脉冲核辐射的光纤测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤作为脉冲信号的传输介质,与同轴电缆相比具有传输频带宽、损耗低、抗电磁干扰能力强等优点,已经成功应用于现场试验辐射测量以及电磁试验测量中的脉冲信号远距离传输。然而当光纤受到核辐射时,其光学性能的变化将导致信号传输系统性能的下降。开展脉冲核辐射的光纤测量技术研究,探索核辐射与光纤的作用机制,实验测量光纤的瞬态辐射感生损耗及色散,可望发展新的现场试验辐射测量技术并建立相应的测量系统,提高试验测量水平。同时可为评价应用于现场试验诊断设备、空间飞行器、反应堆及其它核设施中的光纤性能的恶化程度、预估其工作寿命提供实验数据。
     1、分析了普通融石英光纤对核辐射的响应机制,利用基于Monte Carlo方法的GEANT-4程序计算了γ辐射作用时光纤的辐射透过率、效应截面、康普顿电子通量、能通量及角度随射线光子能量的分布;计算了在剂量率为5.3×109Gy/s、平均光子能量为1.0MeV的脉冲γ辐射条件下,光纤中康普顿电子的密度、振荡频率、与中性原子的碰撞频率;提出了采用低温等离子体对光波的吸收模型分析脉冲1,辐射对光纤产生的瞬态辐射感生损耗的方法,并计算了光纤对波长在600-1600nm范围内光波的吸收性瞬态辐射感生损耗数据。计算结果表明:在给定脉冲辐射条件下,光纤的辐射感生损耗随着辐射剂量的增大而增加,随光波波长的增大而略有增加,多模光纤对核辐射的响应比单模光纤稍大,光纤在1310nm、1550nm波长的吸收性辐射感生损耗系数与脉冲辐射实验测量结果在相同的数量级,该模型可以用于分析光纤在脉冲核辐射作用下的瞬态辐射感生损耗。
     2、开展了光纤波导中的电磁场传输理论分析,得到了光波电磁场在波导中的分布,计算了纤芯和包层中电场强度分布、光纤对模式的约束系数、光纤的色散系数随折射率及V参数变化。建立了块状融石英材料及光纤光栅在辐射作用下折射率变化的实时测量系统,开展了光纤折射率随辐射剂量变化及光纤模场测量实验,实验结果验证了核辐射对光纤折射率的影响。建立了时域法测量光纤色散的实验系统,开展了光纤色散随辐射剂量的测量实验。实验结果表明:光纤的折射率随辐射剂量的增加而增大,折射率的变化会引起波导中传输模式的场强分布的变化,从而形成光纤的辐射感生波导损耗;在一定的辐射剂量范围内0-2000Gy,光纤仍满足弱导边界条件,能够维持对传输模式的约束能力;辐射感生波导损耗较小,而色散系数随辐射剂量增加较为明显,对快脉冲光波信号的远距离传输将产生由于脉冲展宽而引起的波形畸变。
     3、为了在复杂电磁环境下利用普通融石英光纤测量脉冲γ射线,研制了脉冲核辐射的光纤测量系统。在分析半导体激光器和探测器瞬态模型的基础上,设计了半导体激光器直接调制实现电光转换、半导体探测器实现光电转换的电路。研制的脉冲核辐射光纤测量系统性能指标为:频带宽度0.0003-3GHz,带内平坦度±1dB,线性动态范围20dB,输出噪声峰峰值小于5mV,驻波比优于2。实验结果表明:采用电光转换和光电转换技术的光纤脉冲核辐射测量系统可用于脉冲辐射场参数测量以及快脉冲信号传输。
     4、建立了瞬态辐射感生损耗的测量方法,采用激光波长分别为405、660、850、1310和1550nm的脉冲核辐射光纤测量系统,在平均光子能量0.3MeV、脉冲宽度25ns、平均剂量率2.0×107Gy/s以及平均光子能量1.0MeV、脉冲宽度25ns、平均剂量率5.3×109Gy/s这两种脉冲γ射线辐射条件下,开展了测量实验并获得了4种常规光纤(ITU G.651(50/125μm、62.5/125μm、G.652、G.655)的总瞬态辐射感生损耗及其与辐射剂量的关系。实验结果表明:(1)脉冲γ射线对光纤的总瞬态辐射感生损耗在可见光到近红外范围内随探测波长的增大而减小;(2)在相同辐射条件下,多模光纤的瞬态辐射感生损耗稍大于单模光纤;(3)在一定剂量范围内,光纤的瞬态辐射感生损耗与剂量呈近似线性关系;(4)瞬态辐射感生损耗系数比永久性辐射感生损耗系数高出三到四个数量级,表明在高剂量率辐射作用下,普通光纤的瞬态辐射感生损耗中的等离子体吸收机制起主导作用。(5)利用瞬态辐射感生损耗测量结果计算了可探测的脉冲辐射源参数和测量系统灵敏度。
     5、理论计算及实验测量结果分析表明:(1)脉冲γ射线作用光纤时,以康普顿效应为主,高能电子是致使光纤产生辐射感生损耗的主要因素。三种模型可以用来解释辐射感生损耗:低温等离子体对光波的吸收、原子能级缺陷吸收及波导参数改变导致的模式能量泄漏。等温等离子体的吸收机制在可见光到近红外区域的较长波段占主导,原子能级缺陷吸收机制在该范围内较短波长段占主导,与上面两种吸收机制相比,光纤的感生波导损耗较小,在实验辐射剂量范围内仍能维持对模式的约束能力。以上三种机制同时存在,光纤的辐射感生损耗是以上三种机制共同作用的结果。(2)折射率的改变导致光纤的色散系数增大,快脉冲光波信号在远距离传输时将产生由于脉冲展宽而引起的波形畸变,核辐射测量使用的光纤长度为数米到数十米,色散系数的增大对测量结果影响不大。(3)光纤对脉冲辐射的响应时间为5ns。(4)基于瞬态辐射感生损耗机制的脉冲核辐射的光纤测量技术可用于实际脉冲辐射的总剂量和上升时间测量。
As pulsed signal transmission media, optical fibers have many advantages over metallic cables such as broad bandwidth, low-loss, immunity from interference due to electromagnetic induction, etc. They have been used to implement pulsed signal transmission over a long distance in radiation measurement of field test and electromagnetic experiments with sophisticated electromagnetic interference. However, while optical fibers are exposed directly in nuclear radiation environments, changes of their optical properties will occur thus resulting in deterioration of system performance eventually. The purpose of the research is to analyze the effect mechanism of nuclear radiation on optical fibers, to measure the transient radiation-induced losses and dispersion, to develop a novel nuclear radiation measurement technology based on the effects and to establish fast pulsed radiation detecting system correspondingly. On the other hand, the research results could be used to provide experimental data for attempting to evaluate system performance degradation and life time under nuclear environments such as nuclear exploders, space-aircrafts, radiation reactors and other nuclear facilities.
     1. General effect mechanisms of available fused silica optical fibers to nuclear radiation are introduced. The penetration rate of y-ray into optical fibers and the variation of cross sections for different effects in optical fibers with photon energy are calculated by GEANT-4based on Monte Carlo method. The resulting electrons'fluency and energy fluency distribution in the horizontal profile of optical fibers is calculated and depicted with photon energy while y-ray projects along the vertical profile respectively. The concentration of Compton electrons, the electronic oscillation frequency and the collision frequency between electrons and neutral atoms are computed under the given pulsed radiation conditions with the dose rate of5.3×10Gy/s and photon energy of1.0MeV. A method is presented that it could use the absorption model of low temperature plasma on lightwaves to analyze the transient effects of nuclear radiation on optical fibers, and the radiation-induced absorption losses within wavelength range of600-1600nm are calculated. The results show that:Under the condition of given dose rate, the radiation-induced absorption losses of optical fibers will increase with the radiation dose and decrease with the frequency of lightwave. Slight difference of radiation-induced losses exists between multimode and single-mode fibers. The radiation-induced absorption losses are in the same orders of magnitude comparing to the transient experimental results when the detecting wavelengths are1310nm and1550nm. The model could be used for analysis of transient radiation-induced loss of optical fiber under pulsed nuclear radiation.
     2. Electric field of transmission mode in optical fiber waveguide is analyzed theoretically. The discipline describing influence of optical fiber refractive index and V parameter changes on waveguide electromagnetic field distribution is obtained. The relative distribution of electric field intensity in the core and clad and confinement factors of optical fibers as a function of refractive index changes are computed also. A real time experimental measurement system of refractive index changes has been built by using bulk fused silica material and fiber Bragg grating under y-ray irradiation. The refractive index changes of two candidates with the given radiation doses and mode field of fiber are measured in the experiments respectively. The influence of nuclear radiation on refractive index is verified. A dispersion measurement system by using time domain method has been setup and the fiber dispersion data related to radiation doses have been acquired. The results show that:The refractive index of the optical fiber will increase with the y radiation dose. The refractive index changes will cause the variations of the field intensity distribution in the transmission mode resulting to radiation-induced waveguide losses, within a certain dose range of0-2000Gy, the optical fiber would still meet the weakly guiding boundary conditions and maintain the confining ability on the transmission mode. The radiation-induced waveguide loss is relatively smaller than the absorption radiation-induced losses, but the radiation-induced dispersion is greatly increasing with doses and results in distortion of the fast pulsed signal resulting from pulse period spreading therefore.
     3. A transient system using ordinary fused silica optical fiber is developed for measurement of pulsed y-ray under the circumstance with complicated electromagnetic field. Based on analysis on the transient models of semiconductor lasers and detectors, the circuits of electro-optic and photo-electric conversion are designed. The experimental measurement results of the system indicate that its bandwidth is0.0003-3GHz, in-band flatness is±1dB, linear dynamic range is20dB, output peak-to-peak noise is less than5mV, and input/output standing-wave-ratio is less than2. The experimental results show that the transient optical fiber measurement system which employs electro-optic and photo-electric conversion technology is suitable for measurement of pulsed nuclear radiation field and fast signal transmission.
     4. An experimental method for transient radiation-induced loss measurement is presented. In order to measure transient radiation loss induced by pulsed y-ray in optical fibers, it's used that an experimental pulsed radiation measurement system which applies five different wavelength lasers such as405,660,850,1310and1550nm as detecting light carriers. Two different pulsed y-ray devices with average photon energy of0.3MeV, pulse width of25ns, average dose rate of2.0×107Gy/s and average photon energy of1.0MeV, pulse width of25ns, average dose rate of5.3×109Gy/s are employed to irradiate four types of available optical fibers (ITU G.651(50/125μm,62.5/125μm), G.652, G.655) in experiments. The transient radiation-induced losses and their relationship with total doses of exposure are obtained. The experimental results show that:(1) The transient radiation-induced losses in optical fibers resulting from pulsed y irradiation will increase as the detecting laser wavelength shifts from near-infrared to visible regions of optical spectrum.(2)Under the same experimental condition, the transient radiation-induced loss of multimode fibers is slightly higher than single-mode fibers.(3)Within a certain dose range, the transient radiation-induced loss in multi-mode fiber displays a nearly linear dependence upon total dose.(4)The total transient radiation-induced loss coefficients are usually three to four orders of magnitude higher than the permanent radiation-induced losses. It indicates that the transient absorption mechanism of low temperature plasma to lightwave plays a leading role in radiation-induced losses.(5)Using the results of radiation-induced losses, the parameters of the pulsed radiation source which the system could detect and the sensitivity of the system are caculated.
     5. It can be deduced from the calculative and experimental results that:(1)Compton Effect will play a leading role and the resulting high energy electrons causing the primary radiation damage due to y-ray absorption in optical fibers. Three models are used to explain the radiation-induced losses which are the absorption of low temperature plasma to electromagnetic waves, atomic energy level defects to photons and energy leakage of waveguide mode resulting from changes in the refractive index distribution. The absorption of low temperature plasma is the dominant factor causing transient radiation-induced losses in the longer wavelength in the range of visible to near infrared. The absorption of atomic energy level defects to photons plays a leading role in the shorter wavelength. Comparing to the two above mechanisms, the leakage of waveguide mode energy is relatively lower. In fact three radiation-induced loss mechanisms exist simultaneously; therefore, the radiation-induced losses are the result of joint action of the three.(2) The refractive index changes cause the increase of fiber dispersion, and transmission signal will be distorted due to time spreading. The fiber used in the measurement system is usually several meters to tens of meters long, changes of dispersion coefficient would have little influence on the measurement results.(3)The response time of optical fiber to pulsed radiation is about5ns.(4)It's feasible to use the pulsed nuclear radiation measurement technology based on mechanism of radiation-induced loss with optical fiber for total dose and rise time of nuclear reaction process measurement.
引文
[1]Mattern P L, Watkins L M, Skoog C D, et al. The effects of radiation on the absorption and luminescence of fiber optic waveguides and materials[J]. IEEE Transactions on Nuclear Science,1974,NS-21:81-95
    [2]Evans B D, Sigel G H and Jr. Permanent and transient radiation induced losses in optical fibers[J]. IEEE Transactions on Nuclear Science,1974,NS-21:113-118
    [3]Golob J E, Lyon P B and Looney L D. Transient radiation effects in low-loss optical waveguides[J]. IEEE Transactions on Nuclear Science,1977, NS-24(6):2164-2168
    [4]Evans B D, Sigel G H, and Jr. The fiber optic dosimter on the Navigational Technology Satellite 2[J]. IEEE Transactions on Nuclear science,1978, NS-25(6):1619-1624
    [5]Friebele E J, Sigel G H, and Jr. Radiation response of fiber optic waveguides in the 0.4 to 1.7μm region[J]. IEEE Transactions on Nuclear Science,1978, NS-25(6):1261-1266
    [6]Share S, McCracken R M. The effect of temperature on the response of class-clad optical waveguides to ionizing radiation[J]. IEEE Transactions on Nuclear Science,1978, NS-25(6): 1288-1292
    [7]Englert T J. Effect of radiation damage in optical fibers[R]. PB-210308,1986
    [8]Friebele E J. Optical fiber waveguide in radiation environments[J]. Optical Engineering,1979, 18(6):552-561
    [9]Tsunemi Kakuta,Naoki Wakayama,Kazuo Sanada, et al. Radiation resistance characteristics of optical fibers[J]. Journal of Llightwave Technology,1986,4(8):1139-1143
    [10]Akira lino and Junich Tamura. Radiation resistivity in silica optical fibers[J]. Journal of Lightwave Technology,1988,6(2):145-149
    [11]Friebele E J, Lyon P B, Blackburn J, et al. Interlaboratory comparison of radiation-induced attenuation in optical fibers.Part Ⅲ:Transient exposures[J]. Journal of Lightwave Technology, 1990,8(6):977-989
    [12]Brannon P J, Bodette D E and McArthur D A. The infrared transmission of low-OH fibers while exposed to nuclear radiations[R]. DE92019320,1992
    [13]Lockwood G J, Bishop L B, Selph M M. Measurements of pulsed radiation-induced fiber fluorescence and darkening[R]. SAND93-3942,1993
    [14]Ramsey A T, Adler H G and Hill K W. Reduced optical transmission of SiO2 fibers used in Controlled fusion diagnostics[R]. DE93008516,1993
    [15]Moss C E, Casperson D E, Echave M A, et al. A space fiber-optic X-ray burst detector[J]. IEEE Transactions on Nuclear Science,1994,41 (4):1328-1332
    [16]Tighe W, Adler H, Cylinder D, et al. Proposed experiment to investigate use of heated optical fibers for Tokamak diagnostics during D-T discharges[R]. DE95007355,1995
    [17]刘颂豪,李淳飞.光电子学技术与应用[M].广州,合肥:广东科技出版社,安徽科学技术出版社.2006:800-801 (Liu Songhao, Li Chunfei. Optoelectronic Technology and Application[M]. Guangzhou, Hefei:Guangdong Science and Technology Press, Anhui Science and Technology Press,2006:800-801)
    [18]廖延彪.光纤光学[M].北京:清华大学出版社.1998:54-91(Liao Yanbiao. Fiber Optics[M]. Beijing:Tsinghua University Press,1998:54-91)
    [19]梅镇岳.原子核物理学[M].北京:科学出版社.1966:1-36(Mei Zhenyue. Nuclear Physics[M]. Beijing:Science Press,1966:1-36)
    [20]复日.大学,清华大学,北京大学合编.原子核物理实验方法[M].北京:原子能出版社. 1981:36-72(Fudan University,Tsinghua University and Peking University. Nuclear Physics Experimental Methods[M]. Beijing:Atomic Energy Press,1981:36-72)
    [21]李星洪.辐射防护基础[M].北京:原子能出版社1982:17-27(Li Xinghong. Foundation of Radiation Protection[M]. Beijing:Atomic Energy Press,1982:17-27)
    [22]周世勋.量子力学教程[M].北京:高等教育出版社1979:1-15(Zhou Shixun. Quantum Mechanics Tutorial[M]. Beijing:Higher Education Press,1979:1-15)
    [23]Marshall C D, Speth J A, DeLoach L D, et al. Neutron and gamma irradiated optical property changes for the final optics of the National Ignition Facility [R]. DE96000075,1995
    [24]Todd S R, Deanna G, George C, et al. Gamma and proton radiation effects in Erbium-doped fiber amplifiers:active and passive measurements[J]. Journal of Lightwave Technology,2001, 19(2):1918-1923
    [25]Brichard B, Borgenmants P, Fernandez A F, et al. Radiation effect in silica optical fiber exposed to intense mixed neutron-gamma radiation field[J]. IEEE Transactions on Nuclear Science, 2001,48(6):2069-2073
    [26]Shuichi S and Motohiro N. Fluorine and chlorine effects on radiation-induced loss for Ge02-doped silica optical fibers[J]. Journal of Lightwave Technology,1985,3(4):860-863
    [27]Griscom D L. y-ray-induced optical attenuation in Ge-doped-silica fiber image guides[J]. Journal of Applied Physics,1995,78(11):6696-6704
    [28]Tomashuk A L, Golant K M, Dianov E M, et al. Radiation-induced absorption and luminescence in specially hardened large-core silica optical fibers[J]. IEEE Transactions on Nuclear Science,2000,47(3):693-698
    [29]Girard S, Keurinck J, Ouerdane Y, et al. Pulsed X-ray and y ray irradiation effects on polarization-maintaining optical fibers[J]. IEEE Transactions on Nuclear Science,2004, 51(5):2740-2746
    [30]Bussjager R J, Hayduk M J, Johns S T, et al. Gamma-ray induced response in an Erbium-doped fiber laser[C], IEEE Proceedings of Aerospace Conference 2001
    [31]Cheng-Chih Lai, Wei-Yu Lee, Way-Seen Wang. Gamma radiation effect on the fiber Fabry-Perot interference sensor. IEEE Photonics Technology Letters,2003,15(8):1132-1134
    [32]Uffelen M V, Girard S, Goutaland F, et al. Gamma Radiation Effects in Er-Doped Silica Fibers[J]. IEEE Transactions on Nuclear Science,2004,51(5):2763-2769
    [33]Girard S, Keurinck J, Ouerdane Y, et al. y-ray and pulsed X-ray radiation responses of germanosilicate single-mode optical fibers:influence of cladding co-dopants[J]. Journal of Lightwave Technology,2004,22(8):1915-1922
    [34]Suter J J, Poret J C, Rosen M. Fiber optic ionizing radiation detector[J]. IEEE Transactions on Nuclear Science,1992,39(4):674-679
    [35]Deparis O, Megret P, Decretou M, et al. Gamma radiation tests potential optical fiber candidates for fibroscopy[J]. IEEE Transactions on Nuclear Science,1996,43(6):3027-3031
    [36]Borgermans P, Noel M. Multiple wavelength analysis of radiation-induced attenuation on optical fibers:a novel approach in fiber optic dosimetry[J]. IEEE Transactions on Instrumentation and Measurement,1998,47(5):1255-1258
    [37]Brichard B, Borgermans P, Borgermans F, et al. Dedicated optical fibers for dosimetry based on radiation-induced attenuation:experimental results[C]. SPIE 3872-05,1999,36-42
    [38]Henschel H, Korfer M, Wittenburg K, et al. Fiber optic radiation sensing system for TESLA[R]. Tesla Report no.2000-26,2000
    [39]Naka R, Watanabe K, Kawarabayashi J, et al. Radiation distribution sensing with normal optical fiber[J]. IEEE Transactions on Nuclear Science,2001,48(6):2348-2351
    [40]Klein D M, Yukihara E G, Bulur E, et al. An optical fiber radiation sensor for remote detection of radiological materials[J]. IEEE Sensors Journal,2005,5(4):581-588
    [41]刘福华,安毓英,王群书,等.脉冲γ射线对光纤的辐射效应[J].强激光与粒子束,2010,22(7):1668-1672(Liu Fuhua, An Yuying, Wang Qunshu, et al. Effects of pulsed gamma ray radiation on optical fibers[J]. High Power Laser and Particle Beams,2010,22(7):1668-1672)
    [42]Liu Fuhua, An Yuying, Wang Ping, et al. Experimental study on effects of pulsed y-ray on optical fibers[C]. Proceedings of ICOECS,2011, Xi'an, China:456-460
    [43]Liu Fuhua, An Yuying, Wang, Ping, et al. Effects of radiation on optical fibers. Chapter 20 of Recent Progress in Optical Fiber Research[M].2011, In-Tech Open Publisher, ISBN 978-953-307-823-6
    [44]殷宗敏,李新碗,李荣玉.特种光纤辐射总剂量效应研究[J].光纤与电缆及应用技术,1997(3):23-25(Yin Zongmin, Li Xinwan, Li Rongyu:Research on Special Optical Fiber Under Radiatin[J]. Optical Fiber & Electric Cable,1997(3):23-25)
    [45]刘锐,殷宗敏,李荣玉.辐照条件下光纤的损耗理论[J].光电子·激光,1999,10(5):475-476(Liu Rui, Yin Zongmin, Li Rongyu. Theory on optical fiber loss under radiation[J]. Journal of Optoelectronics and-Laser,1999,10(5):475-476)
    [46]刘锐,殷宗敏,李荣玉.石英光纤受辐照后的透过率研究[J].激光技术,2000,24(6):363-365(Liu Rui, Yin Zongmin, Li Rongyu. Research of the transitivity of optical fiber under radiation[J]. Laser Technology,2000,24(6):363-365)
    [47]刘锐,殷宗敏,李荣玉,等,光纤受y射线辐照实验[J].光学技术,2000,26(1):81-83(Liu Rui,Yin Zongmin, Li Rongyu, et al. The experiment on optical fiber under y ray radiation[J]. Optical Technique,2000,26(1):81-83)
    [48]Ge Wenping:Investigation on Characteristic of PMMA Optical Fiber on Irradiation[J]. ACTA Photonic SINCA,2005,34(10):1573-1576
    [49]葛文萍,吐尔逊,王耀祥,等.3种聚合物光纤Y射线辐照光谱特性实验研究[J].激光技术,2007,31(5):534-536(Ge Wenping, Tursun Dilmurat, Wang Yaoxiang, et al. Experimental research of spectrum characteristic of three kinds of polymer optical fiber under y-ray irradiation[J]. Laser Technology,2007,31(5):534-536)
    [50]张玉艳,肖文,刘德文.卫星用光纤陀螺中抗辐射光纤研究[J].光学与光电技术,2005,3(1):42-45(Zhang Yuyan, Xiao Wen, Liu Dewen. Research on the Radiation-Resistant Optical Fibers for Fiber Optic Gyroscopes in the Satellites[J]. Optics & Photo-electronic Technology,2005,3(1):42-45)
    [51]韩艳玲,肖文,伊小素,等.辐照光纤的主动恢复效应[J].红外与激光工程,2008,37(1):128-131 (Han Yanling, Xiao Wen, Yi Xiaosu, et al. Active recovery effect of irradiation optical fiber[J]. Infrared and Laser Engineering,2008,37(1):128-131)
    [52]姜辉,陈抱雪,傅长松,等.石英光纤γ辐照损伤机理的实验研究[J].光学仪器,2010,32(3):82-85(Jiang Hui, Chen Baoxue, Fu Changsong, et al. Experimental research about γ-ray radiation damage mechanism of quartz fiber[J]. Optical Instruments,2010,32(3):82-85)
    [53]王学勤,张春熹,金靖,等.空间用特种光纤的辐射致衰减效应[J].红外与激光工程.2011,40(12):2516-2520(Wang Xueqin, Zhang Chunxi, Jin Jing, et al. Radiation-induced attenuation effect on special optical fibers applied in space[J]. Infrared and Laser Engineering,2011, 40(12):2516-2520)
    [54]常国龙,周彦平,李福巍,等.星用光纤辐射性能研究[J].哈尔滨工业大学学报.2008,40(7):1036-1039(Chang Guolong, Zhou Yanping, Li Fuwei, et al. Experimental research on radiation characteristics of optical fibers[J]. Journal of Harbin Institue of Technology,2008, 40(7):1036-1039)
    [55]杨生胜,牛小乐.光纤的总剂量效应分析研究[J].真空与低温.2005, 11(3):154-158(Yang Shengsheng, Niu Xiaole. Investigation on the Total Dose Effect of Fiber Optic[J], Vacuum & Cryogenics.2005,11 (3):154-158)
    [56]王延云,庞拂匕,曾祥龙,等.特种光纤及器件研究[J].上海大学学报(自然科学版),2011,17(4):360-367(Wang Tingyun, Pang Fufei, Zeng Xianglong, et al. Specialty optical fibers and their components[J]. Journal of Shanghai University (Natral Science),2011,17(4):360-367)
    [57]李玉权,崔敏编著.光波导理论与技术[M].北京:人民邮电出版社,2002:157-166(Li Yuquan,Cui Min. Theory and Technology of Light Waveguide[M]. Beijing:People's Posts and Telecommunications Press.2002:157-166)
    [58]Grison D L, Gingerich M E, Friebele E J. Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers[J]. IEEE Transactions on Nuclear Science.1994,41(3):523-527
    [59]Henschel H, Kohn O, and Weinand U. A new radiation hard optical fiber for high-dose values[J]. IEEE Transactions on Nuclear Science,2002,49(3):1432-1438
    [60]马腾才,胡希伟,陈银华.等离子体物理原理[M].合肥:中国科技大学出版社.1988:170-175(Ma Tengcai. Hu Xiwei, Chen Yinhua. Principle of Plasma Physics[M]. Hefei:University of Science and Technology of China Press,1988:170-175)
    [61]马任德,王政平,王峰,等.辐照子在光纤芯处能量沉积的计算[J].光学与光电技术,2006,4(5):55-58(Ma Rende, Wang Zhengping, Wang Feng, et al. Calculation of electron energy deposition at fiber core[J]. Optics & Optoelectronic Technology,2006,4(5):55-58)
    [62]张谷令,熬玲,胡建芳,等.应用等离子体物理学[M].北京:首都师范大学出版社,2008:8-48(Zhang Guling,Ao Ling,Hu Jianfang,et al. Applied Plasma Physics[M]. Beijing:Capital Normal University Press,2008:8-48)
    [63]郑灵,赵青,罗先刚,等.等离子体中电磁波的传输特性理论及吱验研究[J].物理学报,2012,65(15):155203-1-7(Zheng Ling, Zhao Qing, Zhao Xianluo, et al. Thearetical and experimental studies of electromagnetic wave in plasma[J]. ACTA Physics Science,65(15) 155203-1-7)
    [64]赵宏康,陆建萍.平面电磁波在等离子体中的吸收衰减[J].北京理工大学学报,2004,24(4):350-352(Zhao Hongkang, Lu Jianping. Attenuation of Plane Electromagnetic Waves in Plasmas[J]. Transactions of Beijing Institute of Technology,2004,24(4):350-352)
    [65]刘少斌,莫锦军,袁乃昌.电磁波在不均匀磁化等离自体中的吸收[J].电子学报,2003,31(3):272-275(Liu Shaobin.Mo Jinjun,Yuan Naichang. Research on the absorption of EM wave by inhomogeneous magnetized plasmas[J]. ACTA Electronica SINICA,2003,31(3):272-275)
    [66]孙旸,鲁刚,陆建萍.等离子体中平面电磁波吸收衰减的数值模拟[J].吉林化工学院学报,2011,28(3):90-92(Sun Yang, Lu Gang, Lu Jianping. Numerical simulation for absorption and attenuation of plane electromagnetic wave in plasma[J]. Journal of Jilin Institute of Chemical Technology,2011,28(3):90-92)
    [67]吴坚强,王海明.电磁波在非均匀等离子体波导中的传播[J].电子科技大学学报,2001,30(4):401-406(Wu Jianqiang, Wang Haiming. Propagation of electromagnetic wave along waveguide filled with inhomogeneously plasma[J]. Journal of UEST of China,2001,30(4): 401-406)
    [68]何湘,陈建平,倪晓武,等.非均匀等离子体对平面电磁波的衰减[J].强激光与粒子束,2010,22(9):2115-2118(He Xiang, Chen Jianping, Ni Xiaowu, et al. Attenuation of planar electromagnetic waves by inhomogeneous plasma[J]. High Power Laser and Particle Beams, 2010,22(9):2115-2118)
    [69]王华东,鄢扬,郭军.电磁波在等离子体层中衰减的数值分析[J].电子科技大学学报,2004,33(4):357-360(Wang Huadong,Yan Yang,Guo Jun. Numerical Analysis of Attenuation of Electromagnetic Wave in Non-Uniform Magnetized Plasma Slab[J]. Journal of UEST of China,2004,33(4):357-360)
    [70]Gloge D.Weakly Guiding Fibers. Applied Optics,1970,10(10),2252-2258
    [71]国分泰雄.光波工程[M].北京:科学出版社,2002:131-136(Yasuo Kokubun. Lightwave Engineering[M]. Beijing:Science Press,2002,131-136)
    [72]石守勇.光波导原理[M].北京:高等教育出版社,1989:130-161(Shi Shouyon. Principle of Lightwave[M]. Beijing:Higher Education Press,1989:130-161)
    [73]叶培大,吴彝尊.光波导技术基本理论[M].北京:人民邮电出版社,1984:165-319(Ye Peida, Wu Yizun. Foudation Principle of Lightwave Technology[M]. Beijing:Peple's Post and Telecommunication Press,1984:165-319)
    [74]刘德明,向清,黄德修.光纤光学[M].北京:国防工业出版社.1995年,122-135(Liu Deming, Xiangqing, Huang Dexiu. Fiber Optics[M]. Beijing:National Defence Industry Press,1995: 122-135)
    [75]欧攀,戴一堂,王爱民,等.高等光学仿真[M].北京:北京航空航天大学出版社,2011:88-128,(Ou Pan, Dai Yitang, Wang Aimin, et al. Senior Optical Numerical Computing[M]. Beijing:Beihang University Press,2011:88-128)
    [76]李景镇主编.光学手册[M].西安:陕西科学技术出版社2010:273-278.(Li Jingzhen. Optics Handbook[J]. Xi'an:Shaanxi Science and Technology Press,2010:273-278)
    [77]姜辉,陈抱雪,傅长松,等.石英光纤γ辐照损伤及其对近红外波导特性的影响[J].物理学报,2010,59(11):7782-7787(Jiang Hui, Chen Baoxue, Fu Changsong, et al. y irradiation damage of quartz fiber and its effects on near-infrared transmission characteristics. Acta Physics Science, 2010,59(11):7782-7787)
    [78]Tomashuk A L, Dianov E M, Golant K M, et al. γ-radiation-induced absorption in pure-silica-core fibers in visible spectral region:the effects of H2-loading. IEEE Transactions on Nuclear Science.1998,.45(3):1576-1579
    [79]K P Chen, P R Herman, R Taylor, et al. Vacuum-ultraviolet laser-induced refractive-index change and birefringence in standard optical fibers. Journal of Lightwave Technology,2003, 21(9):1969-1977
    [80]陈悠杰,段开椋,吕百达,等.单模光纤波导模的傍轴传输特性[J].强激光与粒子束,2010,22(2):257-260(Chen Xiaojie, Duan Kailiang, Lu Baida, et al. Paraxial propagation properties of waveguide modes in single-mode fiber[J]. High Power Laser and Particle Beams, 2010,22(2):257-260)
    [81]M Artiglia, G Coppa, P Di Vita, et al. Mode field diameter measurements in single-mode optical fibers. Journal of Lightwave Technology,1989,7(8):1139-1152
    [82]A J Parker. Near field measurement of fiber mode field diameter:effects of defocusing. IEEE Transactions on Instrumentation and Measurement.1995,44(2):458-460
    [83]K Dossou, S LaRochelle, M Fontaine. Numerical analysis of the contribution of the transverse asymmetry in the photon-induced index change profile to the birefringence of optical fiber. Journal of Lightwave Technology,2002,20(8):1463-1470
    [84]Fernadndez A, Berghmans F, Brichard B, et al. Toward the development of radiation-tolerant instrumentation data links for thermonuclear fusion experiments[J]. IEEE Transactions on Nuclear Science,2002,49(6):2879-2887
    [85]Gopalakrishnan G K, Moeller R P, Howerton W K, et al. A low-loss downconverting analog fiber-optic link[J]. IEEE Transactions on Microwave Theory and Technology,1994,43(9): 2318-2323
    [86]May M J, Clancy T, Fittinghoff D, et al. High bandwidth data recording systems for pulsed power and laser produced plasma experiments[J]. Review of Scientific Instruments,2006, 77(10),10F504-10F504-3
    [87]Tulchinsky D A, Matthews P J. Ultra-wide band fiber-optic control of a millimeter-wave transmit beamformer[J]. IEEE Transactions on Microwave Theory and Technology,2001, 49(7):1248-1253
    [88]Puranen M, Karha P, Eskelinen P. Fiber-optic radar calibration[J]. IEEE Aerospace and Electronic Systems Magazine,2005,20(9):30-33
    [89]黄德修.半导体光电子学[M].成都:电子科技大学出版社,1994,144-153(Huang Dexiu. Semiconductor Optoelectronics[M]. Chengdu:Electronics Science and Technology University Press,1994:120-190)
    [90]Ghoniemy S, Maceachern L, Mahmond S. Extended robust semiconductor laser modeling for analog optical link simulations[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003,9(3):872-878
    [91]张晓霞,潘炜,罗斌,等.半导体微腔激光器瞬态响应及调制特性分析[J].激光技术.2001,25(3):221-224(Zhang Xiaoxia, Pan Wei, Luo Bin, et al. Analysis of modulation characteristics and transient response of semiconductor micro-cavity lasers[J]. LaserTechnology,2001,25(3):221-224)
    [92]康俊,李明中,隋展.电脉冲调制下半导体激光器保真输出研究[J].激光技术.2002,26(4):287-289(Kang Jun, Li Mingzhong, Sui Zhan, et al. Fidelity of optical pulses under current modulation semiconductor lasers[J]. Laser Technology,2002,26(4):287-289)
    [93]Pocha M P, Golddard L L, Bond T C, et al. Electrical and optical gain level effects in InGaAs double quantum-well diode lasers[J]. IEEE Journal of Quantum Electronics,2007, 43(10):860-868
    [94]安毓英,刘继芳,李庆辉,等.光电子技术[M].北京:电子工业出版社,2002,117-120. (An Yuying, Liu Jifang, Li Qinghui, et al. Optoelectronic Technology[M]. Beijing:Electronic Industry Press,2002,106-153)
    [95]傅竹西.固体光电子学[M].合肥:中国科学技术大学出版社1999:287-329(Fu Zguxi. Solid Optoelectronics[M]. Hefei:University of Science and Technology of China Press,1999:287-329)
    [96]A.雅里夫著,李宗琦译,光电子学导论[M].北京:科学出版社1983:283-310(Yaliv A. Introduction to Optical Electronics[M].Beijing:Science Press,1983:283-342)
    [97]Rudd E P. Laser diode driver with 5-decade range[J], IEEE Transactions on Instrumentation and Measurement,2000,49(1):2-4
    [98]Zivojinovic P, Lescure M, Tap-Beteille H. Design and stability analysis of a CMOS feedback laser driver[J]. IEEE Transactions on Instrumentation and Measurement,2004, 53(1):102-108
    [99]Tanaka T, Hibino Y, Hashimoto T, et al. Hybrid-integrated external-cavity laser without temperature-dependent mode hopping[J]. Journal of Lightwave Technology,2002, 20(9):1730-1739
    [100]孙德刚,唐海峰.脉冲式激光引信用连续可调LD驱动电路的研究[J].激光技术,2007,31(2):217-219(Sun Degang, Tang Haifeng. Study on PWM driver circuit of LD for laser fuze[J]. Laser Technology,2007,31(2):217-219)