商用客车无线胎压监测关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对乘用轿车胎压监测系统(Tire Prssure Monitoring System,TPMS)的研究较多,而对商用客车TPMS的研究相对较少,商用客车的TPMS存在系统可靠性差和信号传输不稳定的问题。为提高商用客车TPMS的可靠性和无线传输性能,本文进行了组态天线的仿真与设计、旋转部件电磁波传播模型、系统控制软件及算法等方面的研究。主要研究内容包括:
     (1)综合考虑旋转天线、轮毂、车身以及非理想地面的影响,提出组态天线的概念。构建和研究组态天线的电磁场仿真模型,通过仿真的结果来优化组态天线的匹配电路设计,以提高无线传输性能。仿真结果表明:组态天线在不同方向上辐射能力的差异比单天线的大,且天线的方向图存在一些零点;非理想地面组态天线在最大辐射方向上的功率值比理想地面的小,且天线功率方向图的变化主要是受到不同地面电导率变化的影响;当地面粗糙度在8cm以上时,地面粗糙度对组态天线性能的影响开始显现;旋转过程中组态天线增益的变化范围较大,输入阻抗的电阻部分相对变化较大而电抗部分相对变化不大,必须进行阻抗匹配设计。测试结果表明:采用组态天线阻抗匹配设计后的TPMS的数据帧接收正确率在90%以上。
     (2)推导和建立旋转部件电磁波绕射传播模型,并进行仿真分析,仿真结果表明:路径损耗随着旋转角度的变化而变化,路径损耗还与旋转部件半径、工作频率、旋转速度、收发端之间距离、透明孔径尺寸以及天线高度等参数有关。考虑直射波和反射波的路程差、旋转运动速度变化和入射波方向变化导致的多普勒频移,推导和建立了旋转部件双径传播模型,仿真结果表明:路径损耗随着旋转角度的变化而变化,平行极化波的路径损耗波动范围和幅度比垂直极化波小,路径损耗还与旋转部件半径、工作频率、旋转速度、收发端之间距离、介电常数以及天线高度等参数有关。分别对天线置于商用客车驾驶室内的绕射路径损耗、天线置于底盘上的绕射路径损耗以及双径传播路径损耗进行仿真分析,仿真结果表明:总体而言接收天线置于底盘上的路径损耗比置于驾驶室内的要小,建议在车底布放接收天线,天线尽可能靠近轮胎,以保证接收效果。搭建测试平台进行旋转部件路径损耗测试,测试结果表明本文提出的分析方法和建立的传播模型接近实际情况,具有合理性。
     (3)对TPMS系统的控制软件及算法进行研究,包括高低频通讯协议、软件流程,提出信号调理算法、低温环境下的温度补偿和软件滤波算法,并详细阐述了软件抗干扰设计的关键点,设计了预防误报警策略。
Currently more research efforts are focused on the tire pressure monitoring system(TPMS) of passenger cars, however, research on TPMS of commercial buses has been rare.The TPMS of commercial buses have problems of poor reliability and unstable signaltransmission. In order to improve the reliability and wireless transmission performance ofTPMS of commercial buses, simulation and design of the configuration antenna,electromagnetic wave propagation model of rotating component, system control softwareand algorithms are studied in this dissertation. Main research tasks include the following.
     Comprehensively considering the impacts of rotating antenna, wheel, vehicle bodyand non-ideal ground, the concept of configuration antenna is proposed. Through buildingthe electromagnetic field simulation model, the antenna parameters in simulation are usedto optimize the design of antenna matched circuit and to improve the performance ofwireless transmission. The simulation results indicate that radiation variations in differentdirections of configuration antenna are bigger than that of single antenna, and antennaradiation pattern has several zero points. The power of configuration antenna in maximalradiation direction on non-ideal ground is smaller than that of on ideal ground, and antennapower pattern is mainly influenced by the conductivity changes of different grounds. Whenground roughness is more than8cm, the influence on configuration antenna performanceemerges. During rotating, for configuration antenna, the fluctuation of gain is apparent, theresistance part of input impedance changes significantly while change of reactance part isminor, impedance matching design is therefore necessary. The experiment shows that thereceiving probabilities are more than90percent after using configuration antennaimpedance matching design.
     An electromagnetic wave diffraction propagation model of rotating component isdeduced and established, and simulation analysis is conducted. Simulation results showthat the path loss varies with the rotation angles, the path loss is related with parameters ofrotating component radius, working frequency, rotating velocity, the distance betweentransmitter and receiver, transparent aperture size and antenna height. Considering the distance difference between the direct propagation path and reflection propagation path aswell as Doppler frequency shift caused by changes of rotation velocity and incident wavedirection, a dual-path propagation model of rotating component is deduced and set up.Simulation results show that the path loss varies with the rotation angles, and thefluctuation range and magnitude of path loss of the parallel polarized wave is smaller thanthe vertical polarized wave. The path loss has relationships with rotating component radius,working frequency, rotation velocity, the distance between transmitter and receiver,dielectric constant as well as antenna height. The diffraction path loss of antenna placed inthe cab or on chassis of commercial bus, and the path loss of dual-path propagation aresimulated. Results indicate that the path loss of antenna on chassis is smaller than that of inthe cab. It is suggested that it is better to place antenna on chassis and near the tire as muchas possible to ensure the receiving performance. In order to verify the propagation model,path loss test of rotating component is carried out, and the results show that the presentedmethod and established propagation model are close to actual situation and reasonable.
     Control software and algorithms of TPMS system are studied. High frequency and lowfrequency communication protocols, software process, signal conditioning algorithm, thealgorithm of the temperature compensation and software filter in low temperature conditionare proposed. Key points of software anti-interference design are elaborated, and theprevention strategy for false alarm is designed.
引文
[1]李威,尹术飞. TPMS的无源化发展方向研究.重型汽车,2005,5:15~16
    [2]崔胜民等.汽车轮胎行驶性能与测试.北京:机械工业出版社,1995.47~48
    [3]王野平.论轮胎的磨损.汽车技术,1999,(6):19~23
    [4] Burgess, Jeff. Tire Pressure Monitoring: An Industry under Pressure. Sensors,2003,20(7):29~33
    [5]颜重光. TPMS的设计方案思考.电子与质量,2005,7:1~5
    [6]韩建保,陈厉兵.汽车轮胎气压电子实时监测系统.汽车技术,2002,(7):40~41
    [7]何仁,胡青训,薛翔.汽车轮胎气压监测系统发展综述.中国安全科学学报,2005,15(10):105~110
    [8] O. Mike. Wireless Sensors Eye Tyre Pressure. EDN EUROPE,2004.7:31~36
    [9] U.S Department of Transportation. Preliminary Economic Assessment on Tire PressureMonitoring System. http://www.nhtsa.dot.gov
    [10]轮胎安全监测网站. http://www.tpms.com.cn/zl_dir.asp
    [11]Velupillai, S. Guvenc, L. Burgess. Tire Pressure Monitoring [Application of Control].IEEE Control System Magazine,2007(12):22~25
    [12]欣闻.解读全球TPMS标准.汽车与配件,2009,(4):19~21
    [13]US Department of Transportation, National Highway Traffic Safety Administration.Federal Motor Vehicle Safety Standards: Tire Pressure Monitoring Systems, Controlsand Displays,2005
    [14]娄云,朱命怡.上海别克轿车轮胎气压监视系统检测.汽车电器,2003,6:47~48
    [15]杨辉.别克轿车轮胎气压监控系统.汽车实用技术,2003,9:31~32
    [16]H. Mayer. Comparative Diagnosis of Tyre Pressures. Control Applications,1994,1:627~632
    [17]张启中.脉冲数互比法汽车轮胎气压异常报警模式研究:[工学硕士学位论文].秦皇岛:燕山大学,2004.
    [18]赵庆龙,何超.丰田公司车辆轮胎气压报警系统原理及使用.汽车研究与开发,2003,1:51~53
    [19]於涛.基于车辆振动的轮胎气压监控系统的研究与开发:[工学硕士论文].沈阳:东北大学,2004.
    [20]T. Umeno, K. Asano, H. Ohashi, et al. Pneumatic Monitor for A Vehicle Based on theDisturbance Observer. Industry Applications Conference,1996,3:1687~1691
    [21]J. Holtschulze, M. Jens, H. Goertz, et al. A Tyre Sensor System with Electronics forData Transmission and Power Supply. Auto Technology,2005,5:44~47
    [22]Sheng Liu, Yong Liu. Modeling and Simulation for Microelectronic PackagingAssembly: Manufacturing, Reliability and Testing. Bejing: John Wiley&Sons, andChemical Industry,2011.343~354
    [23]Qingxia Li, Sheng Liu, Tianlin Dong, et al. Wheel Antenna of Wireless Sensors inAutomotive Tire Pressure Monitoring System. International Conference on WirelessCommunications Networking and Mobile Computing,2007.2755~2758
    [24]S. Weatherwax. Automotive Tire Pressure Sensing. Proceedings of SENSORS EXPO,1987,379~384
    [25]Yi Leng, Genbao Zhao, Qingxia Li, et al. A High Accuracy Signal ConditioningMethod and Sensor Calibration System for Wireless Sensor in Automotive TirePressure Monitoring System. International Conference on WiCom,2007.1833~1837
    [26]Li Li, Feiyue Wang, Qunzhi Zhou. A Watch in Developments of Intelligent TireInspection and Monitoring. Proceedings of2005IEEE International Conference onVehicular Electronics and Safety,2005.333~338
    [27]Rob White. Tire Pressure Monitoring System Mandate Drives Technology.Automotive Industries AI,2007,187(9):28~31
    [28]谭六喜.声表面波传感器及无源胎压监测模拟试验研究:[博士学位论文].武汉:华中科技大学,2007.
    [29]国家专利局.汽车轮胎防爆气门芯报警器.实用新型专利公报,2002,18(13):84
    [30]Yi Leng, Genbao Zhao, Qingxia Li, et al. A Self-identifying Car Tire PressureMonitoring System Based on Wireless Sensor and CAN Bus. Instrument Techniqueand Sensor (Chinese),2007, No.6
    [31]APOLLO. Intelligent Tyre for Accident Free Traffic. IST2001,34372
    [32]RDKS Technical Description. http://www.iqmobil.com/.2006.1.16
    [33]Development of Batteryless Tire Pressure Monitoring System (TPMS) Completed.http://www.alps.ie/press/20040421_00.html.2006.1.16
    [34]Siemens Autonomous Sensor. http://w4.siemens.de/FuI/en/archiv/newworld/heft4_00/artikel05/index.html.2006.1.16
    [35]L. Reindl, A. Pohl. SAW-Based Radio Sensor Systems. IEEE Sensors Journal, June2001,1(l):69~78
    [36]G. Scholl, C. Korden, E. Riha, et al. SAW Based Radio Sensor Systems for ShortRange Applications. IEEE Microwave Magazine, December,2003,68~76
    [37]G. Scholl, F. Schmidt. Wireless Passive SAW Sensor Systems for Industrial andDomestic Applications. In: IEEE International Frequency Control SymposiumProceedings,1998.595~601
    [38]U. Wolf, F. Schmidt. Radio Accessible SAW Sensors for Non-Contact Measurement ofTorque and Temperature. In: IEEE Ultrasonics Symposium,1996.359~362
    [39]J. Beckley, V. Kalinin, M. Lee, et al. Non-Contact Torque Sensors Based on SAWResonators. In: IEEE International Frequency Control Symposium and PDA Exhibition,2002.202~213
    [40]A. Pohl, F. Seifert. Wirelessly Interrogable Surface Acoustic Wave Sensors forVehicular Applications. IEEE Transactions on Instrumentation and Measurement,1997,46(4):1031~1038
    [41]A. Pohl, G. Ostermayer, L. Reindl, et al. Monitoring the Tire Pressure at Cars UsingPassive SAW Sensors. In: IEEE Ultrasonics Symposium Proceedings,1997.471~474
    [42]A. Pohl, L. Reindl. Measurement of Physical Parameters of Car Tires Using PassiveSAW Sensors. The2nd Conference on Advanced Microsystems for AutomotiveApplications,1998.249~262
    [43]R. Steindl, A. Pohl, L. Reindl, et al. SAW Delay Lines for Wirelessly RequestableConventional Sensors. IEEE Ultrasonics Symposium Proceedings,1998,1:351~354
    [44]S. Reinhard, A. Pohl, S. Franz. Impedance Loaded SAW Sensors Offer a Wide Rangeof Measurement Opportunities. IEEE Transactions on Microwave Theory andTechniques,1999,47(12):2625~2629
    [45]福通科技. http://www.tunefu.com/products_1_01.asp.2006.1.16
    [46]国家专利局.一种微型振动发电机.中国专利,适用新型专利,200420107948.9,2005.11~23
    [47]陈诚.基于声表面波技术的轮胎压力传感器的研究:[硕士学位论文].武汉:华中科技大学,2007.
    [48]苏楚奇,张靖.轮胎压力监测技术.北京汽车,2005,(1):23~25
    [49]Infineon Sensor [EB/OL]. http://www.infineon.com/,2004.08.01
    [50]谭宏华,黎爱琼,涂坦.轮胎压力监测系统[J].机床与液压,2005,15(9):129~133
    [51]欧洪波.基于声表面波的轮胎胎压监测研究:[博士学位论文].武汉:武汉理工大学机械学院,2006.
    [52]H.J. Song, Wiese Hsu. Modeling Signal Strength Range of TPMS in Automobile.Antennas and Propagation Society International Symposium,2004,3:3167~3170
    [53]A. Jaoude, R. Walton, K. Eric. Numerical Modeling of On-glass ConformalAutomobile Antennas and Propagation. IEEE Transactions,1998,46(6):845~852
    [54]Y. Shiraki, K. Sugahara, S. Tanabe, et al. Electromagnetic Field Distribution inside AnAutomobile Vehicle Electromagnetic Compatibility. IEEE International Symposium,2003,2:730~734
    [55]Y. Kim, E.K. Walton. Effect of Body Gaps on Conformal Automotive Antennas.Electronics Letters,2004,40(19):1161~1162
    [56]A.R. Ruddle, X. Ferrieres, J.P. Parmantier, et al. Experimental Validation ofTime-domain Electromagnetic Models for Field Coupling into the Interior of a Vehiclefrom a Nearby Broadband Antenna. Science, Measurement and Technology, IEEEProceedings,2004,151(6):430~433
    [57]M.L. Djordjevic, B.M. Notaros. Highly Efficient Large-domain Moment-methodAnalysis and CAD of Radio-frequency Antennas Mounted on or Situated in Vehicles.Vehicular Technology Conference,2000. IEEE VTS-Fall VTC2000,2000,5:2373~2377
    [58]L. Low, R. Langley. Modelling Automotive Antennas. Antennas and PropagationSociety International Symposium,2004. IEEE,2004,3:3171~3174
    [59]P. Ankarson, J. Carlsson, Yueqiang Liu. Numericlal Study of a PIFA Mounted on ACar Compared to Measurements Electromagnetic Compatibility. InternationalSymposium on EMC,2005,3:878~882
    [60]T.S. Maclean, M. Dinnis, Principle of Rear Windscreen Car Antenna. NinthInternational Conference on Antennas and Propagation,1995,1:406~409
    [61]B.M. Notaros, M.L. Djordjevic, B.D. Popovic, et al. Rigorous EM Modeling of Carsand Airplanes. Radio and Wireless Conference,1999. RAWCON99.1999IEEE,1999,167~170
    [62]A. Schoof, T. Stadtler, J.L. Haseborg, Simulation and Measurement of the Propagationof Bluetooth Signals in Automobiles. Electromagnetic Compatibility,2003. EMC'03.2003IEEE International Symposium,2003,2:1297~1300
    [63]H.L. Blocher, K. Beilenhoff, J. Wenger. Simulation of the Electromagnetic WavePropagation in Cars. Microwave Conference. European,2003,3:1151~1154
    [64]R.A. Foran, T.B. Welch, M.J. Walker. Very Near Ground Radio FrequencyPropagation Measurements and Analysis for Military Applications. MilitaryCommunications Conference Proceedings,1999. MILCOM1999. IEEE,1999,1:336~340
    [65]G. Lomidze, P. Tsereteli, R. Kvaratskhelia, et al. Development of FEM/MOMApproach for Investigation of Vehicle Glass Antennas. Proceedings of XthInternational Seminar/Workshop on Direct and Inverse Problems of Electromagneticand Acoustic Wave Theory,2005,212~215
    [66]R.S. Zaridze, D.G. Kakulia, K.N. Tavzarashvili, et al. Electromagnetic Analysis of theLarge Semi Open Structures Using Method of Auxiliary Sources. Antennas andPropagation Society International Symposium,2003. IEEE,2003,4:319~322
    [67]E. S. Siah, M. Sasena, J.L. Volakis, et al. Fast Parameter Optimization of Large-scaleElectromagnetic Objects Using DIRECT with Kriging Metamodeling. IEEETransactions on Microwave Theory and Techniques,2004,52(1):276~285
    [68]E.S. Siah, T. zdemir, J.L. Volakis, et al. Fast Parameter Optimization Using KrigingMetamodeling. Antennas and Propagation Society International Symposium,2003,2:76~79
    [69]R. Zaridze, D. Kakulia, K. Tavzarashvili, et al. Method of Auxiliary SourcesImplementation for Diffraction Problem Solution on Semi-open Metallic Surface withPartitions and Enclosed Dielectric Objects. Antennas and Propagation SocietyInternational Symposium,2002. IEEE,2002,1:172~175
    [70]H.J. Song, J.S. Colburn, H.P. Hsu, et al. Modeling Effect of Lightning Induced EMPon Wire Harness in Automobiles. Antennas and Propagation Society InternationalSymposium,2005,2:383~386
    [71]A.R. Ruddle, S.C. Pomeroy, D.D. Ward. Modelling the Installed Performance ofAutomotive Antennas Integrated with Vehicle Glazing. Eleventh InternationalConference on Antennas and Propagation,2001,2:732~735
    [72]Y. Horiki, E.K. Walton. Analysis of Conformal Automobile Antennas, Theory andExperiment. Antennas and Propagation Society International Symposium,2003. IEEE,2003,2:671~674
    [73]R.A. Jaoude, E.K. Walton. Numerical Modeling of Conformal Automobile Antennas.Antennas and Propagation Society International Symposium,1997,1:414~417
    [74]S. Dejan, F. John, L. Volakis. A Flush-Mounted Multifunctional Slot Aperture forAutomotive Applications. IEEE Transactions on Antennas and Propagation,2004,52:67~69
    [75]E.S. Siah, T. Ozdemir, J.L. Volakis, et al. Optimization for RF Coupling andInterference Reduction of Devices in Complex Systems. IEEE InternationalSymposium on Electromagnetic Compatibility,2003,2:1062~1065
    [76]Tanoshita Kouichi, Nakatani Koji, Yamada Yoshihide. Electric Field Simulationsaround A Car of the Tire Pressure Monitoring System. IEICE Trans Commun,2007,9:2416~2422
    [77]李青侠,张宏侠,冷毅.汽车轮胎压力监测系统中的动态天线研究[J].汽车工程,2007,29(6):470~473
    [78]成明江.新型轮胎压力监测系统副机电路设计:[硕士学位论文].南京:南京理工大学,2007.
    [79]钱伟.胎压监测系统在重型车辆上的应用:[硕士学位论文].合肥:合肥工业大学,2006.
    [80]Yi Leng, Dong Wenfeng, Sheng Liu. Study on Electromagnetic Wave PropagationCharacteristics in Rotating Environments and Its Application in Tire PressureMonitoring. IEEE Transactions on Instrumentation and Measurement,2012,61(6):1765~1777
    [81]J. R. Wang, T. J. Schmugge. An Empirical Model for the Complex DielectricPermittivity of Soils as A Function of Water Content. IEEE Transactions onGeoscience and Remote Sensing,1980,1(18):288~295
    [82]G. Steven, Y. Johnson.[EB/OLhttp://en. wlkipcdia.org/wiki/File:Yee-cube. svg,2005.
    [83]梁铨廷.物理光学.第2版.北京:机械工业出版社,1993.161~163
    [84]HFSS用户手册, Ansoft公司,2002
    [85]周朝栋.天线与电波.第1版.西安:西安电子科技大学出版社,1994.239~246
    [86]刘胜,王小平,李青侠,冷毅.无线汽车轮胎安全监测系统[P].申请号:200410018355.x,中国国家知识产权局
    [87]Sheng Liu, Bin Chen, Junjie Chen, et al. An Intelligent Integrated Sensor of TirePressure Monitoring System (TPMS)[P]. United States Patent20060185429, UnitedStates and Trademark Office