传输线理论在光纤陀螺寻北仪电磁屏蔽中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:为了抵抗电磁干扰对电子设备的影响,电磁屏蔽正不断发展起来,并广泛应用于各个领域。虽然现在有很多数值方法可以得到较为精确的电磁仿真数据,但其耗费时间长,CPU的计算量大。因此,应用解析法建立完善的电磁屏蔽模型正逐渐成为指导工程实践的快捷有效的方法。
     本文以光纤陀螺寻北仪为研究对象,应用解析法中的传输线理论,对实际工程中出现的典型屏蔽腔体分别进行了较为完整的建模。其中包括单层带孔缝腔体、双层带孔缝腔体、双面带孔缝腔体以及内置PCB板的腔体,并求解出了其中任意点的屏蔽效能,为工程实践中屏蔽腔体和孔缝的设计,及其内部器件的安排布局提供了很好的参考价值。论文的主要工作和创新如下:
     1.针对平面电磁波以任意角度射入腔体的实际情况,提出在建模中引入平面电磁波的竖直入射角、水平入射角与极化角的方法。把平面电磁波的坐标从入射源坐标系转换到矩形腔坐标系,并按照电磁波的水平极化分量和垂直极化分量分别对模型进行分析研究。此建模方法使得平面电磁波可以以任意角度射入腔体,增强了模型对实际情况的拟合性。
     2.针对孔缝处于腔体面的任意位置的实际情况,提出把孔缝建模成宽度不对称的共面带状线的方法。应用在平面电磁波辐射下的分布电源传输线模型对孔缝进行建模,并求出在孔缝中心处产生的等效电压,以此电压做为后续电路的电压源。此建模方法节省了计算时间,把孔缝从腔体面的中心位置扩展到了任意位置,扩大了模型对工程实践的适用性。
     3.针对探测点处于矩形腔内任意位置的实际情况,提出结合模式电压和模式电流来表示矩形谐振腔内电磁场分布的方法。把矩形腔体看成一端完全开放,另一端完全封闭的矩形波导。此波导与孔缝相结合,应用集总电源传输线模型进行分析,考虑TE模和TM模的高次模影响,并结合腔体内的电场分布,求解出腔体内任意点的屏蔽效能。此建模方法把探测点从腔体内孔缝中心线上的点扩展到了腔体内的任意点,增强了模型的工程实践价值。
     4.针对光纤陀螺寻北仪,依照以上建模方法,分别建模求取了单层、双层和三层带孔缝腔体的屏蔽效能。并研究了带孔缝腔体内屏蔽效能与探测点位置之间的关系以及腔体层数与屏蔽效能之间的关系。仿真结果表明:此模型得出的屏蔽效能值与实验测得的数据相吻合,证明了此模型的正确性。腔体的屏蔽效能随探测点的位置不同而不同,且均随腔体层数的增加而有所提高。为工程实践中对屏蔽效能要求比较高的设备或系统提供了很好的参考价值。
     5.针对光纤陀螺寻北仪,研究了在平面电磁波照射下的双侧面带孔缝的矩形腔以及内置PCB板的带孔缝矩形腔体的建模,并求出了腔体内任意点的屏蔽效能。仿真结果表明:腔体的屏蔽效能随探测点的位置不同而不同,此建模方法具有一定的工程实践价值。
In order to resist electromagnetic interference, electromagnetic shielding becomes more and more popular in every field. Though there are many numerical methods which can obtain accurate simulation data, they cost too much long time and tremendous computing workload. It is an enormous waste of resources. So, the analytical method becomes the more effective method in the modeling of the electromagnetic shielding.
     The FOG North Seeker is taken as an object, and the application of transmission line theory is used in the modeling of typical shielding cavities in the real project, which include single-layer, double-layer, three-layer rectangular cavity with apertures, cavity with apertures in different sides, and cavity with PCB inside. The shielding effectiveness of any point in these cavities are researched respectively, which supplies good reference value for the cavity and aperture designing and devices layout in the real project. The main works and innovations are listed as follows:
     1. For the actual situation of the electromagnetic wave incidents into the cavity at an arbitrary angle, the method of introducing vertical incident angle, horizontal incident angle, and polarization angle is proposed. The coordinate of the plane electromagnetic wave is converted from the incident source coordinate system to the rectangular cavity coordinate system, and the model is analyzed based on the horizontally polarized component and the vertically polarized component especially. The electromagnetic wave can incident into the cavity at an arbitrary angle with this modeling method, which increases the fitness of the model and the practical situation.
     2. For the actual situation of the aperture locates at any position of the cavity face, the method of the aperture is taken as the asymmetrical coplanar stripline is proposed. The aperture is modelled according to the transmission line model with distributed voltage sources, and the equivalent voltage produced at the center of the aperture is taken as the voltage source of the whole circuit model. This modeling method saves calculation time. The location of the aperture is extended to any location on the cavity's face from the center, which increases the applicability of the model.
     3. For the actual situation of the probe point locates at any position in the cavity, the method of describing the electromagnetic distribution with mode voltage and mode current is proposed. The rectangular cavity is taken as a rectangular waveguide with one end completely open and another end completely closed. The waveguide is combined with aperture, and the total power supply transmission line model is used in the analysis. Considering the higher-order modes of TE mode and TM mode, and combining the distribution of electric field in the cavity, the shielding effectiveness of any point in the cavity is solved. This modeling method extends the location of the probe point to any point in the cavity from the points on the center line of the aperture, which increases the engineering value of the model.
     4. Aiming at the FOG North Seeker, and according to the above methods, the shielding effectiveness of monolayer cavity, double layer cavity and three layers with apertures are modelled. The relationship between the shielding effectiveness and the location of the probe point and the relationship between the number of the layers and the shielding effectiveness are analyzed. The simulation results show that:the shielding effectiveness solved through the models agrees with the experimental data, which proves the accuracy of the models. The shielding effectiveness is different with the different probe point, and the shielding effectiveness is improved with the increase of the layers. That provides a good reference value for the devices or systems with high shielding effectiveness requirements in engineering practice.
     5. Aiming at the FOG North Seeker, the rectangular cavity with apertures in different directions and the rectangular cavity with printed circuit board (PCB) inside are modelled to solve the shielding effectiveness of the cavity. The simulation results show that:the shielding effectiveness is different with the different probe point, which gives good advice to the engineering practice.
引文
[1]Xufeng Zhang, Weidong Zhang, Xiang Cui. Research on shielding effectiveness of enclosure with apertures[C].//Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC).2010.928-931.
    [2]Carpes, W.P., Jr., Pichon, L., Razek, A.. Analysis of the coupling of an incident wave with a wire inside a cavity using an FEM in frequency and time domains[J]. IEEE Transactions on Electromagnetic Compatibility.2002.44.470-475.
    [3]S. Yenikaya. Electromagnetic Analysis and Shielding Effectiveness of Rectangular Enclosures with Aperture Using Hybrid MoM/FEM[J]. Iranian Journal of Electrical and Computer Engineering.2011.10(2).70-76.
    [4]Ji, Y., Hubing, T.M., Drewniak, J.L.. Finite element modeling of patch antenna and cavity sources[C].//IEEE International Symposium on Electromagnetic Compatibility.2002.2. 811-814.
    [5]Alotto, P., Guarnieri, M., Moro, F., Turri, R.. Mitigation of residential magnetic fields generated by MV/LV substations[C].//42nd International Conference on Universities Power Engineering.2007.832-836.
    [6]J. Z. Lei, C. H. Liang, and Y. Zhang. Study on Shielding Effectiveness of Metallic Cacities with Apertures by Combining Parallel FDTD Method with Windowing Technique[J]. Progress In Electromagnetics Research.2007.74.85-112.
    [7]Lin Li, Xiang Cui, Huiqi Li. Subcell FDTD analysis of shielding effectiveness of a thin-walled enclosure with an aperture[J]. IEEE Transactions on Magnetics.2006.42. 1075-1078.
    [8]Sarto, M.S. Hybrid MFIE/FDTD analysis of the shielding effectiveness of a composite enclosure excited by a transient plane wave[J]. IEEE Transactions on Magnetics.2000.36. 946-950.
    [9]Georgakopoulos, S.V., Birtcher, C.R., Balanis, C.A.. HIRF penetration through apertures: FDTD versus measurements [J]. IEEE Transactions on Electromagnetic Compatibility.2001. 43.282-294.
    [10]Chen, J., Jianguo Wang. A Three-Dimensional Semi-Implicit FDTD Scheme for Calculation of Shielding Effectiveness of Enclosure With Thin Slots[J]. IEEE Transactions on Electromagnetic Compatibility.2007.49.354-360.
    [11]Min Li, Joe Nuebel, James L. Drewniak, Richard E. DuBroff, Todd H. Hubing, Thomas P. Van Doren. EMI from Cavity Modes of Shielding Enclosures—FDTD Modeling and Measurements [J]. IEEE Transactions on Electromagnetic Compatibility.2000.42(1).29-38.
    [12]M. Li, K.-P. Ma, J. L. Drewniak, T. H. Hubing, and T. P. Van Doren. Numerical and experimental corroboration of an FDTD thin-slot model for slots near corners of shielding enclosures[J]. IEEE Trans. on Electromagn. Compat.1997.39.225-232.
    [13]M. Li. Modeling and design of shielding enclosures for EMI mitigation—Experiments and finite-difference time-domain and method of moments modeling[D]. Rolla.Univ. Missouri-Rolla.1999.
    [14]Namiki, T., Ito, K.. Numerical simulation using ADI-FDTD method to estimate shielding effectiveness of thin conductive enclosures[J]. IEEE Transactions on Microwave Theory and Techniques.2001.49.1060-1066.
    [15]Ma Shuangwu, Gao Yougang. Analysis of enclosure with an aperture using FDTD method[C]. //3rd International Symposium on Electromagnetic Compatibility.2002.242-245.
    [16]Juan Chen, Jianguo Wang. Using WCS-FDTD method to simulate various small aperture-coupled metallic enclosures[J]. Microwave and Optical Technology Letters.2007.49. 1852-1858.
    [17]C. H. Kraft. Modeling leakage through finite apertures with TLM[C].//IEEE International symposium on Electromagnetic compatibility.1994.73-76.
    [18]Xianke Gao. Numerical evaluation of EMI immunity of hard disk drive with multiple slots[C]. //18th International Zurich Symposium on Electromagnetic Compatibility.2007.401-404.
    [19]Kazik, J.J.. Prediction of shielding performance via the transmission line matrix method (TLM)[J]. IEEE Seminar on Shielding and Grounding.2000.5/1-5/7.
    [20]Ge Guo, Weidong Zhang, Xiang Cui, Jie Zhao, Xiaolin Li, Qi Wang. Application of the TLM method to analyze the effects of slots on the shielding effectiveness of the valve halls in HVDC[C].//Asia-Pacific Microwave Conference.2008.1-4.
    [21]Kumar, T.R.S., Venkatesh, C.. Shielding Effectiveness comparison of rectangular and cylindrical enclosures with rectangular and circular apertures using TLM modeling[C]. //Applied Electromagnetics Conference.2009.1-4.
    [22]Liuping Wang, Yougang Gao, Yuanmao Shen, Fangming Ruan. Analysis on Shielding Effectiveness of Aperture Arrays with Different Spacing[C].//International Symposium on Electromagnetic Compatibility.2007.333-336.
    [23]Doncov, N., Wlodarczyk, A.J., Scaramuzza, R., Trenkic, V.. Compact TLM model for air-vents[J]. Electronics Letters.2002.38.887-889.
    [24]N. Fichtner, P. Russer. An accelerated hybrid TLM-IE method for the investigation of shielding effectiveness[J]. Advances in Radio Science.2010.13-18.
    [25]Silveira, J.L., Benhassine, S., Pichon, L., Raizer, A.. Analysis of the shielding effectiveness of a rectangular enclosure with apertures by TLM-TD[C].//The Fourth International Conference on Computation in Electromagnetics.2002.
    [26]Christopoulos, C.. Application of the TLM method to equipment shielding problems[C]. //IEEE International Symposium on Electromagnetic Compatibility.1998.1.188-193.
    [27]Argus, P., Fischer, P., Konrad, A., Schwab, A.J.. Efficient modeling of apertures in thin conducting screens by the TLM method[C].//IEEE International Symposium on Electromagnetic Compatibility.2000.1.101-106.
    [28]Min Li, Joe Nuebel, James L. Drewniak. EMI from Airflow Aperture Arrays in Shielding Enclosure — Experments, FDTD, and MOM Modeling[J]. IEEE Transactions on Electromagnetic Compatibility.2000.42(3).265-275.
    [29]Chao Feng, Zhongxiang Shen. A hybrid FD-MoM technique for predicting shielding effectiveness of metallic enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility.2005.47.456-462.
    [30]G. Marrocco, F. Bardati. Combined Time and Frequency-Domain Modelling of Electromagnetic Radiation From Apertures On Resonant Cavities By Fdtd-Mom Method[J]. Journal of Electromagnetic Waves and Applications.2012.16.523-539.
    [31]Dehkhoda, P., Tavakoli, A., Moini, R.. Shielding effectiveness of a rectangular enclosure with finite wall thickness and rectangular apertures by the generalised modal method of moments. Science[J], Measurement & Technology, IET.2009.3.123-136.
    [32]Yenikaya, S.. Hybrid MoM/FEM modelling Of shielding effectiveness Of loaded rectangular enclosures with apertures[C].//IEEE International Symposium on Electromagnetic Compatibility.2009.61-65.
    [33]Yenikaya, S.. Validation of MOM/FEM in modelling studies of loaded enclosures with apertures[C].//IEEE International Symposium on Electromagnetic Compatibility.2008.1-5.
    [34]S. Yenikaya, A. Akman. Hybrid MoM/FEM modeling of loaded enclosure with aperture in EMC problems[J]. International Journal of RF and Microwave Computer-Aided Engineering. 2009.19.204-210.
    [35]Araneo, R., Lovat, G.. Fast MoM Analysis of the Shielding Effectiveness of Rectangular Enclosures With Apertures, Metal Plates, and Conducting Objects[J]. IEEE Transactions on Electromagnetic Compatibility.2009.51.274-283.
    [36]Araneo, R., Lovat, G.. An Efficient MoM Formulation for the Evaluation of the Shielding Effectiveness of Rectangular Enclosures With Thin and Thick Apertures[J]. IEEE Transactions on Electromagnetic Compatibility.2008.50.294-304.
    [37]Wallyn, W., De Zutter, D., Rogier, H.. Prediction of the shielding and resonant behavior of multisection enclosures based on magnetic current modeling[J]. IEEE Transactions on Electromagnetic Compatibility.2002.44.130-138.
    [38]Rajamani, V., Bunting, C.F., Deshpande, M.D., Khan, Z.A.. Validation of modal/MoM in shielding effectiveness studies of rectangular enclosures with apertures[J]. IEEE Transactions on Electromagnetic Compatibility.2006.48.348-353.
    [39]H. A. Bethe. Theory of diffraction by small holes[J]. Phys. Rev..1944.66(7-8).163-182.
    [40]C. J. Bouwkamp. Diffraction theory[J]. Rep. Prog. Phys..1954.17.35-100.
    [41]A. F. Stevenson. Solution of electromagnetic scattering problems as power series in the ratio (dimensions scatterer)/wavelength[J]. J. Appl. Phys..1953.24(9).1134-1142.
    [42]H. Levine, J. Schwinger. On the theory of electromagnetic wave diffraction by an aperture in an infinite plane conducting screen[J]. Comm. Pure Applied Math..1950.3.355-391.
    [43]Mendez, H. A.. Shielding Theory of Enclosures with Apertures[J]. IEEE Transactions on Electromagnetic Compatibility.1978.296-305.
    [44]Min Li, Drewniak, J.L., Radu, S., Nuebel, J., Hubing, T.H., DuBroff, R.E., Van Doren, T.P.. An EMI estimate for shielding-enclosure evaluation[J]. IEEE Transactions on Electromagnetic Compatibility.2001.43(3).295-304.
    [45]Martin, T., Backstrom, M., Loren, J.. Semi-empirical modeling of apertures for shielding effectiveness simulations[J]. IEEE Transactions on Electromagnetic Compatibility.2003. 45(2).229-237.
    [46]Razavi, S. M. J., Khalaj-Amirhosscini, M.. Using double-layers walls for shielded enclosures[C].//Asia-Pacific Microwave Conference Proceedings.2005.2.
    [47]焦重庆,齐磊.平面波照射下开孔矩形腔体的电磁耦合[J].物理学报.2012.61(13).134104-1-134104-6.
    [48]M. Edrisi, A. Khodabakhshian. Simple Methodology for Electric and Magnetic Shielding Effectiveness Computation of Enclosures for Electromagnetic Compatibility use[J]. Journal of Electromagnetic Waves and Applications.2006.20(8).1051-1060.
    [49]Tadeusz Konefal, John F. Dawson, Alan C. Denton, Trevor M. Benson, Christos Christopoulos, Andrew C. Marvin, Stuart J. Porter, and David W. P. Thomas. Electromagnetic Coupling Between Wires Inside a Rectangular Cavity Using Multiple-Mode-Analogous-Transmission-Line Circuit Theory [J]. IEEE Transactions on Electromagnetic Compatibility. 2001.43(3).273-281.
    [50]R. Azaro, S. Caorsi, M. Donelli and G. L. Gragnani. Evaluation of the Effects of an External Incident Electromagnetic Wave on Metallic Enclosures with Rectangular Apertures[J]. Microwave and Optical Technology Letters.2001.28(5).289-293.
    [51]Renzo Azaro, Salvatore Caorsi, Massimo Donelli, and Gian Luigi Gragnani. A Circuital Approach to Evaluating the Electromagnetic Field on Rectangular Apertures Backed by Rectangular Cavities[J]. IEEE Transactions on Microwave Theory and Techniques.2002. 50(10).2259-2265.
    [52]Tadeusz Konefal, John F. Dawson, Andy C. Marvin, Martin P. Robinson, and Stuart J. Porter. A Fast Multiple Mode Intermediate Level Circuit Model for the Prediction of Shielding Effectiveness of a Rectangular Box Containing a Rectangular Aperture[J]. IEEE Transactions on Electromagnetic Compatibility.2005.47(4).678-691.
    [53]Jongjoo Shim, Dong Gun Kam, Jong Hwa Kwon, and Joungho Kim. Circuital Modeling and Measurement of Shielding Effectiveness Against Oblique Incident Plane Wave on Apertures in Multiple Sides of Rectangular Enclosure[J]. IEEE Transactions on Electromagnetic Compatibility.2010.52(3).566-577.
    [54]F. Tahar Belkacem, M. Bensetti, A.-G. Boutar, D. Moussaoui, M. Djennah, B. Mazari. Combined model for shielding effectiveness estimation of a metallic enclosure with apertures. IET Science[J], Measurement and Technology.2011.5(3).88-95.
    [55]A.Boutar, M.Laour, F.Tahar Belkacem, and D.Moussaoui. Transmission Line Model for Shielding Effectiveness Estimation of a Rectangular Enclosure with Apertures[C]. //CNCEM'09-lere Conference Nationale sur la Compatibility electromagnetique.2009. 22-24.
    [56]Antonio Jose, Lozano-Guerrero, Martin Paul Robinson,, Alejandro Dl' az-Morcillo and Juan Vicente Balbastre-Tejedor. Benefits of Using Conductive Plastics in Shielding Configurations to Reduce Radiated Electromagnetic Interference [J]. Microwave and Optical Technology Letters.2010.52(11).2476-2480.
    [57]Thomas A. Loughry and Shyam H. Gurbaxani. The Effects of Intrinsic Test Fixture Isolation on Material Shielding Effectiveness Measurements Using Nested Mode-Stirred Chambers[J]. IEEE Transactions on Electromagnetic Compatibility.1995.37(3).449-452.
    [58]J. F. Hobug. Principles of Quasistatic Magnetic Shielding with Cylindrical and Spherical Shields[J]. IEEE Transactions on Electromagnetic Compatibility.1995.37(4).574-579.
    [59]Christopher L. Holloway, David A. Hill, Marco Sandroni, John M. Ladbury, Jason Coder, Galen Koepke, Andrew C. Marvin, and Yuhui He. Use of Reverberation Chambers to Determine the Shielding Effectiveness of Physically Small, Electrically Large Enclosures and Cavities[J]. IEEE Transactions on Electromagnetic Compatibility.2008.50(4).770-782.
    [60]Bao-Lin Nie, Ping-An Du, Ya-Ting Yu, and Zheng Shi. Study of the Shielding Properties of Enclosures With Apertures at Higher Frequencies Using the Transmission-Line Modeling Method[J]. IEEE Transactions on Electromagnetic Compatibility.2011.53(1).73-81.
    [61]Tadeusz Konefal, John F. Dawson, Andrew C. Marvin, Martin P. Robinson, and Stuart J. Porter. A Fast Circuit Model Description of the Shielding Effectiveness of a Box With Imperfect Gaskets or Apertures Covered by Thin Resistive Sheet Coatings[J]. IEEE Transactions on Electromagnetic Compatibility.2006.48(1).134-144.
    [62]HORACIO A. MINDEZ. Shielding Theory of Enclosures with Apertures[J]. IEEE Transactions on Electromagnetic Compatibility.1978.20(2).296-305.
    [63]Farhana Ahmad Po'ad, Mohd Zarar Mohd Jenu, C. Christopoulos, D.W.P. Thomas, Wan Razli Wan Abdullah, Khadijah Yusoff, and Baharin Mohd. Shariff[C].//Shielding Effectiveness of Rectangular Metallic Enclosures with Apertures. Asia-Pacific Conference on Applied Electromagnetics Proceedings.2005.167-171.
    [64]张旭锋,李颖,倪谷炎,罗建书.有孔腔体屏蔽效应分析的混合模型[J].电波科学学报.2011.26(1).25-29.
    [65]C. H. Fang, S. Q. Zheng, H. Tan, D. G. Xie, and Q. Zhang. Shielding Effectiveness Measurements on Enclosures with Various Apertures by Both Mode-Tuned Reverberation Chamber and GTEM Cell Methodologies[C].//Progress In Electromagnetics Research.2008. 2.103-114.
    [66]Hyun H. Park and Hyo J. Eom. Electromagnetic Penetration into a Rectangular Cavity with Multiple Rectangular Apertures in a Conducting Plane[J]. IEEE Transactions on Electromagnetic Compatibility.2000.42(3).303-307.
    [67]Min Li, James. L. Drewniak, Sergiu Radu, Joe Nuebel, Todd H. Hubing, Richard E. DuBroff, and Thomas P. Van Doren. An EMI Estimate for Shielding-Enclosure Evaluation[J]. IEEE Transactions on Electromagnetic Compatibility.2001.43(3).295-304.
    [68]Zulfiqar Ali Khan, Charles F. Bunting and Manohar D. Deshpande. Shielding Effectiveness of Metallic Enclosures at Oblique and Arbitrary Polarizations[J]. IEEE Transactions on Electromagnetic Compatibility.2005.47(1).112-122.
    [69]H. N. Phyu, Er-Ping Li and Y. Weiliang. Electromagnetic Susceptibility Analysis of High Speed Circuit Inside the Shielding Enclosure with an Aperture[C].//Electronics Packaging Technology Conference.2005.417-420.
    [70]Rodolfo Araneo, and Giampiero Lovat. An Efficient MoM Formulation for the Evaluation of the Shielding Effectiveness of Rectangular Enclosures With Thin and Thick Apertures[J]. IEEE Transactions on Electromagnetic Compatibility.2008.50(2).294-304.
    [71]M.P. Robinson, J.D. Turner, D.W.P. Thomas, J.F. Dawson, M.D. Ganley, A.C. Marvin, S.J. Porter, T.M. Benson and C. Christopoulos. Shielding effectiveness of a rectangular enclosure with a rectangular aperture[J]. Electronics Letters.1996.32(17).1559-1560.
    [72]Martin Paul Robinson, Trevor M. Benson, Christos Christopoulos, John F. Dawson, M. D. Ganley, A. C. Marvin, S. J. Porter, and David W. P. Thomas. Analytical Formulation for the Shielding Effectiveness of Enclosures with Apertures[J]. IEEE Transactions on Electromagnetic Compatibility.1998.40(3).240-248.
    [73]Farhana Ahmad Po'ad, Mohd Zarar Mohd Jenu, C. Christopoulos, D.W.P. Thomas. Multimode Consideration in the Analysis of Shielding Effectiveness of a Metallic Enclosure with Off-Centred Apertures[C].//International RF and Microwave Conference Proceedings.2006. 306-310.
    [74]Mohd Zarar Mohd Jenu, Farhana Ahmad Po'ad. Electric and Magnetic Shielding Effectiveness of Metallic Enclosures with Apertures[C].//Proceedings of Asia-Pacific Microwave Conference.2006.536-539.
    [75]Farhana Ahmad Po'ad, Mohd Zarar Mohd Jenu, C. Christopoulos, D.W.P. Thomas. Analytical and Experimental Study of the Shielding Effectiveness of a Metallic Enclosure with Off-Centered Apertures[C].//17th International Zurich Symposium on Electromagnetic Compatibility.2006.618-621.
    [76]汪柳平,高攸纲,沈远茂,阮方鸣.装有PCB有孔矩形腔屏蔽效能的传输线法分析[J].电波科学学报.2008.23(4).740-744.
    [77]汪柳平,高攸纲.装有电路板孔阵矩形腔对快上升前沿电磁脉冲的屏蔽效能[J].强激光与粒子束.2007.20(1).162-166.
    [78]David W. P. Thomas, Alan C. Denton, Tadeusz Konefal, Trevor Benson, Christos Christopoulos, John F. Dawson, Andy Marvin, Stuart J. Porter, and Phillip Sewell. Model of the Electromagnetic Fields Inside a Cuboidal Enclosure Populated with Conducting Planes or Printed Circuit Boards[J]. IEEE Transactions on Electromagnetic Compatibility.2001.43(2). 161-169.
    [79]石丹,沈远茂,高攸纲.有孔屏蔽腔屏蔽效能的高次模分析[J].电波科学学报.2009.24(3).510-513.
    [80]石丹.平面波斜入射到有孔腔体的屏蔽效能分析[J].电波科学学报.2011.26(4).678-682.
    [81]宋航,胡涛,侯德亭,周东方,刘应刚.有孔双层屏蔽腔体屏蔽效能的多模分析方法[J].微波学报.2009.25(2).25-29.
    [82]宋航,饶育萍,张超,周东方,侯德亭.有孔双层屏蔽腔体的宽频带屏蔽效能[J].强激光与粒子束.2008.20(10).1684-1688.
    [83]宋航,陈洁,刘应刚.高次模传输线法分析有孔双层屏蔽腔体屏蔽效能[J].高电压技术.2009.35(4).877-883.
    [84]R.W. Shorthill. No moving parts:a fiber optic gyroscope[C]//ION 57th Annual Metting/CIGTF 20th Biennial Guidance Test Symposium,2001:188-204.
    [85]黄志洵.微波传输线理论与实用技术[M].北京.科学出版社.1996.33-81.
    [86]Frederick M.Tesche, Michel V. Ianoz, Torbjorn Karlsson. EMC Analysis Methods and Computational Models[M]. New York. John Wiley&Sons.1997.202-246.
    [87]Agrawal, A. K., et al.. Transient Response of Multiconductor Transmission Lines Excited by a Nonuniform Electromagnetic Field[J]. IEEE Trans. Electromagnetic Compatibility.1980. 22(2).119-129.
    [88]Tesche, F. M.. Plane Wave Coupling to Cables, Part Ⅱ. Chapter 2 in Handbook of Electromagnetic Compatibility[M]. New York. Acdemic Press.1995.
    [89]Nucci, C. A., F. Rachidi. On Field-to-Transmission Line Coupling Models[C].//Proceedings of the Progress in Electromagnetic Research Symposium.1995.11-15.
    [90]吴明英,毛秀华.微波技术[M].西北电讯工程学院出版社.1985.
    [91]雷威,张晓兵,王保平,朱卓娅.电磁场理论及其应用[M].南京.东南大学出版社.2005.14-18.
    [92]Gupta K. C., Garg Ramesh, Bahl Inder, Bhartia Prakash[J]. Microstrip lines and slotlines. London. MA. Artech House.1979.375-451.
    [93]DM Pozar, Microwave Engineering[M]. New York. John Wiley & Sons.2005.
    [94]Renzo Azaro, Salvatore Caorsi, Massimo Donelli, Gian Luigi Gragnani. A Circuital Approach to Evaluating the Electromagnetic Field on Rectangular Apertures Backed by Rectangular Cavities[J]. IEEE Transactions on microwave theory and techniques.2002.50(10). 2259-2266.
    [95]G. Franceschetti, Electromagnetic fields[M]. Italy. Boringhieri.1988.
    [96]Collin R E, Field Theory of Guided Waves[M].2nd Ed.. New York. Wiley-IEEE Press.1990.
    [97]Frederick M T, Michel V I, Torbjorn K. EMC Analysis Methods and Computational Models[M]. New York. Wiley-Interscience Press.1996.202-230.
    [98]焦重庆,齐磊.平面波照射下开孔矩形腔体的电磁耦合与屏蔽效能研究[J].物理学报.2012.61(13).134104-1-134104-6.
    [99]Salvatore Celozzi, Rodolfo Araneo, Giampiero Lovat. Electromagnetic ShieldingfM]. Canada. A John Wiley & Sons.2008.87-137.
    [100]Farhana Ahmad Po'ad, Mohd Zarar Mohd Jenu, C. Christopoulos, D.W.P. Thomas. Analytical and Experimental Study of the Shielding Effectiveness of a Metallic Enclosure with Off-Centered Apertures[C].//17th International Zurich Symposium on Electromagnetic Compatibility,2006..618-621.
    [101]孙俊卿.模式电压和模式电流在分析谐振腔中的应用[J].中国民航学院学报.1991.9(4).65-69.
    [102]Nathan Marcuvitz. Waveguide Handbook[M]. London. Peter Peregrinus Ltd..1986.55-66.
    [103]David W. P. Thomas, Alan C. Denton, Tadeusz Konefal, Trevor Benson, Christos Christopoulos, John F. Dawson, Andy Marvin, Stuart J. Porter, Phillip Sewell. Model of the Electromagnetic Fields Inside a Cuboidal Enclosure Populated with Conducting Planes or Printed Circuit Boards[J]. IEEE Transactions on Electromagnetic Compatibility.2001.43(2). 161-169.
    [104]葛德彪,魏兵.电磁波理论[M].北京.科学出版社.2011.174-178.