究[D].长春:吉林大学,2009.
    [32]余卓平,张元才,徐乐,张立军,熊璐.复合制动系统制动力协调分配方法仿真研究[J].汽车技术,2008(5).
    [33]HOON Y, HYUNSOO K. Development of Regenerative Braking Control Algorithmand Electro Hydraulic Module for a Hybrid Electric Vehicle[J]. EVS20,2003:3891-3899.
    [34]彭栋.混合动力汽车制动能量回收与ABS集成控制研究[D].上海:上海交通大学,2007.
    [35]TOYOTA Motor Corporation. Development of electric motors for the Toyota hybrid vehicle"PRIUS" [R]. The 16th International Electric Vehicle Symposium and Exposition, Beijing, China,1999.
    [36]CIKANEK S R, BAILEY K E. Electric vehicle braking systems[R]. The 14 th International Electric Vehicle Symposium and Exposition, Orlando, USA,1997.
    [37]OGURA M, AOKI Y. The HONDA EV PLUS regenerative braking system[R]. The 14th International Electric Vehicle Symposium and Exposition, Orlando, USA,1997.
    [38]Characterization and Comparison of Two Hybrid Electric Vehicles-Honda Insight and Toyota Prius[C]. SAE,2001.
    [39]MOTOMU H, TOSHIO T. Brake system of"Eco-Vehicle"[R]. The 14th International Electric Vehicle Symposium and Exposition, Orlando, USA,1997.
    [40]福特汽车在环保方面的重大成果.http://finance.eastday.com/eastday/finance/cys/node1205/node35697/node35700/node35701/user objectlai567694.html
    [41]SCHMIDT M, ISERMANN R, LENZEN B. Potential of regenerative braking using an integrated starter alternator[J]. SAE paper,2000 (01):1020.
    [42]WALKER A M, LAMPERTH M U, WILKINS S. On friction braking demand with regenerative braking[J]. SAE paper,2002 (01):2581.
    [43]PENG D, YIN C L, ZHANG J W. An investigation into regenerative braking system control strategy for hybird electric vehicle[J]. Journal of Shanghai Jiaotong University(Science),2005(4):407-412.
    [44]WANG F and ZHUO B. Regenerative braking strategy for hybrid electric vehicles based on regenerative torque optimization control[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering,2008,4(222):499-513.
    [45]GAO Y M and EHSANI M. Electronic Braking System of EV And HEV---Integration of Regenerative Braking, Automatic Braking Force Control and ABS[J]. SAE paper,2001-01-24(78).
    [46]EHSANI M, GAO Y M,and BUTLER K L. Application of Electrically Peaking Hybrid(ELPH)Propulsion System to a Full-Size Passenger Car with Simulated Design Verification[C].IEEE Transaction On Vehicular Technology,1999.
    [47]WICKS F, DONNELLY K, HALL S. Modeling Regenerative Braking and Storage for Vehicles[C]. Energy Conversion Engineering Conference,1997.
    [48]WICKS F, MALESZWESKI J, WRIGHT C, ZARYBNICKY J. Analysis of Compressed Air Regenerative Braking and A Thermally enhanced option[C]. IECEC,2002.
    [49]CIKANEK S R, BAILEY K E. Regenerative Braking System For A Hybrid Electric Vehicle[C]. American Control Conference,2002.
    [50]GAO H W, GAO Y M, EHSANI M. A Neural Network Based SRM Drive Control Strategy for Regenerative Braking in EV and HEV[C]. Electric Machines and Drives Conference,2001.
    [51]PANAGIOTIDIS M, DELAGRAMMATIKAS G and ASSANIS D. Development and Use of a Regenerative Braking Modelfor a Parallel Hybrid Electric Vehicle[J]. SAE paper,2000 (01):0995.
    [52]SHIDA H, KAZUYUKI N. Energy Regeneration of Electric Vehicle by Super Capacitor and Battery[J]. JSAE Annual Congress.1999 (6-99):1-4.
    [53]余卓平,熊璐,张立军.电液复合制动匹配研究[J].汽车工程,2005,27(4).
    [54]张元才,余卓平,徐乐,熊璐.基于制动意图的电动汽车复合制动系统制动力分配策略研究[J].汽车工程,2009,31(3).
    [55]宁国宝,王阳,余卓平.后轮轮毂电机驱动电动汽车的液压复合制动系统匹配方法[J].汽车技 术,2009,(11):11-16.
    [56]陈庆樟.汽车再生制动稳定性与制动踏板平稳性控制研究[D].镇江:江苏大学,2008.
    [57]何仁,陈庆樟.用双开关磁阻电机的汽车能量再生制动技术[J].吉林大学学报(工学版),2009,9(39): 5.
    [58]陈庆樟,何仁,商高高.基于ABS的汽车能量再生制动集成控制研究[J].汽车工程,2008,30(4)
    [59]罗禹贡,李蓬等.基于最优控制理论的制动能量回收策略研究[J].汽车工程,2006,28(4):356-360.
    [60]李玉芳,林逸,何洪文,陈陆华等.电动汽车再生制动控制算法研究[J].汽车工程,2007,29(11):1059-1062.
    [61]王保华,张建武,罗永革.并联混合动力客车再生制动仿真研究[J].汽车工程,2005,27(6):648-651.
    [62]过学迅,张靖.混合动力电动汽车再生制动系统的建模与仿真[J].武汉理工大学学报(信息与管理工程版),2005,27(1):116-120.
    [63]王鹏宇.混合动力汽车复式制动系统的设计与性能仿真[D].吉林:吉林大学汽车工程学院,2005.
    [64]段幼华.混合动力轿车复式制动系统的研究[D].吉林:吉林大学汽车工程学院,2007.
    [65]甘自学.基于ABS的混合动力客车再生制动控制策略研究[D].长春:吉林大学,2009.
    [66]张元才.电动汽车复合制动系统关键技术研究[D].上海:同济大学,2008.
    [67]李君.车辆ABS控制系统快速开发研究[D].上海:上海交通大学,2002.
    [68]方泳龙.汽车制动理论与设计[M].北京:国防工业出版社,2005.
    [69]司利增.汽车防滑控制系统ABS与ASR[M].北京:人民交通出版社,1997.
    [70]李君,喻凡.基于道路自动识别的ABS模糊控制系统的研究[J].农业机械学报,2001,32(5):26-29.
    [71]李熙亚,吴诰,廖俊,周全.汽车ABS制动过程的道路识别[J].华南理工大学(自然科学版),2006,34(4):24-27.
    [72]ZANTEN V. VDC System Development and Perspective[C]. SAE Paper,980235.
    [73]韩文涛,贾安民,袁志业.汽车ABS的逻辑门限值控制研究[J].北京汽车,2003(06):28-30.
    [74]刘地.逻辑门限值控制在汽车防抱制动系统中的应用[J].汽车研究与开发,2004(02):44-46.
    [75]尹华鑫,蔡辰光,陈振明.汽车ABS基于逻辑门限值控制方法的研究[J].企业技术开发,2007,26(9):46-53.
    [76]李建华.基于ESC控制系统的ABS控制策略研究及试验[D].长春:吉林大学,2010.
    [77]吴利军,崔海峰,马岳峰.汽车ABS/ASR/ACC集成控制系统设计[J].液压与气动,2006(9):3-5.
    [78]王伟达.汽车ABS/ASR/DYC集成系统控制方法研究[D].北京:北京航空航天大学,2008.
    [79]王伟达,丁能根,徐向阳等.基于轮速和压力状态信息的ABS参考车速算法研究及其试验验证[J].中国机械工程,2008,19(3):370373.
    [80]晏蔚光,李果等.基于模糊PID控制的汽车防抱制动系统控制算法研究[J].公路交通科技,2004,21(7):123-126.
    [81]张振生,李成功.基于模糊PID控制的ABS仿真研究[J].北方交通,2008(5):208-210
    [82]唐国元.车辆防抱制动系统及制动稳定性控制策略的仿真研究[D].武汉:华中科技大学,2005.
    [83]张振生,李成功.基于模糊PID控制的ABS仿真研究[J].北方交通,2008(5):208-210.
    [84]SCHINKEL M, HUNT K. Anti-lock braking control using a sliding mode like approach[J]. American Control Conference, Proceedings of the 2002 (3):2386-2391.
    [85]HARIFIA, AGHAGOLZADEH A, ALIZADEH G, SADEGHI M. Designing a Sliding Mode Controller for Antilock Brake System[C]. Belgrade:EUROCON 2005,2005(9):258-261.
    [86]宋传学,周云山,李幼德.防抱死制动系统控制算法的仿真研究[J].汽车工程,1998,20(1):24-30.
    [87]BUCKHOLTZ K R. Reference Input Wheel Slip Tracking Using Sliding Mode Control[C]. SAE Paper, 2002.
    [88]CHIN Y K, LIN W C, SIDLOSKY D M, RULE D S. SLIDING-MODE ABS WHEEL-SLIP CONTROL[C].American Control Conference,1992:1-8.
    [89]KHATUN P, BINGHAM C M. Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems[J]. Vehicular Technology, IEEE Transactions on,2003,52(5): 1356-1364.
    [90]CHEN F W, LIAO T L. Nonlinear linearization controller and genetic algorithm-based fuzzy logic controller for ABS systems and their comparison[M]. Int.J. Vehicle Design.2000:334-349.
    [91]许美坤.模糊控制在汽车防抱死制动系统中的应用研究[D].武汉:华中科技大学,2002.
    [92]皮大伟,陈南,张丙军.基于有限状态机理论的ABS模糊控制仿真研究[J].系统仿真学报,2009,21(16):4961-4965.
    [93]刘倩.汽车防抱死制动系统(ABS)模糊控制方法的研究[D].长春:吉林大学,2008.
    [94]KIMBROUGH S. Based Wheel Slip Assignment for Vehicle Stability Enhancement [C]. SAE Paper 1999-01-0476.
    [95]李君.车辆ABS控制系统快速开发研究[D].上海:上海交通大学,2002.
    [96]LEE H M, KIM G, PARK S H. A Study on Optimal Braking Control Using Adhesion Coefficient[C]. The 7th International Conference on Power Electronics,2007:343~346.
    [97]杨旭东.基于最优的汽车防抱死制动系统控制方法研究[D].西安:西北工业大学,2004.
    [98]李文娟,赵梦莹等.汽车ABS自寻最优控制器的模拟研究[J].伺服控制,2010,(02):45~48.
    [99]SAKAI S I, KITAGAWA K and HORI Y. Lateral motion stabilization of 4 wheel-motored EV based on wheel skid prevention. Proceedings of 17th International Electric Vehicle Symposium[C]. Montreal, Canada:2000.
    [100]KIM D, KIM H. Vehicle stability control with regenerative braking and electronic brake force distribution for a four wheel drive hybird electric vehicle[J]. IMechE 2006 (220):683-692.
    [101]HSIAO M H, LIN C H. Antilock braking control of electric vehicles with electric brake[J]. SAE paper,2005 (01):1581.
    [102]SAKAI S I, SADO H, HORI Y. Anti skid control with motor in electric vehicle[J]. IEEE AMC2000 (pp):317-321.
    [103]李果,王新力.电动车安全性控制系统研究[J].系统仿真学报,2007,19(5):1082-1085.
    [104]张兆良,宁国宝.车辆机-电复合制动系统[J].同济大学上海汽车,2009,11:42-46.
    [105]余卓平,熊璐,张立军.电液复合制动匹配研究[J]汽车工程,2005年第27卷第4期P455-457。
    [106]OKANO T, SAKAI S I, FUJIMOTO H, HORI Y. Experimental Studies of Novel Cooperative Control System of Hydraulic Brake and Electric Motor in Hybrid Electric Vehicle.2001 National Convention Record I.E.E Japan-Industry Application Society,3,2001,3.
    [107]李果,余达太.电动车制动防抱死自适应鲁棒控制系统[J].自动化学报,2006,32(3):444-449.
    [108]周勇.四电动轮独立驱动电动车ABS/ASR控制策略研究[D].西安:西北工业大学,2006.
    [109]周勇,李声晋,田海波,方宗德,周奇勋.四轮独立驱动电动车的ABS控制方法[J].汽车工程,2007,29(12)
    [110]何仁.汽车制动再生方法的探讨[J].江苏大学学报(自然科学版),2005(6):1-4.
    [111]BAILEY K E, CIKANEK S R. Comparison of energy recovery capability of electric vehicle braking systems[C]. Aachen, Germany:Proceedings of the AVEC International Symposium of Advanced Vehicle Control,1996.
    [112]刘博.基于纯电动汽车的制动能量回收系统的研究与实现[D].北京:清华大学,2004.
    [113]徐海东.电动汽车再生制动能量高效回收控制策略研究[D].山东:山东大学,2007.
    [114]赵国柱.电动汽车再生制动稳定性研究[D].南京:南京航空航天大学能源与动力学院,2006.
    [115]唐鹏.电动汽车制动能量回收的分析与研究[D].合肥:合肥工业大学机械与汽车工程学院,2007.
    [116]刘博.基于纯电动汽车制动能量回收系统的研究与实现[D].北京:清华大学自动化系,2004.
    [117]余志生.汽车理论[M].北京:机械工业出版社,2006.
    [118]M.米奇克,陈荫三,余强译.汽车动力学(第4版)[M].北京:清华大学出版社,2009.
    [119]高海鸥,王仲范,邓亚东.PRIUS混合动力汽车驱动系统键合图建模仿真[J].武汉理工大学学报,2004.
    [120]NAKAMURA E, SOGA M, SAKAI A, et al. Development of Electronically Controlled Brake System for Hybrid Vehicle, Toyota Motor Corporation[C]. SAE,2002(01).
    [121]TERASHIMA M, ASHIKAGA T, MIZUNO T, et al. Novel motors and con-trollers for high-performance electric vehicle with four in-wheel motors[J]. Industrial Electronics, IEEE Transactions on,1997,44(1):28-38.
    [122]JEONG J U. A Development of an Energy Storage System for Hybird Electric Vehicles Using Controlled Super Capacitors[C]. EVS.20,2004.
    [123]GAO Y M, CHEN L P, EHSANI M. Investigation of the Effectiveness of Regenerative Braking for EVand HEV[C].SAE,1999.
    [124]林志轩,高晓杰.制动踏板感觉研究现状[J].农业装备与车辆工程,2007(6):4-7.
    [125]JOAQ.UIM A. De Arruda Pereira. New fiesta:Brake pedal feeling development to improve customer satisfaction[J].SAE paper,2003 (01):3598.
    [126]ZEHNDER J W H, KANETKAR S S, OSTERDAY C A. Variable rate pedal feel emulator designs for a brake-by-wire system[C]. SAE Technical Paper,1999.
    [127]余卓平,左建令,陈慧.基于四轮轮边驱动电动车的路面附着系数估算方法[J].汽车工程,2007,29(2):141-145.
    [128]HORI Y. Future vehicle driven by electricity and control-research on four-wheel-motored, IEEE Trans[C]. USA:on Industrial Electronics,2004.
    [129]MUTOH N and YAHAGI H. Control methods suitable for electric vehicles with independently driven front and rear wheel Structures[C]. Chicago:IEEE Vehicle Power and Propulsion,2005.
    [130]SANGTARASH F, ESFAHANIAN V, NEHZATI H, et al. Haghpanah, Effect of different regenerative braking strategies on braking performance and fuel economy in a hybrid electric bus employing CRUISE vehicle simulation[C]. SAE paper,2008.
    [131]武钟财.基于扩展卡尔曼滤波的路面附着系数估计算法研究[D].长春:吉林大学,2008.
    [132]TERRY D. Day, Sydney G. Roberts. A simulation model for vehicle braking systems fitted with ABS[J]. SAE Paper,2002 (01):0559.
    [133]KAZEMI R, KABGANIAN M, ZAARE M R M. A new sliding mode con-traller for four-wheel anti-lock braking system(ABS)[M], SAE Paper 2000:01-1639.
    [134]孙骏,朱忠奎,等.汽车制动防抱系统的混合建模与仿真研究[J].系统仿真学报,2004(9):2059-2062.
    [135]苟凯英,程军.基于MATLAB仿真环境实现防抱制动控制逻辑[J].测控技术,2002,21(1):25-27.
    [136]ONG C M. Dynamic Simulation of electric machinery using Matlab/simulink[C]. Prentice Hall, 1998.
    [137]BUTLER K L, EHSANI M, KAMATH P. A Matlab-Based Modeling and Simulation package for Electric and Hybrid Electric Vehicle Design[C]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 1999:VOL.(48), NO.6.
    [138]付永领等. AMESim系统建模和仿真——从入门到精通[M].北京:北京航空航天大学出版社,2006.
    [139]http://www.amesim.com.cn/about.asp?D_ID=5
    [140]http://baike.baidu.com/view/1371012.htm
    [141]张威.Stateflow逻辑系统建模[M].西安:西安电子科技大学出版社,2007.
    [142]http://www.baisi.net/thread-5378-1-1.html
    [143]王鹏宇,王庆年,胡安平,于远彬.基于Simulink-AMESim联合仿真的混合动力客车再生制动系统分析[J].吉林大学学报(工学版),2008,2(38):7-11.
    [144]WANG J, SONG C X, JIN L Q. A Composite ABS Control Method for EV with Four Independently-driving Wheels[C]. Wuhan:IEEE The 2nd International Workshop on Intelligent Systems and Applications (ISA 2010),2010(1):262-265.
    [145]WANG J, SONG C X, JIN L Q. Modeling and Simulation of Automotive Four-channel Hydraulic ABS Based on AMESim and Simulink/Stateflow[C]. Wuhan:IEEE The 2nd International Workshop on Intelligent Systems and Applications (ISA 2010),2010 (1):514-517.
    [146]AMESim软件的自带资料与帮助等.
    [147]李斌花.纯电动汽车电机驱动系统控制策略研究[D].长沙:湖南大学,2005.
    [148]PACEJKA HansB. Tyre and Vehicle Dynamics[M]. Oxford:Butterworth-heinemann,2006.
    [149]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [150]袁忠诚,卢荡,郭孔辉. Unitire与Magic Formula稳态模型的对比研究[J].汽车技术,2006,(2):7-11.
    [151]ADAMS魔术公式的轮胎模型.http://wenku.baidu.com/view/122363165f0e7cd184253636.html
    [152]胡安平.基于AMESim-Simulink联合仿真的再生制动系统研究[D].长春:吉林大学,2008.
    [153]岳立鹏.基于AMESim的汽车TCS液压控制系统建模与分析[D].长春:吉林大学,2009.
    [154]赵国柱,杨正林,魏民祥,潘松,孟卫国.基于ECE法规的电动汽车再生制动控制策略的建模与仿真[J].武汉理工大学学报(交通科学与工程版)2008,32(1):2.
    [155]张立军,朱博,贾云雷.依ECE法规进行汽车制动力分配新方法[J].辽宁工程技术大学学报,(24):2.
    [156]张为,王伟达,丁能根,刘辉,徐向阳.基于Dspace的ASR硬件在环仿真平台开发及ECU性能试验[J].汽车技术,2009,(10):4-8.
    [157]丁能根,邹红明,余贵珍,王伟达,张坚.ABS硬件在环仿真的车辆系统建模[J].江苏大学学报(自然科学版),2008,29(6):478-481.
    [158]丁海涛,郭孔辉,张建伟,付浩,吕济明.汽车ESP硬件与驾驶员在回路仿真试验台的开发与应用[J].汽车工程,2006,28(4):346-350.
    [159]谢晗,吴光强,邱绪云.基于xPC目标的实时仿真技术及实现[J].微计算机信息.2006,22(12):200-202.
    [160]孔磊,宋健.多功能液压ABS混合仿真试验台设计研究[J].公路交通科技,2006,23(10):128-131.
    [161]宋正华.汽车稳定性控制虚拟样车及硬件在环仿真研究[D].南京:东南大学,2005.
    [162]李长文,张付军,黄英等.基于dSPACE系统的电控单元硬件在环发动机控制仿真研究[J].兵工学报,2004,25(4):402-406.
    [163]赵和平.硬件在环仿真技术在防抱死制动系统试验台架开发中的应用[D].上海:上海交通大学,2002.
    [164]WANG Y M, ZHANG F J, WANG Y T, et al. Hardware-in-the-Loop Research on the Electronic Control Unit for Diesel Engines[J]. Journal of Beijing Institute of Technology,2009,18(4):416-421.
    [165]CHU L, HOU Y L, LIU M H, LI J, GAO Y M, and EHSANI M. Development of Air-ABS-HIL-Simulation Test Bench[C].Vehicle Power and Propulsion IEEE Conference,2007.
    [166]HWANG T, ROHL J, PARK K, HWANG J, LEE K H, LEE K, LEE S J and KIM Y J. Development of HILS Systems for Active Brake Control Systems[C]. SICE-ICASE International Joint Conference,2006.
    [167]ZHANG Y, YIN C L, ZHANG J C. Matlab Based Human & Hardware-in-Loop Simulation for the Study on Vehicle Stability Control[J]. Journal of Shanghai Jiaotong University(Science),2006,11(4): 498-505.
    [168]SORNIOTTI A and VELARDOCCHIA M. Hardware-In-the-Loop (HIL) Testing of ESP (Electronic Stability Program) Commercial Hydraulic Units and Implementation of New Control Strategies[C]. SAE paper,2004.
    [169]LEE K C, JEON J W, HWANG D H, and KIM Y J. Performance Evaluation of Antilock Brake Controller for Pneumatic Brake System[C]. IEEE conference,2003.
    [170]刘巍.轻型汽车转向稳定性控制算法及硬件在环试验台研究[D].长春:吉林大学,2008.
    [171]Hori Y, Toyoda Y, Tsuruoka Y. Traction Control of Electric Vehicle:Basic Experimental Results Using the Test EV "UOT Electric March" [J]. IEEE Transaction on Industry App lication,1998,34(5): 1131-1138.
    [172]丁能根,王伟达,余贵珍等.基于试验知识的ABS自适应控制策略研究与验证[J].汽车工程,2009,31(1):2832.
    [173]陈刚.智能可充电稳压电源的设计与开发[D].大连:大连理工大学,2008.