高空消防车臂架控制关键技术研究与系统开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高空消防车是现代消防装备中极为重要的组成部分,在高空灭火、救援,甚至施工上有着举足轻重的作用。在对多款高空消防车产品进行调研后发现,高空消防车臂架在变幅过程中普遍存在抖动厉害、平稳性差的现象,如果这种情况不加以改善,将直接影响高空消防车作业的稳定性,轻则降低其整车性能、影响作业效率,重则引发安全事故、造成人员伤亡。因此,研究如何改善臂架变幅过程中的平稳性,有着重要的现实意义。
     本文的主要研究工作如下:
     1.建立臂架机构的多体模型,应用ADAMS工具对其进行运动学仿真,分析其运动学特性。结果表明:臂架变幅过程的平稳性与臂架驱动液压缸活塞杆的伸缩速度存在一定关系,在特定的液压缸伸缩速度下,臂架能够获得较好的变幅平稳性;在双缸驱动情况下,双缸动作的同步精度对变幅平稳性有较大影响。
     2.研究应用于高空消防车臂架双缸驱动同步控制的策略和方法,依此设计了臂架双缸同步驱动电液控制系统,建立了系统各环节的数学模型,并在MATLAB/Simulink环境下对控制系统进行了仿真。结果表明,该系统是稳定可行的,并具有较高的同步控制精度,能够满足臂架平稳变幅的要求。
     3.通过分析CDQ24高空消防车臂架控制系统的原理及实现方法,结合活塞杆伸缩速度特性与臂架变幅平稳性的关系,发现其控制系统无法实现按照特定的速度特性控制液压缸活塞杆的伸缩是造成其臂架变幅平稳性差的主要原因。基于此,提出了实现臂架平稳变幅的控制策略,并设计了适用于高空消防车臂架平稳变幅的控制方案,并就该方案设计了部分控制算法。
     4.应用2、3项的研究成果,搭建了高空消防车臂架运动控制实验模型。利用该模型进行实验与测试,结果表明本文所提出的控制策略和方法是正确、实用和可行的。
Aerial fire truck is an extremely important part of modern fire-fighting equipments, as it plays a significant role in high-altitude fire fighting, human rescuing, as well as in normally project engineering. Based on investigation on several styles of aerial fire truck products, we find there generally exists the fact of shaking heavily, poor balance in jib luffing process. If the situation can't be improved, it will lead to a direct influence on the stability of the operation of aerial fire truck. Thus it will decrease property of the whole vehicle, and influence its efficiency, what's worse, it may lead to a safety accident. Thus, it is urgent and full of reality importance to do a research and settle down the stability problem during the jib luffing process.
     The main work of this dissertation is as follows.
     1. A multi-body model of the jib mechanism was set up first. Then kinematics simulation was done by adopting ADAMS kits to get its kinematics characteristics. The simulation results shows that there exists a relationship between the jib luffing process's stability and the speed of jib driving hydraulic cylinder piston rod. Under particular moving speed, the jib can get better luffing stability. In the case of double cylinder driving, synchronization accuracy of the two hydraulic cylinders will have a great influence on jib luffing stability.
     2. Strategies and methods for synchronization control of the aerial fire truck jib driving cylinders were investigated. The electrohydraulic control system for jib driving cylinders was designed based on the proposed control strategies. Mathematical models of each part of the system were set up and the whole system was simulated under MATLAB/Simulink environment. The simulation results have shown that the control system is stable and owns high synchronization control accuracy, which can fulfill the needs on jib luffing stability.
     3. Through analyzing principles and realization methods for CDQ24aerial fire truck jib luffing control system, combined with the relationship between the speed characteristics of the piston rod and the jib luffing stability, the main reason which leads to poor jib luffing stability lies on its control system cannot adjust the hydraulic piston rod's moving action according to special speed characteristics.
     4. Test model for motion control of the aerial fire truck was set up by adopting the former research results. The model was used to implement the control strategies for testing. The test results shows that the research results gain in this dissertation is correct, practical and feasible.
引文
[1]姚明,田志坚.举高消防车介绍[J].商用汽车,2005,(7):76-79.
    [2]张连民.我国消防车存在的问题及改进措施[J].消防技术与产品信息,2006,(1):35-37.
    [3]程玉.当前消防装备建设中存在的主要问题及对策[J].研究与探讨,2003,(2):26-28.
    [4]郭方云.高空救援消防车的设计研究[D].长沙:湖南大学,2005.
    [5]袁东.浅析消防举高车辆的电气控制系统[J].消防设备研究,2005,24(2):213-214.
    [6]姚明,张义,滕儒民,等.68m登高平台消防车副车架和支腿结构设计及有限元分析[J].工程机械,2006,(6):25-27.
    [7]中华人民共和国国家标准局.GB6244—86.消防车通用底盘系列、型式、基本参数和技术要求[S].北京:中国标准出版社,1987-02-01.
    [8]张进良.国外消防车简介(一)——举高消防车[J].消防技术与产品信息,2010,(3):80-85.
    [9]田志坚,余战.徐工的DG68巨型登高平台消防车[J].商用汽车杂志,2007,(11):89-91.
    [10]郭方云.折叠臂式登高平台消防车总体设计研究[D].大连:大连理工大学,2007.
    [11]Technical Description Metz Turntable Ladder L39. Metz Aerials, Germany.
    [12]EPC 32 PRX, Fire Fighting and Rescue Automatic Turntable Ladder Riffaud, France.
    [13]Bronto Skylift. Aerial Platform Operation Manual. Finland.
    [14]肖方兵,小溪.森田MLK4-30超速智能直臂云梯消防车简介[J].消防技术与产品信息,2007,(3):78.
    [15]NFPA 1901, Standard for Automotive Fire Apparatus, 2003 Edition. American
    [16]周轶群,郭芳云,刘召华ZLJ5330JxFYT30型多功能云梯消防车[J].商用汽车,2009,(6):98-99.
    [17]余战,姚明.徐工重型JP42型举高喷射消防车[J].工程机械与维修,2007,(6):114.
    [18]苏东海,韩国惠,于江华,等.液压同步控制系统及其应用[J].沈阳工业大学学报,2005,27(4):364-367.
    [19]李国军.多缸同步性能分析与研究[D].西安:西安科技大学,2009.
    [20]丁意,赵克定,于金盈.双缸同步控制系统的研究[J].流体传动与控制,2007,(3):24-26.
    [21]罗艳蕾.液压同步回路及同步控制系统实现的方法[J].液压与气动,2004,(4):65-67.
    [22]Sun Hong, Chiu George T.- C.Motion synchronization for multi- cylinder electro-hydraulic system [C].2001 A SME International Mechanical Engineering Congress and Exposition, American, 2001. American:American Society of Mechanical Engineers,2002.
    [23]Hui Zhu, Yannian Rui. Intelligently Synchronous Control of Multi-cylinder Hydraulic Pressure Elevator with Variable Load [C]. Emergency Management and Management Sciences (ICEMMS), 2011 2nd IEEE International Conference on, Beijing,2011.
    [24]C-Y Chen. Synchronous motion of two-cylinder electrohydraulic system with unbalanced loading and uncertainties [J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering,2007,221(7):937-955.
    [25]王辉.阀控双缸同步控制方法研究[D].济南:山东大学,2008.
    [26]周岸.基于电液比例技术的多缸同步理论研究[D].郑州:河南工业大学,2007.
    [27]QinHe Gao, WenLiang Guan. Research on Intelligent Synchronization Control of Erecting System Driven by Two Hydraulic Cylinders [J]. Advanced Materials Research,2011,422: 167-171.
    [28]苏和平,王威虎,彭丹.双曲柄滑块机构运动平稳性分析[J].内蒙古民族大学学报(自然科学版),2009,24(3):305-307.
    [29]谢良喜,孔建益,杨金堂,等.双曲柄滑块五杆机构运动平稳性的影响因素研究[J].机械设计与研究,2009,增刊:79-81.
    [30]杨存智.液压缸运动平稳性分析与研究[J].煤矿机械,2005,(11):62-64.
    [31]Ghazali R,Sam Y.M,Rahmat M.F,Jusoff K,Zulfatman,Hashim A.W.I.M. Self-tuning control of an electro-hydraulic actuator system [J].Electro-hydraulic control,2011,4(2): 189-204.
    [32]王乐有,汤志远,石联军.同步伸缩吊臂伸缩运动的不平稳现象[J].起重运输机械,2008,(12):102-105.
    [33]葛广成.登高平台消防车臂架静、动力学及稳定性分析[D].长沙:湖南大学,2007.
    [34]范成建,熊光明,周明飞.虚拟样机软件MSC.ADAMS应用与提高[M].北京:机械工业出版社,2006:52-54.
    [35]李增刚ADAMS入门详解与实例[M].北京:国防工业出版社,2006:125-140.
    [36]杨存智.液压缸运动平稳性分析与研究[J1.煤矿机械,2005,(11):62-64.
    [37]丁旭升.基于机构运动平稳的可靠性研究与结构优化设计[J].机电工程技术,2009,38(6):1-7.
    [38]彭熙伟,赵洪刚,谭日飞,等.电液比例方向阀特性的应用研究[J].液压与气动,2004,(4):36-37.
    [39]叶建文.电液比例控制阀在工程机械中的应用研究[J].机电产品开发与创新,2007,20(4):3-5.
    [40]杨逢瑜.电液伺服与电液比例控制技术[M].北京:清华大学出版社,2009.
    [41]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社,2005.
    [42]吕杰,徐义.基于MATLAB的臂架型起重机起升机构动力学分析[J].科技创新导报,2011,(20):99-100.
    [43]QCPU(Q系列)/QnACPU编程手册(PID控制指令篇)[Z].2008.
    [44]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2011