煤岩介质中中高频电磁波传播规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿地质预测预报工作是保证矿井安全高效生产的基本环节。矿井生产受地质构造及煤层结构等因素的制约,轻则影响采掘效率、降低效益,重则威胁煤矿的安全生产甚至人员的生命。以中高频电磁波传播规律为基础的矿井无线电波透视技术作为一种矿井物探方法,通常用于探测陷落柱、火成岩侵入区、断层等地质构造,多年来在各大矿区的实际应用中取得了较好的效果。但该方法也存在着诸如理论研究滞后、探测精度低等现实问题。因此研究中高频的电磁波在煤岩介质中的传播规律,对于提高无线电波透视的精度,满足实际生产的需求具有重要的理论价值和应用价值。本文主要研究内容如下:
     1)以麦克斯韦方程为基础,从“源”出发,将无线电波透视系统中的环形天线等效为磁偶极子,建立球坐标系,利用格林定律并引入位函数A计算求得了环形天线辐射场的表达式,采用微分电流方法验证等效磁偶极子法计算的辐射场,并将天线辐射的球面波等效为平面波,进而建立了煤岩介质中的中高频电磁波传播规律的研究基础。
     2)以等效后的平面电磁波为切入点,建立平面直角坐标系,针对定点工作方式下的无线电波透视技术远端接收点相对发射点存在相对入射角度的问题,考虑电磁波脱离天线自巷道空间(空气介质)入射到煤岩介质(有耗媒质)这一过程,推导出与入射角度有关的振幅衰减常数p。验证了在入射角等于零度时,即沿z方向传播的经典振幅衰减常数与p的等价性。研究了振幅衰减常数p随入射角度、电导率、相对介电常数和电磁波工作频率之间的关系并指出线天线辐射场的初始场强振幅与入射角的正弦之间具有正比关系。
     3)根据全反射定律推导了理想状态下的煤岩介质产生波导的条件即煤岩折射率要小于上下围岩的折射率。利用纵向场法给出了矩形(煤与上下围岩层状沉积)波导内电磁波各分量的表达式,分析了在波导中传输的电磁波的截止波长和截止频率。指出在兆赫兹频段,长壁开采工作面中应存在H10和H20两种波导模式。得出了导体衰减常数c与频率的关系,即当工作频率接近截止频率时,导体衰减常数c剧增,随频率继续增高,导体衰减常数c逐渐减小,后又继续增大,在某一频率下有最小值。此外,当工作频率不变时,导体衰减常数c随波导尺寸的减小而增大;而介质衰减常数d主要取决于波导内所充填的介质(煤层)的特性,并与波长有关,工作波长趋于截止波长时,振幅损耗大。
     4)利用天线的辐射场标定并归一化初始场强,采用振幅衰减常数p、经典振幅衰减常数以及界面效应分别计算不同电阻率的陷落柱、规模不一的火成岩以及倾角较大且存在组合关系的多重断层模型的电磁波衰减值。基于直射线理论进行场强衰减法成像,使用代数重建算法(ART)对不同振幅衰减常数计算得到的衰减值分别进行相对和绝对层析成像及图像重建工作。分析不同振幅衰减常数、不同成像方式以及构造的物性变化对电磁波吸收的影响,结果表明:(1)对于绝对层析成像方式而言,采用振幅衰减常数p时,构造的横向位置定位较为准确、衰减值更为明显;对于相对层析成像方式,采用振幅衰减常数p时冗余构造少,因此修正后的振幅衰减常数p更适合于相对层析成像方式。(2)绝对层析成像方式在纵向上将构造“扩大”的趋势明显;相对层析成像方式有将构造“缩小”的趋势,易造成真实构造的局部缺失。(3)低阻介质计算得到的衰减值要大于高阻介质,对异常构造的定位也要优于高阻介质,更利于构造的地质解释,探测高阻构造时,使用衰减常数p和绝对衰减层析成像方式效果要更好。(4)对于较大型的构造,以本文为例,当模型规模为30m40m时,无线电波透视结果有较好的反应,随着模型减小为15m20m时,仅对构造的横向位置定位精度尚可满足需求。(5)对于断层构造而言,当仅存在单一断层构造时,尽管断层面近垂直巷道,但断层的实际位置和走向基本可以准确判定;而存在组合关系的多重断层构造时,采用任何一种振幅衰减常数的无线电波透视方法效果均不明显。
     综合分析比较两种振幅衰减常数和成像方式的效果图可知,振幅衰减常数p和绝对衰减层析成像方式效果要优于振幅衰减常数和相对衰减层析成像方式。最后通过无线电磁波透视技术探测工作面内隐伏构造的三个实例,从实用性方面进一步说明了采用振幅衰减常数p的无线电磁波层析成像技术可以在一定程度上提高预测预报采煤工作面内隐伏构造的准确性。
Geological forecasting work is the basic link in coal mine production. Geology andcoal seam structure factors influence the exploitation efficiency, and even threaten lives.Radio wave perspective as a coal mine geophysical method can effectively detect thegeological structures. But there are also issues in this method. Therefore, study thepropagation of electromagnetic wave in the coal-rock medium has important theoreticaland practical value. The main contents of the thesis are as follows:
     1) Based on Maxwell equations and from the "source", keep the linear loop antenna asa magnetic dipole, and established spherical coordinate system. Then computation theradiation field by make use of the Green theorem and the potential functionA. Using thedifferential current method to verify the equivalent magnetic dipole radiation field.Spherical wave equivalent to the plane wave, and established the basis for further study ofthe propagation rule of electromagnetic wave.
     2) When adopted a plane rectangular coordinate system and fixed point mode, remotereceiver point relative to emission point had a problem of incident angle. Thought aboutelectromagnetic wave from roadway space (air medium) incident into coal-rock media(lossy medium), calculated the attenuation constantpthat involved incident angle, andverified the equivalence of the classic attenuation constant andpwhen the incident angleequal to zero degree. The relationship between attenuation constantpand incident angle,conductivity, relative permittivity and the working frequency were presented. Also therelationship between incident angle and initial field intensity was discussed.
     3) Based on the total reflection law, when the refractive index of the coal is less thanthe surrounding rock’s the waveguide phenomenon was produced Then the expression ofeach component of the electromagnetic wave in the rectangular waveguide were given byusing longitudinal field method. Two kinds of waveguide modesH10andH20existed in thelong-wall mining working face. The relationship between attenuation constant ofconductor and working frequency were discussed, and conductor attenuationconstant csharp increasing when working frequency approached the cut-off frequency,with the working frequency increasing the cdecreases gradually and then increasing withthe working frequency continued rising and at a certain frequency chad an minimumvalue. When working frequency was constant, cincreased with the waveguide dimensionsdecreased. While attenuation constant dof medium depended on the characteristics of themedium which filling the waveguide and working wavelength, the amplitudes loss largerwith working wavelength approached cut-off wavelength.
     4) The initial electric field intensity were calibrated and normalized which radiated bythe antenna. Then various models’ electromagnetic wave attenuation value wererespectively calculated using decay constant p, classic decay constant and interfaceeffect. Based on direct ray theory, the imaging of electromagnetic field intensityattenuation was completed by using Algebra Reconstruction Technology (ART). Andcompleted two different kinds of tomography imaging for different decay constants.Analysis the electromagnetic waves absorption of different decay constants, differenttomography imaging methods, and structures with different electrical resistivity, Theresults shown that,(1) For absolute tomography imaging, horizontal location was moreaccurate and decay value was more obvious by using decay constant p, but for relativetomography imaging, there was less redundant structures. Therefore, the constant p was moresuitable for relative tomography imaging.(2) For absolute tomography imaging, it waseasily to enlarge the range in vertical direction. While for relatively tomography imaging it waseasily to shrink the range in horizontal direction, and conduced losing real structure.(3) Theattenuation value of low resistivity model is greater than the high resistivity model, and thelocation was also better.(4) For3040mmodel, it got a good result, but as the dimension wasreduced to1520m, only the horizontal location accuracy can still meet the need.(5) When singlefault with vertical plane existed, the actual location and direction can be accurately confirmed. Whenmultiple faults existed. the effect was not obvious.
     Comprehensive analysis and comparison two attenuation constants and the imagingmethod, it can be seen that the attenuation constantpand absolute tomography method areeven better. Finally, three experiments and practical perspecting work were done by usingelectromagnetic perspective technology to detect the concealed structures which in thework face. Accuracy and usefulness were credible by using attenuation constantpinelectromagnetic tomography technique.
引文
[1]程久龙,祁和刚,路风光.工作面复杂构造电磁波CT探测研究[J].矿业安全与环保,2000,27(4):26-27+62.
    [2]刘天放,李志聃.矿井地球物理勘探[M].北京:煤炭工业出版社,1993.
    [3]储绍良.矿井物探应用[M].北京:煤炭工业出版社,1995.
    [4]于师建,程久龙,王玉和等“三软煤层”电磁波吸收特征分析[J].煤田地质与勘探,1999,27(6):60-62.
    [5]程久龙,于师建,邱伟等.工作面电磁波高精度层析成像及其应用[J].煤田地质与勘探,1999,27(4):62-64.
    [6]郭继如.无线电波坑透数据处理系统的设计[J].煤田地质与勘探,1996,24(3):50-54.
    [7]刘广亮,于师建.基于质心频移的无线电波透视层析成像[J].地球物理学进展,2008,23(2):583-587.
    [8]朱希安,尹尚先,苑守成.无线电波透视法及其应用[J].辽宁工程技术大学学报,2002,21(5):563-566.
    [9] Mahmoud S. Characteristics of electromagnetic guided waves for communication in coal minetunnels [J]. Communications, IEEE Transactions on,1974,22(10):1547-54.
    [10] В.С.雅姆希科夫, А.А.格拉切夫, Д.В.雅可夫列夫等.用无线电波透视法研究煤层破坏的试验[J].川煤科技,1981,(2):63-66+60.
    [11] Lytle R J. Measurement of Earth medium electrical characteristics: Techniques, results, andapplications [J]. Geoscience Electronics, IEEE Transactions on,1974,12(3):81-101.
    [12] Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels[J]. Antennas and Propagation, IEEE Transactions on,1975,23(2):192-205.
    [13] Lager D L, Lytle R J. Determining a subsurface electomagnetic profile from high-frequencymeasurements by applying reconstruction-technique algorithms [J]. Radio Science,1977,12(2):249-260.
    [14] Dines K A, Lytle R J. Computerized geophysical tomography [J]. Proceedings of the IEEE,1979,67(7):1065-1073.
    [15] Radcliff R D, Balanis C A. Reconstruction algorithms for geophysical applications in noisyenvironments [J]. Proceedings of the IEEE,1979,67(7):1060-1064.
    [16] Lytle R J, Dines K A. Iterative ray tracing between boreholes for underground imagereconstruction [J]. Geoscience and Remote Sensing, IEEE Transactions on,1980,18(3):234-240.
    [17] Radcliff R, Balanis C. Electromagnetic geophysical imaging incorporating refraction and reflection[J]. Antennas and Propagation, IEEE Transactions on,1981,29(2):288-292.
    [18] Balanis C A, Bentley J D. Algorithm and filter selection in geophysical tomography [J].Geoscience and Remote Sensing, IEEE Transactions on,1986,24(6):983-996.
    [19] Devaney A. Geophysical diffraction tomography [J]. Geoscience and Remote Sensing, IEEETransactions on,1984,22(1):3-13.
    [20] Witten A, Molyneux J. Geophysical imaging with arbitrary source illumination [J]. Geoscience andRemote Sensing, IEEE Transactions on,1988,26(4):409-419.
    [21] Ward S H, Hohmann G W. Electromagnetic methods in applied geophysics [M]. Institute ofElectrical and Electronics Engineers,1984.
    [22] Jackson M J, Tweeton D R. Migratom-Geophysical tomography using wavefront migration andfuzzy constraints [M]. US Dept. of Interior, Bureau of Mines,1994.
    [23] Alumbaugh D, Newman G. Three‐dimensional massively parallel electromagnetic inversion—II.Analysis of a crosswell electromagnetic experiment [J]. Geophysical Journal International,1997,128(2):355-363.
    [24] Newman G, Alumbaugh D. Three‐dimensional massively parallel electromagnetic inversion—I.Theory [J]. Geophysical Journal International,1997,128(2):345-354.
    [25] Yu L, Chouteau M, Boerner D, et al. On the imaging of radio‐frequency electromagnetic dataforcross‐borehole mineral exploration [J]. Geophysical Journal International,1998,135(2):523-541.
    [26] Liu L, Lane J W, Quan Y. Radar attenuation tomography using the centroid frequency downshiftmethod [J]. Journal of Applied Geophysics,1998,40(1-3):105-116.
    [27] Freye R, Delonge T, Bonsch P, et al. Experimental and numerical investigations oftwo-dimensional Antiresonant Reflecting Optical Waveguides (ARROWS) based onAIGaAs/GaAs, F,1994[C]. IEEE.
    [28] Holloway C L, Hill D A, Dalke R A, et al. Radio wave propagation characteristics in lossy circularwaveguides such as tunnels, mine shafts, and boreholes [J]. Antennas and Propagation, IEEETransactions on,2000,48(9):1354-1366.
    [29] Zhou C, Liu L, Lane J W. Nonlinear inversion of borehole-radar tomography data to reconstructvelocity and attenuation distribution in earth materials [J]. Journal of Applied Geophysics,2001,47(3-4):271-284.
    [30] Sheng J, Ying L. A fast image reconstruction algorithm based on penalized-likelihood estimate [J].Medical engineering&physics,2005,27(8):679-686.
    [31] Johnson T C, Routh P S, Knoll M D. Fresnel volume georadar attenuation‐difference tomography[J]. Geophysical Journal International,2005,162(1):9-24.
    [32] Fhager A, Hashemzadeh P, Persson M. Reconstruction quality and spectral content of anelectromagnetic time-domain inversion algorithm [J]. Biomedical Engineering, IEEE Transactionson,2006,53(8):1594-1604.
    [33] MS Zhdanov. Geophysical technique for mineral exploration and discrimination based onelectromagnetic methods and associated systems [P]. United States Patent7,324,899.2008.
    [34] Buursink M L, Johnson T C, Routh P S, et al. Crosshole radar velocity tomography with finite‐frequency Fresnel volume sensitivities [J]. Geophysical Journal International,2008,172(1):1-17.
    [35] Toy C W, Steelman C M, Endres A L. Comparing electromagnetic induction and groundpenetrating radar techniques for estimating soil moisture content, F,2010[C]. IEEE.
    [36] Hussain N, Karsiti M, Iqbal A. Forward modeling to study topography effects on EM signal usingFEM, F,2011[C]. IEEE.
    [37]吴翔飞,崔春林. CT技术确定煤矿中小断层的应用研究[J].西部探矿工程,2003,15(7):92-95.
    [38]刘广亮.煤岩介质电磁波衰减特性的频率域研究[D].青岛:山东科技大学图书馆,2006.
    [39]鄢良才.电磁波在波导中的异常传播研究[D].成都:电子科技大学图书馆,2002.
    [40]赵小龙.电磁波在大气波导环境中的传播特性及其应用研究[D].西安:西安电子科技大学图书馆,2008.
    [41]黄小毛,张永刚,罗宁等.大气波导对电磁波陷获传播影响的数值模拟和试验验证[J].微波学报,2007,23(增刊):177-184.
    [42]孙继平,魏占永.矿井隧道中电磁场能量的损耗[J].中国矿业大学学报,2002,31(6):575-578.
    [43]成凌飞,孙继平.矩形隧道围岩电参数对电磁波传播的影响[J].电波科学学报,2007,22(3):513-517.
    [44]张妍玮,张记龙.空拱形巷道中电磁波的传输特性[J].现代矿业,2009,03):54-56+129.
    [45]张妍玮.煤矿井下受限空间内电磁波的传输特性研究[D].太原:中北大学图书馆,2009.
    [46]吴以仁.地下电磁波法在我国的进展和应用[J].中国地质,1991,(6):23-25.
    [47]徐宏武.煤层电性参数的测试和研究[J].煤田地质与勘探,1996,24(2):53-56.
    [48]徐宏武.煤层电性参数测试及其与煤岩特性关系的研究[J].煤炭科学技术,2005,33(3):42-46+41.
    [49]冯锐,林宣明,陶裕录等.煤层开采覆岩破坏的层析成像研究[J].地球物理学报,1996,39(1):114-124.
    [50]曹俊兴,聂在平,朱介寿.双频电磁波电导率层析成象[J].物探化探计算技术,1997,19(4):329-332.
    [51]文学宽. CT探测覆岩破坏高度的试验研究[J].煤炭学报,1998,23(3):300-304.
    [52]宁书年,张绍红,杨峰等.无线电波层析成像技术及在矿井坑透中的应用[J].煤炭学报,2001,26(5):468-472.
    [53]刘怀林,陈淑珍.基于遗传算法的弯曲射线成像反演[J].中国图象图形学报,2002,7(2):141-144.
    [54]董守华,王琦.层析成像在巷道无线电波透视法中的应用[J].中国矿业大学学报,2003,32(5):579-582.
    [55]岳崇旺.井间电磁波层析成像研究与应用[D].长春:吉林大学图书馆,2007.
    [56]岳崇旺,王祝文,徐加益.电磁波层析技术在工程地质中的应用[J].物探与化探,2008,32(2):216-219.
    [57]袁志亮.井间声波电磁波层析成像技术应用研究与软件研发[D].北京:中国地质大学(北京)图书馆,2007.
    [58]杨曦.井间电磁波场数值模拟与成像[D].武汉:中国地质大学图书馆,2008.
    [59]杨曦,潘和平.井间电磁场时域有限差分数值模拟[J].地球物理学进展,2008,23(2):573-582.
    [60]杨曦,潘和平.井间电磁波数值模拟及成像技术[J].物探与化探,2009,33(2):140-147.
    [61]于业斌,岳建华,邓帅奇.高阻层状煤质中电磁波传播特性研究[J].工程地球物理学报,2011,8(4):412-416.
    [62]孙洪星.有耗介质高频脉冲电磁波传播衰减理论与应用的实践研究[J].煤炭学报,2001,26(6):567-572.
    [63]于哲峰,周乐柱,班永灵等.细线天线的瞬态响应特性的研究[J].北京大学学报:自然科学版,2004,40(3):341-345.
    [64]于师建,刘家琦,韩波.采场电磁波透射波场正演数值模拟[J].黑龙江大学自然科学学报,2007,24(6):712-715.
    [65]邵建兴,刘湘梅,侯维娜等.地下电波法在深层地下物探中的应用研究[J].重庆邮电大学学报(自然科学版),2009,21(5):622-626.
    [66]陈鹏,吴成明.透地通信的电磁场并行仿真方法[C].2009年全国开放式分布与并行计算机学术会议.2009.乌鲁木齐.
    [67]陈鹏,吴成明.分层地层中的电磁波传播数值模拟[J].计算机工程,2010,36(15):262-264.
    [68]郭江,曹俊兴,何晓燕.有耗色散媒质中电磁波场的FDTD计算及各向异性PML吸收边界
    [C].第四届西部十二省(区)市物理学会联合学术交流会.2008.乌鲁木齐.
    [69]郭江,曹俊兴,何晓燕.有耗色散地质介质中电磁波传播特性的FDTD计算分析[J].成都理工大学学报(自然科学版),2010,37(1):96-102.
    [70]吴荣新,张平松,刘盛东等.矿井工作面无线电波透视“一发双收”探测与应用[J].煤炭学报,2010,35(增刊):170-174.
    [71]陈熙谋,舒幼生.建立麦克斯韦方程组的其他途径[J].大学物理,1984,(2):7-12.
    [72]陈强顺,冯承天.电荷守恒定律可确定麦克斯韦方程组的数学形式[J].同济大学学报,1989,17(3):395-400.
    [73]曹江陵,杨波,廖晓玲.麦克斯韦方程组的另一推导方法[J].重庆大学学报(自然科学版),2002,25(6):149-151.
    [74]姚丽萍,朱琳婕.简析麦克斯韦方程组在物理学中的地位[J].洛阳师范学院学报,2010,29(2):46-48.
    [75]乔松,白朗.勘探电磁场论[M].徐州:中国矿业大学出版社,1991.
    [76]杨儒贵,汤姆斯.电磁场与电磁波[M].北京:高等教育出版社,2003.
    [77]吴燕清.地下电磁波探测及应用研究[D].长沙:中南大学图书馆,2002.
    [78]杨玉红.一类非线性波动方程的解的存在唯一性研究[D].昆明:云南师范大学图书馆,2002.
    [79]赵静.基于有限元法的矿井电磁波传播特性研究[D].淮南:安徽理工大学图书馆,2008.
    [80]金东星.三维矢量形式的麦克斯韦方程组的协变性[J].南京理工大学学报(自然科学版),2003,27(6):724-727.
    [81]陈岩.特殊媒质中电磁波场并矢格林函数问题的研究[D].大连:大连海事大学图书馆,2006.
    [82]徐诚.电磁波基本方程组及其应用[D].北京:中国科学院研究生院(电子学研究所),2002.
    [83]王茂琰.电磁波在异向介质中传播和散射特性的研究[D].成都:电子科技大学图书馆,2008.
    [84]陈聪.分层介质格林函数的快速计算和目标电磁散射特性研究[D].成都:电子科技大学图书馆,2011.
    [85]赵纯善,康国发,张世杰.音频电磁波辐射场及其天线应用[J].云南大学学报(自然科学版),2006,28(4):319-322.
    [86]李静.线天线及阵列电磁散射特性的研究[D].合肥:安徽大学图书馆,2010.
    [87]王杰,张伟韬,王卓远等.基于几何变换的磁基本振子矢量位函数的推导[J].安徽电子信息职业技术学院学报,2011,10(5):35-37.
    [88]朱金松.时域矩量法及其在辐射和散射问题中的应用[D].西安:西安电子科技大学图书馆,2005.
    [89]苑东伟.几种线天线的辐射特性及电磁兼容性分析[D].保定:华北电力大学(河北)图书馆,2006.
    [90]梁建伟.基于小波矩量法的线天线分析[D].太原:太原理工大学图书馆,2010.
    [91]凌劲.混合快速算法在天线辐射和散射问题中的研究与应用[D].西安:西安电子科技大学图书馆,2011.
    [92]杜惠平.环形天线的辐射问题[J].重庆邮电学院学报,1998,10(4):17-19.
    [93]沈文辉,薛昌韡,梅冠香等.计算环形天线的麦克斯韦电路理论[J].电子学报,2011,39(9):1982-1985.
    [94]王长清,祝西里,陈国华等. Maxwell方程用于电磁脉冲在损耗介质中的传播问题[J].电波科学学报,1999,14(1):97-101.
    [95]孙洪星,李凤明.探地雷达高频电磁波传播衰减机理与应用实例[J].岩石力学与工程学报,2002,21(3):413-417.
    [96]刘福平,王安玲,杨长春.导电介质中电磁波相移常数与振幅衰减常数的方向关系[J].大学物理,2006,25(2):9-12.
    [97]林春.超宽带电磁场传播与衰减特性研究[D].成都:成都理工大学图书馆,2007.
    [98]徐小兵.煤与瓦斯突出倾向性的电磁波场特征研究[D].青岛:山东科技大学图书馆,2007.
    [99]陈贵.基于时域有限差分法分析墙体对电磁波传输的影响[D].汕头:汕头大学图书馆,2008.
    [100]刘汉平,卢霏,刘祥志等.导电介质中电磁波相移常数与振幅衰减常数的方向关系的讨论[J].大学物理,2008,27(4):10-12.
    [101]郭山红,孙锦涛,谢仁宏等.电磁波穿透墙体的衰减特性[J].强激光与粒子束,2009,21(1):113-117.
    [102]李颖,赵子鹏,罗建书等.入射平面电磁波两类球面波函数展开式的等价性证明[J].数学的实践与认识,2010,40(19):248-252.
    [103]贾元真.各向异性媒质中电磁波传播规律研究[D].东营:中国石油大学图书馆,2008.
    [104]时红艳.异向介质的均匀化理论及电磁波传输特性的研究[D].哈尔滨:哈尔滨工业大学图书馆,2008.
    [105]魏俊波,王晋国,王明祥.分层介质中弹性波与电磁波的反射特性[J].商洛师范专科学校学报,2004,18(2):17-21.
    [106]刘福平,王安玲,陈强等.在导电界面反射电磁波的横向偏移研究进展[J].科学通报,2007,52(14):1605-1610.
    [107]李鑫.周期微结构中电磁波的反射透射及吸收特性研究[D].上海:复旦大学图书馆,2008.
    [108]丁艳峰.过模转弯波导的研究[D].成都:西南交通大学图书馆,2011.
    [109]张廷伟.电磁波在波导中的异常传播[D].成都:电子科技大学图书馆,2003.
    [110]刘福平,张红梅,杨长春等.电场垂直入射面的非均匀电磁波在导电媒质界面的类全反射横向偏移[J].地球物理学报,2005,48(4):924-931.
    [111]王家礼,朱满座,路宏敏.电磁场与电磁波[M].西安:西安电子科技大学出版社,2004.
    [112]胡省三,成玉琪.21世纪前期我国煤炭科技重点发展领域探讨[J].煤炭学报,2005,30(1):1-7.
    [113]赵志华.无线电磁波透视法在探测煤矿构造中的应用[C].勘探地球物理2005学术交流会.2005.福州.
    [114]卢鉴章,刘见中.煤矿灾害防治技术现状与发展[J].煤炭科学技术,2006,34(5):1-5.
    [115]李辛子,郭全仕.煤层气地球物理技术研究综述[C].2008年煤层气学术研讨会.2008.井冈山.
    [116]周平,陈胜礼,朱丽丽.几种金属矿地下物探方法评述[J].地质通报,2009,28(2-3):224-231.
    [117]崔春林.钻孔电磁波层析成像CT技术及其应用[J].山西水利科技,2005,(1):83-85.
    [118]朱介寿,严忠琼,曹俊兴等.勘探地球物理层析成像软件系统及其应用[J].物探与化探,1998,22(2):90-98.
    [119]张旻舳,师学明.电磁波层析成像技术进展[J].工程地球物理学报,2009,6(4):418-425.
    [120]张大力,魏明果,刘润泽等.电磁波层析成像的最大熵方法[J].哈尔滨工业大学学报,1998,30(5):20-24+29.
    [121]杨薇,刘四新,冯彦谦.跨孔层析成像LSQR算法研究[J].物探与化探,2008,32(2):199-202.
    [122]苏朱刘,胡文宝,徐建华等.一种新的电磁波层析成像理论公式[C].1992年中国地球物理学会第八届学术年会.1992.昆明.
    [123]皮开荣,张高萍,欧东新.电磁波层析成像直射线路径追踪之坐标定位法[J].物探装备,2009,19(2):124-126.
    [124]刘立振,何建文,张海云等.电磁波层析成像100例的统计分析[J]. CT理论与应用研究,1995,4(1):15-19.
    [125]刘立振. BPT算法的分辨力与应用前景[C].1990年中国地球物理学会第六届学术年会.1990.武汉.
    [126]林树海,赵立英.井间电磁波层析成像中的高精度时间域正演计算[J].地球科学(中国地质大学学报),2007,32(4):469-473.
    [127]李才明,张善法.电磁波层析成像阻尼因子引入与应用[J].地球物理学进展,2005,20(1):221-224.
    [128] Hounsfield G N. Apparatus for examining a body by radiation such as X or gamma radiation [P].United States Patent4399509.1979.
    [129]康建宁.电磁波探测煤层突出危险性指标敏感性研究[D].北京:煤炭科学研究总院,2003.
    [130]梁庆华,吴燕清,宋劲.无线电波坑道透视探测的定性分析及其应用[J].重庆大学学报,2010,33(11):113-118.
    [131]魏明果,刘润泽.井间电磁波场强幅值的相对归一化[J].地质与勘探,1999,35(3):38-40+61.
    [132]雷旭友.多源多孔对联合反演方法及其在电磁波层析成像中的应用[D].成都:成都理工大学图书馆,2010.
    [133]段恒毅.电磁波的起伏传播[J].电子科学学刊,1997,19(4):544-551.
    [134]文盛乐,易慧先.全反射电磁波的相移和传播特性[J].广西物理,1998,19(4):22-26.
    [135]杨宏伟.电磁波在导电媒质中传播的计算机仿真[J].实验技术与管理,2010,27(2):60-61.
    [136]杨延玲,刘辉兰,于家峰.平面电磁波在两种不同媒质中传播特性的比较[J].榆林学院学报,2007,17(2):37-45.
    [137]陈抗生.多层介质波导中电磁波传播和散射的坐标变换分析[J].浙江大学学报,1985,19(1):59-72.
    [138]雷前召.矩形波导中主模电磁波传播特性研究[J].电子设计工程,2011,19(20):121-123.
    [139]林琼桂.关于电磁波在非理想导体边界柱形波导中的传播(英文)[J].中山大学学报(自然科学版),2010,49(3):28-33.
    [140]吴锡令.波导法测量油井持水率的理论、方法和实验研究[J].地球物理学报,1996,39(3):424-430.
    [141]吴锡令.波导测量方法及其可行性研究[J].测井技术,1998,22(6):416-419.
    [142]姚善化.复杂矿井巷道中电磁波传播特性及相关技术研究[D].合肥:安徽大学图书馆,2010.
    [143]张瑞皊.关于波导管内不能传播TEM波的简单证明和唯象解释[J].徐州师范学院学报(自然科学版),1989,7(1):96-99.
    [144]陈陆君.导行电磁波中的泛函方法[J].西安电子科技大学学报,1989,16(1):38-47.
    [145]戴结林.电磁波在波导中传播的一般讨论[J].大学物理,1995,14(2):25-28.
    [146]庞和喜.波导内壁表面粗糙度对电磁波传输性能的影响研究[D].西安:西安电子科技大学图书馆,2008.
    [147]邵毅全,吴国建.矩形波导中电磁波传输特性研究[J].激光杂志,2011,32(1):6-7.