胶质母细胞瘤中CD133阳性细胞的分布与组织微血管增殖的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性胶质瘤是中枢神经系统最为常见的原发性肿瘤之一,约占颅内肿瘤的45%-50%,具有分化程度差、增殖活性高、呈侵袭性生长的特性,致残致死率高。恶性胶质瘤细胞具有在脑组织内侵袭和迁移的能力,肿瘤与脑组织的真实边界很难确定,不仅为手术和其他辅助治疗带来困难,也是肿瘤播散与复发的主要原因。因此,深入了解恶性胶质瘤侵袭迁移的生物学规律是当前亟待研究的问题。
     既往研究发现,恶性胶质瘤在脑实质内的侵袭有两个主要路径:一是肿瘤细胞沿着有髓神经纤维进行迁移,这是恶性胶质瘤主要的侵袭路径;二是肿瘤细胞沿着血管基底膜途径侵袭,新生血管的形成是肿瘤细胞扩散的引导结构。有关恶性胶质瘤细胞侵袭性的分子机制的研究提示恶性胶质瘤的侵袭迁移是肿瘤细胞与宿主细胞及细胞外基质相互作用的复杂过程,涉及黏附分子、酶、信号转导系统、基因调控、血管生成等多方面的因素。
     近年来,人们利用CD133、Nestin等标志物成功鉴定和分离出了胶质瘤干细胞,认为胶质瘤干细胞群体中存在侵袭性的胶质瘤干细胞亚群,他们具有高侵袭性,可能是肿瘤迁移和复发的“根源”,为研究恶性胶质瘤侵袭迁移的生物学特性提供了新的思路。本课题将重点研究胶质瘤干细胞标记物CD133在胶质母细胞瘤及瘤周不同部位的表达情况,并分析其与CD34+组织微血管增殖的相关性,以探讨胶质瘤干细胞在恶性胶质瘤中侵袭迁移的生物学规律。本课题研究分三步完成:
     1.采用免疫组织化学染色和Western blot法检测CD133在各组标本中的表达情况。两种方法均显示CD133在对照组脑组织中不表达,而在肿瘤和水肿交界区、肿瘤中心区,瘤周水肿区组织中呈阳性表达。各区域间CD133表达的差异具有统计学意义(P<0.05)。光学显微镜下可见,在交界区CD133+细胞分布密集,往往形成以微血管为中心的假菊型团样结构,在中心区CD133+细胞常在微血管附近簇状分布,偶可见CD133+细胞围绕坏死域形成的假栅栏样结构,在水肿区也可见CD133+细胞环绕微血管形成的假菊型团样结构但以散在分布为主,还可见沿着小血管基底膜和髓质神经纤维分布的CD133+细胞。
     2.采用免疫组织化学染色法检测CD34+组织微血管在组织标本中的表达。高倍视野下(×200倍)CD34+MVD(个/视野)在肿瘤和水肿交界区、肿瘤中心区、肿瘤周围水肿区、对照组脑组织中分别是31.32±3.97、21.80±2.58、15.28±2.37、4.67±1.53;各组之间的差异具有统计学意义(P<0.05)。与对照组脑组织相比,胶质母细胞瘤及瘤周组织中的微血管不仅有MVD的增加,而且形态结构也有明显的缺陷,多为幼稚血管,管壁仅一层内皮细胞,缺乏基底膜,有些甚至呈裂隙状。
     3.利用统计学方法分析CD133+胶质瘤干细胞的分布与组织微血管增殖的相关性。胶质母细胞瘤中CD133的表达水平和CD34+组织微血管密度的分布呈正相关(r=0.928,P<0.05)。
     结论
     1.胶质瘤干细胞向微血管生成丰富的交界区迁移富集,提示他们和组织微血管之间可能存在密切的“趋向”联系。
     2.胶质瘤干细胞在脑实质内也能沿着血管基底膜和髓质神经纤维途径侵袭。
     3.切断胶质瘤干细胞和组织微血管之间的“趋向”联系可以干预肿瘤干细胞的迁移。
     4.抗肿瘤微血管治疗可能是恶性胶质瘤有效的治疗手段之一。
Malignant gliomas, accounting for 45%-50% of intracranial neoplasm, are the most common and lethal primary brain tumors. Malignant gliomas are poorly differentiated, highly proliferated and aggressive. Being the primary reason for tumor recurrence and dissemination, the ability to invade and spread into normal brain tissue obscures the histological boundary between the malignant glioma and healthy brain, and renders difficulties to surgical removal and other adjuvant therapies. Therefore, insight into the underlying biological features of invasion and migration of malignant glioma continues the urgent problem.
     Previous studies have shown that there are two main invasive paths for malignant glioma:one is along the myelinated nerve fibers, which is the primary way for glioma cells moving; the other is along the basement membrane of blood vessels. The formation of new blood vessels are the induced structures for tumor cell diffusing. The studies on molecular mechanism of invasiveness of malignant glioma cells suggested that the invasion of malignant gliomas is a complicate and consecutive process undergoing adhesion, degradation and migration multi-step, and involving multi-factor such as cell adhesion, molecules, enzymes, cytokines, gene regulation and angiogenesis, etc.
     In recent years, the glioma stem cells are identified and isolated successfully, using bio-markers, such as CD 133 and Nestin. In the glioma stem cells, more invasive subpopulation are thought to exist, which might be the root cause of tumor recurrence and migration. These findings provided a novel clue to investigate biological characteristics of invasion of malignant gliomas. To understand deeply the invasive path of glioma stem cells within the tumor and surrounding tissue, we focused on the expression of CD133, a marker for glioma stem cells, and CD34, a marker for endothelial cells, in different parts of glioblastoma tissue and tumor margin in the present study.The correlation between CD133 positive cells and CD34 positive microvascular proliferation was analyzed. The study including three parts:
     1. The expression of CD133 in different parts within the tumor and surrounding tissue was detected by immunohistochemistry and western blotting. No expression of CD133 was found in the control brain tissue. The expression scores of CD133 were 7.26±1.35,5.18±1.12,2.67±0.98 by immunohistochemistry, while 0.79±0.03, 0.38±0.01,0.20±0.04 by western blot, respectively in tumor marginal zones, tumor cores, and edematous zones. The difference of CD133 expression in different groups are significant statistically (P<0.05). Under the microscope, CD133-positive cells densely congregated around the vessels and formed perivascular pseudorosettes in tumor marginal zones. In the core of the tumor, CD 133 positive cells clustered around the vessels and occasionally led to pesudopalisades around necrosis. In the edematous zones, perivascular pseudorosettes of CD133 positive cells scattered and CD133 positive cells were also observed to line up along myelinated nerve fibers and the basement membrane of vessels.
     2. The microvessel density (MVD) in different parts within the tumor and surrounding tissue was determined by CD34 immunohistostaining. Under the microscope (magnification×200). CD34+MVD/HP were 31.32±3.97、21.80±2.58、15.28±2.37、4.67±1.53 respectively in tumor marginal zones, tumor cores, edematous areas and the control brain tissues. The difference of the microvessel density in different groups were significant statistically (P<0.05). Compared with in the control brain tissue, besides the increased microvessel density, most of those microvessels in the tumor and tumor margin were immature morphologically, only composed of a single layer of endothelial cells and lost of basement membrane, even with the cleft wall.
     3. The correlation was analyzed statistically between the distribution of CD 133 positive glioma stem cells and CD34+ microvascular proliferation. The expression level of CD133+ was positively correlated with CD34+MVD (r=0.928, P<0.05) in glioblastoma.
     Conclusion:
     1. The glioma stem cells tend to congregate in the tumor margin zones where the microvessels are also enriched. It suggests the glioma stem cells tropism for microvessels.
     2. Glioma stem cells would invade along the myelinated nerve fibers and the basement membrane of vessels within the parenchyma of the brain.
     3. Blocking Glioma stem cells tropism for microvessels would be the novel strategy to prevent migration of Glioma stem cells.
     4. Antiangogenesis therapy might be one of efficient anti-tumor management.
引文
[1]Fan E,Ji Berger MS.Malignant astrocytomas [J]. Surgical aspects.Surg Neurol,1994,21:172-185.
    [2]DeAngelis LM.Brain tumor therapy:new horizons,new hope[J]. Neurolog-y,1998,50:1209-1210.
    [3]王华民,杨学军.恶性胶质瘤侵袭性相关因素的研究[J].国际肿瘤学杂志,2010,37(9):672-675.
    [4]陈宝师,张伟,李守魏.抗血管生成靶向药物治疗恶性胶质瘤的临床研究[J].中国现代神经疾病杂志,2008,8(5):432-436.
    [5]Kroeger KM, Muhammad AK, Baker GJ, et al.Gene therapy and virotherapy: novel therapeutic approaches for brain tumors[J]. Discov Med. 2010,10(53):293-304..
    [6]Reya T, Morrison SJ, Clarke MF, et al.Stem cells, cancer, and cancer stem cells[J]. Nature.2001,414(6859):105-110.
    [7]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al.Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A[J]. 2003,100(7):3983-3988.
    [8]Kim CF, Jackson EL, Woolfenden AE, et al.Identification of bronchioalveolar stem cells in normal lung and lung cancer[J]. Cell.2005,121(6):823-835.
    [9]Fang D, Nguyen TK, Leishear K, et al.A tumorigenic subpopulation with stem cell properties in melanomas[J].Cancer Res.2005,65(20):9328-9337.
    [10]Collins AT, Berry PA, Hyde C, et al.Prospective identification of tumorigenic prostate cancer stem cells[J].Cancer Res.2005,65(23):10946-10951.
    [11]Atlasi Y, Mowla SJ, Ziaee SA, et al.OCT-4, an embryonic stem cell marker, is highly expressed in bladder cancer[J].Int J Cancer.2007,120(7):1598-1602.
    [12]Haraguchi N, Utsunomiya T, Inoue H, et al.Characterization of a side population of cancer cells from human gastrointestinal system[J].Stem Cells. 2006,24(3):506-513.
    [13]Davide Schiffer Andrea Manazza and Ilaria Tamagno. Nestin expression in neuroepithelial tumors [J].Neuroscience Letters,2006,400 (1-2):80-85.
    [14]Salmaggi A, Boiardi A, Gelati M,et al.Glioblastoma-derived tumorospheres identity a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype[J]. Glia.2006,54(8):850-860.
    [15]张清平,陈建良,吴秋良,等CD133、Nestin在星型细胞肿瘤中的表达及与病理级别的关系[J].中国神经肿瘤杂志,2008,5(1):15-19.
    [16]Zeppernick F,Ahmadi R,Campos B,et al.Stem cell marker CD133 affects clinical outcome in glioma patients[J].Clin Cancer Res,2008,14:123-129.
    [17]Beier D,Wischhusen J,Dietmaier W,et al.CD133 expression and cancer stem cellspredidct prognosis in high grade oligodendroglial tumors[J].Brain Pathology,2008,18:370-377.
    [18]Zhang M,Song T,Yang L,et al.Nestin and CD133:valuable stem cell specific markers for determining clinical outcome of glioma patients[J].J Exp Clin Cancer Res,2008,27:85-91.
    [19]Hsieh D, Hsieh A, Stea B,et al. IGFBP2 promotes glioma tumor stem cell expansion and survival[J]. Biochem Biophys Res Commun.2010 Jun 25;397(2):367-372.
    [20]Weider N.Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors[J].Breast Cancer Res Treat,1995,36:169-180.
    [21]Barrett JC. Mechanisms of multistep carcinogenesis and carcinogen risk assessment[J].Environ Health Perspect,1993,100:9-20.
    [22]Marx J.Debate surges over the origins of genomic defects in canc-er[J].Science,2002,297(5581):544-546.
    [23]林志雄.肿瘤发生发展的生态学原理[J].中国神经肿瘤杂志,2008,6(4):275-278.
    [24]Yi L,Zhou ZH,Ping YF,etal.Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma[J].Mod Pathol, 2007,20(10):1061-1068.
    [25]Dietrich J, Diamond EL, Kesari S. Glioma stem cell signaling:therapeutic opportunities and challenges. Expert Rev Anticancer Ther[J]. 2010,10(5):709-722.
    [26]Stupp R, Hegi ME. Targeting brain-tumor stem cells[J]. Nat Biotechnol. 2007,25(2):193-194.
    [27]董军.对脑肿瘤干细胞五年研究历程的反思及再认识[J].中国现代神经疾病杂志,2008,8(5):384-387.
    [28]Hemmati HD, Nakano Ⅰ, Lazareff JA, et al.Cancerous stem cells can arise from pediatric brain tumors[J]. Proc Natl Acad Sci U S A.2003,100(25):15178-15183.
    [29]Yuan X,Curtin J,Xiong Y,et al.Isolation of cancer stem cells from adult glioblastoma multiforme[J].Oneogene,2004,23(58):9392-9400.
    [30]Reynolds BA,Weiss S.Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous System[J].Seience,1992,255 (5052):1707-1710.
    [31]Singh Sk,Clark ID,Terasaki M,et al.Identifieation of a cancer stem cell in human brain tumors[J].Cancer Res,2003,63(18):5821-5828.
    [32]Galli R,Binda E,Orfanelli U,et al.Isolation and characterization of tumor-igenic,stem like neural precursors from human glioblastoma [J].Cancer Res,2004,64(19):7011-7021.
    [33]Kondo T,Setoguchi T,Taga T.Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line[J].Proc Natl Acad Sci USA,2004,101(3):781-786.
    [34]Singh SK,Hawkins C,Clarke ID,et al..Identification of human brain tumour initiating cells[J].Nature,2004,432(7015):396-401.
    [35]Hemmati HD,Nakano I,Lazareff JA,et al.Cancerous stem cells can arise from pediatric brain tumors[J].Proc Natl Acad Sci USA,2003,100(25):15178-15183.
    [36]Park CH, Bergsagel DE, McCulloch EA.Mouse myelomatumor stem cells:a primary cell culture assay[J].J Natl Cancerlnst,1971,46:411-422.
    [37]Hemmati HD,Nakano 1,Lazareff JA,et al.Cancerous stem cells can arise from Pediat ric brain tumors[J].Proc Natl Aead Sci USA,2003,100:15178-15183.
    [38]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma[J]. Cancer Res.2004 Oct 1;64(19):7011-7021.
    [39]Singh SK,Clarke ID,Terasaki M,et al.Identification of a cancer stem cell in human brain tumors[J]. Cancer Res,2003,63(18):5821-5828.
    [40]Folkman J.What is the evidence that tumors are angioenesis dependent[J].J Natl Cancer Inst,1990,82(1):4.
    [41]Nico B, Benagiano V, Mangieri D,et al. Evaluation of microvascular density in tumors:pro and contra[J]. Histol Histopathol.2008,23(5):601-607.
    [42]Mineo TC, Ambrogi V, Baldi A, et a.l Prognostic impact of VEGF,CD31,CD34 and CD 105 expression and tumor vessel invasion after radical surgery for IB-IIA non-small cell lung cancer[J]. J Clin Patho,2004,57(6):591-597.
    [43]邱虹韩,依轩,阔志生,等.CD105、CD34在人脑胶质瘤中的表达及其临床 意义[J].中国临床医学,2007,14(1):40-42.
    [44]Calabrese C,Poppleton H,Kocak M,et al.A perivascular niche for brain tumor stem cells[J].Cancer Cell,2007,11 (1):69-82.
    [45]Bao S,Wu Q,Sathornsumetee S,et al.Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006,66(16):7843-7848.
    [46]Folkman J.The role of angiogenesis in tumor growth[J]. Semin Cancer Biol. 1992,3(2):65-71.
    [47]Shen Q,Goderie Sk,Jin L,et al.Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells[J.Science,2004,304(5675):1338-1340.
    [48]林志雄.肿瘤微生态系统研究进展[J].中华实验外科杂志2006,23:893-894.
    [49]Li L,NeavesWB.Normal stem cells and cancer stem cells:thenichemat- ters [J].CancerRes,2006,66(12):6458.
    [50]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell[J].2007; 11(1):69-82.
    [51]Folkins, C. Man, S.Xu, P., et al., Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors[J]. Cancer Res,2007.67(8):p.3560-3564.
    [52]Li G, Chen Z, Hu YD, et al. Autocrine factors sustain glioblastoma stem cell self-renewal[J]. Oncol Rep.2009,21(2):419-424.
    [53]Zhang, MSong, T.Yang, L. et al., Nestin and CD133:valuable stem cell-specific markers for determining clinical outcome of glioma patients[J]. J Exp Clin Cancer Res,2008.27:p.85.
    [54]李明武,牛朝诗.脑肿瘤干细胞的分布与肿瘤微血管的相关性[J].中华医学杂志,2010:90(5):305-309.
    [55]Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha[J]. Brain. 2010,133(Pt4):983-995.
    [56]Gilbertson RJ, Rich JN. Making a tumour's bed:glioblastoma stem cells and the vascular niche[J]. Nat Rev Cancer.2007,7(10):733-736.
    [57]Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-lalpha[J]. Oncogene.2009,,28(45):3949-3959.
    [58]McCord AM, Jamal M, Shankavaram UT, et al. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro[J]. Mol Cancer Res.2009,7(4):489-497.
    [59]Heddleston JM, Li Z, McLendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J]. Cell Cycle.2009,,8(20):3274-3284.
    [60]Heddleston JM, Li Z, Lathia JD, et al. Hypoxia inducible factors in cancer stem cells[J]. Br J Cancer.2010,102(5):789-795.
    [61]Christensen K, Schroder HD, Kristensen BW. CD133 identifies perivascular niches in grade II-IV astrocytomas[J]. J Neurooncol.2008,90(2):157-170.
    [62]Foidart JM, Polette M, Birembaut P,et al.Breast cancer invasion:the key role of normal cells of host tissues[J]. Bull Acad Natl Med.1994,178(3):533-542.
    [62]Liotta LA, Kohn EC.The microenvironment of the tumor-host interface[J]. Nature.2001,411(6835):375-379.
    [64]李奇志,姜艳娥,胡少南,等.胶质瘤中VEGF表达与微血管密度的关系及临床意义[J].中国神经肿瘤杂志,2007,5(3):160-163.
    [01]Li H,Liu J,Hofmann M.Differential CD44 expression patterns in primary brain tumors and brain metastases[J].Br J Cancer 1995;72:160-163.
    [02]Ranuncolo SM,Ladeda V,spectennan S,et al.CD44 expression in human glioma[J].J Surg Oncol 2002;79:30-36.
    [03]Wiranowska M,Rojiani A,GottschallP,et al.CD44 expression and MMP-2 secretionby mouse glioma cells:Effect of interferon and anti-CD44 antibody[J].Anticancer Res 2000,20:4301-4306.
    [04]Wiranowska M,Ladd S,smith SR,et al.CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma[J]. Brain Cell Biol 2006,35:159-172.
    [05]Ranuncolo SM, Ladeda V, Specterman S,et al. CD44 expression in human gliomas[J].J Surg Oncol,2002,79(1):30-35.
    [06]Okamoto I, Tsuiki H, Lawrence C, et al. Proteolytic cleavage of the CD44 adhesion molecule in multiple human tumors[J]. American Journal of Pathology, 2002,160(2):441-448.
    [07]Okada H,Yoshida J,Sokabe M,et al.suppression of CD44 expression decreases migration and invasion of human glioma cells[J].Int J Cancer.1996;66:255-260.
    [08]Radotra B,McCormick D.Glioma invasion in vitro is mediated by CD44-hyaluronan interactions[J].J Pathol,1997;181:434-438.
    [09]Annabi B,Bouzeghrane M,Moumdjian R,et al.Probing the infiltrating character of brain tumors:inhibition of RhoA/ROK-mediated CD44 cell surface shedding from glioma cells by geen tea catechin EGCg[J].J Neurochem 2005;94:906-916.
    [10]Kim M,Carman CV,Springer TA.Bidirectional transmemberane signaling by cytoplasmic domain separation in integrins[J].Science,2003,301(5640):1720-1725
    [11]Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion[J]. J Neurooncol.2004,70 (2):217-228.
    [12]Bello L, Lucini V, Giussani C, et al. S20 I, a specificavβ3 integrin inhibitor, reduces glioma growth in vivo[J]. Neurosurgery,2003,52 (1):177-185.
    [13]Tonn JC, Wunderlich S, Kerkau S.et al.Invasive behaviour of human gliomas is mediated by interindividually different integrin patterns[J]. Anticancer Res,1998,18:2599.
    [14]BelotN, Rorive S, Doyen Ⅰ, et a.l Molecular characterization of cell substratum attachments in human glial tumors relates to prognostic features[J]. Glia,2001, 36(3):375-390.
    [15]Todaro L, Christiansen S, Varela M, et al. Alteration of serum and tumoral neural cell adhesion molecule (NCAM) isoforms in patients with brain tumors[J]. J Neurooncol,2007,83 (2):135-144.
    [16]Prag S, Lepekhin EA, KolkovaK, et a.l NCAM regulates cellmotility[J]. JCellSc,i 2002,115(Pt2):283-292.
    [17]Tews DS,Nissen A:Expression of adhesion factors and degrading proteins in primary and secondary glioblastomas and their precursor[J] Tumors.Invasioal Metastasis,1998,18:271-284.
    [18]Owens GC,Orr EA,DeMasters BK,et al.Overexpression of a transmembrane isoform of neural cell adhesion molecule alters theinvasiveness of rat CNS-1 glioma[J].Cancer Res,1998,58:2020-2028.
    [19]Asano K,Duntsch CD,Zhou Q,et al.Correlation of N-cadherin expression in high grade gliomas with tissue invasion[J].J Neurooncol,2004,70(1):3-15.
    [20]Li QSatyamoorthy K,Herlyn M.N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells[J].Cancer Res,2001,61:3819-3825.
    [21]Utsuki S,Oka H,Sato Y,et al.E,N-cadherins and betacatenin expression in medulloblastoma and atypical teratoid/rhabdoid tumor[J].Neurol Med Chir,2004, 44(8):402-407.
    [22]Zachary AK, Charles GD,etal. ADAM-10-Mediated N-Cadherin Cleavage Is Protein Kinase C-α Dependent and Promotes Glioblastoma Cell Migration[J]. Neuroscience,2009,29(14):4605-4615.
    [23]Judit BH, Anne RV, Werner WF.Beyond vessels:occurrence and regional clustering of vascular endothelial(VE-)cadherin-containing junctions in non-endo-thelial cells[J].Cell Tissue Res,2009,335:49-65.
    [24]Wang M,Wang T, Liu S, et al. The expression ofmatrix metalloproteinase-2 and-9 in human gliomas of different pathological grades[J]. Brain Tumor Pathol,2003, 20 (2):65-72.
    [25]Guo P, Imanishi Y, Cackowski FC.Up-regulation of angiopoietin-2,matrix metalloprotease-2, membrane type 1 metalloprotease, and laminin 5 gamma 2 correlates with the invasiveness of human glioma[J]. Am J Pathol, 2005,166(3):877-890.
    [26]Choe G, Park JK, Jouben-steele L,et al·Active matrixmetalloproteinase 9 expression is associatedwith primary glioblastoma subtype[J].Clin CancerRes, 2002,8(9):2894-2901.
    [27]LevicarN, Nutall RK, Lah TT. Proteases in brain tumour progression[J]. Acta Neurochir,2003,145 (9):825-838.
    [28]Matthews RT,Gary SC,Zerillo C,et al.Brain-enriched hyaluron an binding (BEHAB)/brevican cleavage in a glioma cellline is mediated by a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs)family member[J].JBiol Chem.2000,275(30):22695-22703.
    [29]Held-Feindt J, Paredes EB, Blomer U, et a.l Matrixdegrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinaseswith thrombospondinmotifs4 and 5) are expressed in human glioblastomas[J]. Int JCancer,2006,118(1):55-61.
    [30]LevicarN, Nutall RK, Lah TT. Proteases in brain tumour progression[J]. Acta Neurochir,2003,145(9):825-838.
    [31]Tsatas D, Kaye AH. The role of the plasminogen activation cascade in glioma cell invasion:a review[J]. J Clin Neurosci.2003,10(2):139-145.
    [32]Salajegheh M, Rudnicki A, Smith TW. Expression of urokinase-type plasminoge activator receptor (uPAR) in primary central nervous system neoplasms[J]. Appl Immunohistochem Mol Morphol.2005,13(2):184-189.
    [33]Gondi CS, Lakka SS, Yanam andra N,et al.Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas[J].Cancer Res,2004, 15,64(12):4069-4077.
    [34]Lakka SS, Gondi CS, Dinh DH, et a.l Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas[J]. J BiolChem,2005,280(23):21882-21892.
    [35]Ebert MP,Kruger S,Fogeron ML,etal.overexpression of cathepsin B in gastric canceridentified by proteome analysis[J]. proteomics,2005,5 (6):1693.
    [36]Fukuda ME, IwadateY, Machida T, et a.l Cathepsin D is a potential serum marker or poor prognosis in glioma patients[J].. Cancer Res,2005,65(12):5190-5194.
    [37]Shakuntala K,Christopher SG.Simultaneous RNAi-mediated downregulation of uPAR and carthepsin B causes cytoskeletal rearrangement and the induction of pro-apoptotic genes in human glioma xenografts[J].Cancer Research,2005, 46(6):1081.
    [38]Sparatore B, Patrone M, Passalacqua M, et al. Activation of A431 human carcinoma cell motility by extracellular high-mobility group box1 protein and epidermal growth factor stimuli[J].Biochem J,2005,389:215-221.
    [39]Niinaka Y, Paku S, Haga A, et al. Expression and secretion of neuroleukin/ phosphohexose isomerase/maturation factor as autocrine motility factor by tumor cells[J].Cancer Res,1998,58:2667-2674.
    [40]Funasaka T,Haga A,Raz A,et al. Autocrine motility factor secreted by tumor cells upregulates vascular endothelial growth factor receptor (Flt-1) expression in endothelial cells[J]. Int J Cancer,2002,101:217-223.
    [41]Kim MS, Park MJ, Moon EJ,et al. Hyaluronic acid induces osteopontin via the phosphatidylinositol3-kinase/Aktpathway to enhance themotility ofhuman glioma cells[J].CancerRes,2005,65(3):686-691.
    [42]DingQ, Stewart J Jr, Prince CW,et al. Promotion ofmalignant astrocytoma cell migration by osteopontin expressed in the normal brain:differences in integrin signaling during cell adhesion to osteopontin versus vitronectin[J]. Cancer Res, 2002,62 (18):5336-5343.
    [43]Forget MA,Desrosiers RR,Del M,et al.The expression of rho proteins decreaseswith human brain tumor progression:potential tumor marker[J].Clin Exp Metastasis,2002,19(1):9-15.
    [44]Chan AS,Leung SY,Wong MP,et al.Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligoden-droglioma,endymoma[J].Am J Surg Pathol,1998,22(7):816-826.
    [45]Strizzi L,Catalano A,Vianale G,et al.Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma[J].J Pathol,2001,193(4):468-475.
    [46]Fiedler U,Scharpfenecker M,Koidl S,et al.The Tie-2 ligandangiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel-Palade bodies[J]. Blood,2004,103:4150-4156.
    [47]Vajkoczy P,Farhadi M,Gaumann A,et al.Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF,VEGF receptor-2,and Angiopoietin-2[J].J Clin Invest,2002,109:777-785.
    [48]Goike HM,Asplund AC,Pettersson EH,et al.Acquired rearrangement of an amplified epidermal growth factor receptor (EGFR) in a human glioblastoma xenograft[J].J Neuropathol Exp Neurol,1999,58:697-701.
    [49]Wu JL,Abe T,Inoue A,et al.IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells[J].Neurol Res,2004,26:785-791.
    [50]Schmidt NO,Westphal M,Hagel C,et al.Levels of vascular endothelial growth factor,hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis[J].Int J Cancer,1999,84:10-18.
    [51]Matsumoto K, Nakamura T.Hepatoeyte growth faetor and the Met system as a mediator of tumor-stromal interaetions[J].Int J Cancer,2006,119(3):477-483.
    [52]Hjelmeland MD,Hjelmeland AB,Sathornsumetee S,et al.SB431542,a small molecule transforming growth factor-beta-receptor antagonist,inhibits human glioma cell line proliferation and motility[J].Mol Cancer Ther,2004,3:737-745.
    [53]Pamela New.Cyclooxygenase in the Treatment of Glioma:Its Complex Role in Signal Transduction[J]. Cancer Control,2004,3(11):152-164.
    [54]Bamba H,Ota S,Kato A,et al.prostaglandins up-regulate vascular endothelial growth factor production through distinct pathways in differentiated U937 cells[J].Biochem Biophys Res Commun,2000,273(2):485-490.
    [55]Yu P,Kodadek Dynamics of the hypoxia-inducible-factor-1 vascular endothelial growth factor promoter complex[J].J Biol Chem,2007,282:35035-35045.
    [56]Kaur B,Khwa W,bufrolin FW,Severson EA,et al.Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis [J].neuro Oncol,2005,(7):134-153.
    [57]刘辉,杨学军.恶性胶质瘤抗血管生成治疗现状[J].中国现代神经疾病杂志,2008,8(5):403-410.
    [58]Peles E,Lidar Z,Simon AJ,et al.Angiogenic factors in the cerebrospinal fluid of patients with astrocytic brain tumors[J].Neurosurgery,2004,55:562-567.
    [59]BratDJ, BellailAC, VanMeirEG.The role of interleukin-8 and its reeeprors in gliomagesis and tumoral angiogenesis[J].Neuro Oneol,2005,7(2):122-133.
    [60]Luzzi KJ,MacDonald IC, Schmidt EE, etal.Multistep nature of metastatic inefficiency:dormancy of solitary cells after successful extravasation and limited survival of early micrometastases[J].Am J Patho,1998,153(3):865-873.
    [61]Buckley CD, Pilling D, Lord JM,et al.Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol[J].2001,22(4):199-204.
    [62]Jeon JY, An JH, Kim SU,et al.Migration of human neural stem cells toward an intracranial glioma[J].Exp Mol Med.2008,40(1):84-91.
    [63]Sarmadi VH, Heng FS, Ramasamy R.The effect of human mesenchymal stem cells on tumour cell proliferation[J]. Med J Malaysia.2008,63 Suppl A:63-64.
    [64]Djouad F,Plence P,Bony C,et al.Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals[J].Blood. 2003,102(10):3837-3844.
    [65]Karnoub AE, Dash AB, Vo AP, et al.Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature.2007,449(7162):557-563.
    [66]Calabrese C, Poppleton H, Kocak M, et al. A perivascularniche for brain tumor stem cells[J]. Cancer Cell2007,11(1):69-82.
    [67]Folkins C,Man S,Xu P,et al.Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors[J].Cancer Res,2007,67(8):3560-3564.
    [68]Gilbertson RJ, Rich JN. Making a tumour's bed:glioblastoma stem cells and the vascular niche[J].Nat Rev Cancer2007,7(10):733-736.
    [69]Seidel S, Garvalov BK, Wirta V, et al. A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor2 alpha Brain,2010,133(Pt4):983-995.
    [70]Soeda A, Park M, Lee D, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1 alpha[J].Oncogene, 2009,28(45):3949-3959.
    [71]McCord AM, Jamal M,Shankavaram UT,et al.Physiologic oxygen concentration enhances the stem-like properties of CD133+human glioblastoma cells in vitro[J].Mol CancerRes,2009,7(4):489-497.
    [72]Heddleston JM, Li Z, McLendon RE, et al. The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype[J].Cell Cycle,2009,8(20):3274-3284.
    [73]Heddleston JM,Li Z,Lathia JD,et al. Hypoxia inducible factors in cancer stem cells[J].Br J Cancer,2010,102(5):789-795.
    [74]Seidel S,Garvalov BK,Wirta V,et al.A hypoxic niche regulates glioblastoma stem cells though hypoxia inducible factor 2 alpha[J].Brain,2010,133(Pt4):983-995.
    [75]Burns JM,Summers BC,Wang Y,et al.A novel chemokine receptor for SDF-1 andl-TAC involved in cell survival,cell adhesion,and tumor development[J].J Exp Med,2006,203:2201-2213.
    [76]Zhou Y,Larsen PH,Hao C,et al.CXCR4 is a major chemokine receptor on glioma cells and mediates their survival[J].J Biol Chem,2002,277:49481-49487.
    [77]Zeelenberg IS,Ruuls-Van SL,Roos E.The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases[J].Cancer Res,2003,63: 3833-3839.
    [78]Scala S,Ottaiano A,Ascierto PA,et al.Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma[J].Clin Cancer Res,2005,11:1835-1841.
    [79]Kucia M,Reca R,Miekus K,et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis[J].Stem Cells.2005,23(7):879-894.
    [80]Milleb RJ,Banisadr G,Bhattacharyya BJ.CXCR4 signaling in the regulation of stem cell migration and development[J].J Neuroimmunol.2008,198(1-2):31-38.
    [81]Peng SB,Peek V,Zhai Y,et al.Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells[J]. Mol Cancer Res.2005,3(4):227-230.
    [82]Dai T, Zheng H, Fu GS.Hypoxia confers protection against apoptosis via the PI3K/Akt pathway in endothelial progenitor cells[J].Acta Pharmacol Sin.2008,29(12):1425-1431.
    [83]姜建勇,平轶芳,赵林涛.趋化因子受体CXCR4活化促进人胶质瘤干细胞迁移及其机制探讨[J].肿瘤,2009,29(5):409-412.
    [84]Nabors LB,Mikkelsen T,Rosenfeld SS,eta.l Phase I and correlative biology study of cilengitide in patientswith recurrentmalignant glioma[J].J Clin Onco, 2007,25(13):1651-1657.
    [85]Cao Z,Liu LZ,Dixon DA,et a.l Insulin-like growth factor-I induces cyclooxygenase-2 expression via PI3K, MAPK and PKC signaling pathways in human ovarian cancer cells [J].Cell Signa,2007,19(7):1542-1553.
    [86]Reardon DA,Rich JN,friedman HS,etal.resent advances in the treatment of malignant astrocytoma[J].J Clin Oncol,2006,24:1253-1265.
    [87]杨学军.现代神经肿瘤学研究新世纪十年进展[J].中国现代神经疾病杂志2010,10(1)103-110.