镍及镍基二元合金/多壁碳纳米管复合催化剂的制备及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于人类对大自然的过度开发和利用,资源、能源缺乏和环境污染等问题越来越突出的摆在人们面前。因此,二十一世纪对现有资源和能源的合理利用以及对环境的保护越来越受到人们的重视,同时对新能源的开发也已成为亟待解决的难题,“高效,节能,环保”的概念受到日益剧增的关注。工业加氢是工业中一个关键的反应,如何提高工业加氢的效率对于高效和节能有重要的意义;同时,发展对于环境更友好,自身更高效的电源,也具有十分重大的战略意义,燃料电池被广泛认为是一种能实现这个目标的新技术。以上两个领域的发展和进步的都非常依赖于催化剂的开发。目前,工业加氢反应催化剂和燃料电池的电极催化剂都主要采用贵金属类。但是,贵金属铂钯资源稀少,价格昂贵,不利于控制成本和长期利用。因此非贵金属类催化剂,尤其是镍系催化剂在这两个领域的应用逐渐受到人们的关注。但是,目前的镍系催化剂存在稳定性,活性不足等缺陷,急需人们解决。
     基于上述背景,本文主要研究了镍及镍基二元合金/多壁碳纳米管复合催化剂的制备及其催化加氢和电催化性能的研究。采用了化学镀和改良的液相还原法两种制备方法,制备得到了三种镍系催化剂,分别是非晶态镍基二元合金MWCNT/Ni-B和MWCNT/Ni-P催化剂,以及晶态MWCNT/Ni催化剂,系统研究了催化剂制备方法对于催化剂制备的影响,并采用XRD,SEM,HRTEM,XPS,ICP,TG-DTA等测试手段对得到的不同催化剂的物理性能进行了详细的表征,得到了最优化的制备手段。最后,将两种非晶态镍基二元合金催化剂应用在苯乙烯和苯的催化加氢反应中并研究了其动力学过程;将三种镍系催化剂应用在碱性乙醇燃料电池领域,研究了不同催化剂对于乙醇电催化氧化的性能,机理与动力学过程,得到了优化催化剂的方案。取得的主要创新性成果如下:
     (1)开发出通过化学镀法制备两种镍基非晶态二元合金MWCNT/Ni-B催化剂化学镀体系,以NiCl_2·6H_2O为主盐,乙二胺为络合剂,氢氧化钠为pH调节剂, NaBH_4为还原剂,通过控制反应时间在敏化-活化的多壁碳纳米管的表面上成功负载上了平均粒径约为60nm的Ni-B非晶态二元合金纳米粒子,其分布均匀,呈现棉花状孔道结构,为典型的非晶态结构。随着化学镀反应时间的增加,Ni的负载量逐渐增加,B在Ni-B粒子中的含量也逐渐增加,导致晶化温度也最终增加到326°C。通过XPS测试可以得知硼元素给镍元素提供电子使得镍表面呈现电子富集状态。
     (2)开发出通过化学镀法制备两种镍基非晶态二元合金MWCNT/Ni-P催化剂的化学镀液体系,以NiSO_4·6H_2O为主盐,C_6H_5Na_3O_7为络合剂,(NH4)_2SO_4为添加剂,氢氧化钠为pH调节剂,NaH_2PO_2·H_2O为还原剂,通过对反应镀液浓度,反应时间,NaOH添加量,反应温度的优化,在敏化-活化完的多壁碳纳米管表面上成功负载上了平均粒径约为100nm的Ni-P非晶态二元合金纳米粒子,其分布均匀,为均匀的实心结构。对最优催化剂的测试表明Ni-P纳米粒子为典型的非晶态结构,晶化温度大约为360°C,在高温退火后Ni-P粒子会发生团聚并变大,呈现出Ni和Ni3P的混合相。
     (3)通过对两种非晶态镍基二元合金催化剂催化加氢性能及反应动力学研究发现,两种非晶态MWCNT/Ni-B和MWCNT/Ni-P均对苯乙烯加氢反应有着优异的催化能力,在较容易达到的条件下均能实现苯乙烯100%选择加氢转化成乙苯。研究两种非晶态催化剂的动力学参数可知,苯乙烯具有相同的反应级数一级,MWCNT/Ni-P催化剂具有更小的氢气反应级数,并且可以在较低的温度范围实现苯乙烯的100%转化,同时拥有比MWCNT/Ni-B催化剂更高的动力学反应速率常数k=35122.2·e(-4914.7/T);并且,也具有比MWCNT/Ni-B催化剂相对更小的反应活化能E=40.86kJ/mol,表明MWCNT/Ni-P催化剂具有相对更好的催化活性。进一步研究MWCNT/Ni-P催化剂对苯的催化加氢发现其对苯也具有良好的催化活性,可以将苯选择加氢转化为环己烷,苯的转化率随着时间的增加呈线性增长,说明苯在反应中的反应级数为零级。此外,苯的转化率在180°C左右存在一个大约为60%的最大值,分析原因可能是:第一,温度上升后,催化剂表面的芳烃覆盖率会随着温度上升而下降,导致在某一个温度点有最大值;第二,最大温度点可能是由苯和其反应还原分子竞争吸附导致。
     (4)开发出改良的液相化学还原法,通过引入经过酸化-敏化活化预处理的多壁碳纳米管,控制添加表面活性剂CTAB量和溶液体系pH值为10左右,采用水合肼在为还原剂80°C反应1小时,最终得到了在多壁碳纳米管表面分布均匀的细小多晶镍纳米粒子,粒径大约为20nm。添加剂十二烷基二甲基溴化铵(CTAB)的可以同镍离子和在适当的pH值范围进行络合,当含有低浓度CTAB(<120mM)的溶液时,在Pd金属周围会由CTAB表面活性剂形成一种双分子层结构,它可以控制还原剂水合肼和镍/水合肼络合物在其金属表面的浓度,进而控制反应速率;当CTAB的浓度增加到一定程度(>120mM)时候,溶液倾向于油性,在Pd纳米粒子表面将会形成胶束,它会阻止水合肼和镍/水合肼络合物分子从溶液中扩散到金属粒子表面,进而无法得到还原催化剂。
     (5)通过对三种镍系催化剂电催化性能及反应动力学研究发现,三种镍系催化剂在碱性介质中均表现出对乙醇良好的电催化氧化能力,电极过程受到乙醇扩散的控制。MWCNT/Ni催化剂具有最高的对于乙醇氧化的峰值电流,其原因可能是由其更加细小的晶粒尺寸,进而拥有更大的活性反应表面积所引起。比较三种催化剂的动力学过程可发现,MWCNT/Ni-B催化剂跟MWCNT/Ni有着相近的乙醇氧化速率,但是都远远高于MWCNT/Ni-P催化剂。其原因归结于MWCNT/Ni-B催化剂中B跟Ni之间的电子转移和MWCNT/Ni中Ni纳米粒子细小的粒径和良好的分散效果。因此,如果制备出粒径<20nm的非晶态Ni-B纳米粒子负载在多壁碳纳米管上的催化剂,预计会具有很高的乙醇催化氧化电流,同时又拥有快速的氧化速率。
Due to the over-exploitation and utilization of nature by human,resources, energy shortages and environmental pollution problems arebecoming more and more serious eventually. Therefore, in the21thcentury, therational use of existing resources and energy, as well as protection of theenvironment has been paid more and more attention by human beings,meanwhile, the development and utilization of new energy has become apressing problem. The concept of “efficiency, energy saving, environmentalprotection” has been paid increasingly attention. Hydrogenation is a keyreaction in the industrial production, the way of improving the efficiency ofindustrial hydrogenation is of significance importance for the efficient andenergy-saving. Meanwhile, the development of more friendly for environmentand more efficient power supply is of great strategy, and fuel cell is widelyregarded as the new technologies to achieve this goal, and the developmentand progress of the above two fields dependent on the development ofcatalysts. At present, the catalysts for industrial hydrogenation and fuel cellelectrode are mainly noble metals. However, the noble metals such asplatinum and palladium have the disadvantages of lacking of resources,expensive, difficult in controlling the cost and long-term utilization. Therefore,the application of non-noble metal catalysts, especially nickel series in thesetwo fields has been paid more and more attention gradually. However, thenickel catalysts have the advantages of lacking of catalytic activity, stabilityand so on, leading to the difficulties of the applications in actual utilization.
     Based on the background above, this thesis has mainly focused on thestudies of preparation of nickel and nickel-based binary alloy supported onmulti-walled carbon nanotubes and their applications as hydrogenationcatalysts and electrocatalyts. We applied two synthesis methods, electrolessdeposition and optimized liquid phase reduction for the preparation of threenickel-series catalysts, which are amorphous MWCNT/Ni-B, MWCNT/Ni-Pcatalysts and crystalline state MWCNT/Ni catalysts, and systematical studiedthe effect of preparing methods on the behavior of catalysts. The detailphysical properties of the catalysts are characterized by XRD, SEM, HRTEM,XPS, ICP and TG-DTA and obtained the most optimized preparationparameters. Then, we studied the applications of the two amorphous Ni-basedbinary alloys for catalytic hydrogenation of styrene and benzene and their kinetic processes. Finally, we exploited the applications of the three Ni-seriescatalysts in the field of alkaline ethanol fuel cell by researching their catalyticperformances, mechanisms and kinetic processes for ethanol electrocatalyticoxidation. The main creative achievements are exhibited as follows:
     (1) A novel electroless bath containing NiCl2·6H_2O as predominant salt,ethylenediamine as complexing agent, NaOH as pH regulator and NaBH4asreduction agent has been successfully developed to deposit the Ni-Bnanoparticles on the sensitized-activated MWCNT by controlling the reactiontime. The obtained Ni-B binary alloy nanoparticles are fine spheres comprisedof amorphous structure with the morphologically unique fine-structure likeflowers, and homogenously dispersed with a narrow particle size distributioncentered at around60nm diameter. With the increase of electroless platingreaction time, the Ni loading as well as B content in the Ni-B particlesgradually increase, leading to the crystallization temperature eventuallyincreased to326°C, finally. XPS results indicated that there are electronstransferred from boron to nickel making the surface electro-enrich.
     (2) A novel electroless bath containing NiCl2·6H_2O as predominant salt,C_6H_5Na_3O_7as complexing agent,(NH4)_2SO_4as special additive, NaOH as pHregulator and NaH_2PO_2·H_2O as reduction agent has been successfullydeveloped to deposit the Ni-P binary alloy nanoparticles on thesensitized-activated MWCNT by optimizations of the reaction time,electroless bath concentration, NaOH added amount and the reactiontemperature. The obtained Ni-P nanoparticles are fine spheres of solid state,and homogenously dispersed with a narrow particle size distribution centeredat around100nm diameter. The tests results showed that the Ni-Pnanoparticles of the optimal catalysts are typical amorphous structure and thecrystallization temperature is about360°C. After the high temperatureannealing, the Ni-P nanoparticles agglomerate and become larger comprisedof Ni and Ni3P mixed phases.
     (3)The studies of the catalytic hydrogenation performances and reactionkinetics of the two amorphous Ni-based binary alloys MWCNT/Ni-B and theMWCNT/Ni-P catalysts showed that the two amorphous catalysts exhibitedexcellent catalytic activities toward the hydrogenation reaction of styrene,which can be100%selectively hydrogenised transferred into ethylbenzeneunder the condition which can be easily achieved. The kinetic parameters ofthe two amorphous catalysts showed first-order dependence on styreneconcentration for both catalysts. MWCNT/Ni-P catalysts have a smallerreaction order dependence on hydrogen pressure, and styrene can be100%conversed under lower temperature range and showing relatively higher rateconstant k of35122.2·e(-4914.7/T), smaller activation energy E of40.86kJ/mol,indicating better catalytic activity of MWCNT/Ni-P catalysts. Further study ofthe MWCNT/Ni-P catalysts for catalytic hydrogenation of benzene showed itsexcellent catalytic activity for benzene, which can be selectively conversed to cyclohexane. The conversion of benzene increases linearly with the increasesof time, indicating a zero-order dependence on benzene concentration;meanwhile, there is a maximum value of about60%at the reactiontemperature of180°C, which might be caused by: firstly, the coverage ofaromatics at the surface of catalyst decreases as the temperature rises,resulting in maximum value at a certain temperature point; secondly, themaximum temperature point may be caused by the competitive adsorption ofbenzene and its reduced molecules during the reaction.
     (4) Developed an optimized liquid phase chemical reduction method bythe introduction of acidificated-sensitized-activated multi-walled carbonnanotubes. After controlled the amount of adding surfactant CTAB, pH valueof the system at about10and used hydrazine as the reducing agent reacted at80°C for1hour, we finally got small polycrystalline nickel nanoparticlesuniformly distributed on multi-walled carbon nanotube surface with particlesize of about20nm. Additive agent CTAB can complex with Ni ion atappropriate pH range. If the aqueous solution had low CTAB concentration(<120mM), a bilayer could be formed around Pd nanoparticles built by CTABmolecules, which controlled the concentration of both hydrazine andNi/hydrazine close to the Pd surface. In this case, the reduction rate of nickelwas decresed, making the particle size smaller; If the concentration of CTABincreased to high level (>120mM), the solution inclined to oil state, micellesinstead of bilayers would form on the surface of Pd nanoparticles, which couldinhibit the diffusion of Ni/hydrazine complexes and hydrazine molecules inthe solution, thus prevented the Ni reduction process.
     (5) The Electrocatalytic behaviors and kinetic studies of three Ni-seriescatalysts showed that all of the three Ni-series catalysts in alkaline mediumexhibited excellent electrocatalytic activities towards ethanol oxidation andthe electrocatalytic process were all controlled by the diffusion of ethanol inthe solution. MWCNT/Ni catalyst had the highest peak current for ethanoloxidation, which possibly caused by the larger reactive surface area fromsmaller particle size. The comparison of kinetic processes on three catalystsshowed that the MWCNT/Ni-B and MWCNT/Ni catalysts had similar valueof ethanol electrooxidation rate, which were both much higher than that ofMWCNT/Ni-P catalysts. The phenomenon could be attributed to the smallparticle size and good dispersion of Ni nanoparticles in MWCNT/Ni catalystsand the electron transfer between B and Ni in MWCNT/Ni-B catalysts.Therefore, if we could successfully synthesize amorphous Ni-B nanoparticlecatalysts with the size less than20nm supported on multi-walled carbonnanotubes, it could be expected to obtain extremely high oxidation current andoxidation rate for ethanol electrooxidation at the same time.
引文
[1]廖代伟.催化科学导论[M].北京:化学工业出版社,2006.31-34.
    [2] Lin S D, Vannice M A. Hydrogenation of Aromatic Hydrocarbons over Supported PtCatalysts.I. Benzene Hydrogenation [J]. J. Catal.,1993,143:539-553.
    [3] Machek V, Kuznetsov B N, Ryndin Y A, Kovalchuk V I, Chlebek J. Preparation ofhydrogenation Pt/activated carbon catalyst from a platinum complex [J]. React. Kinet.Catal. Lett.,1981,18:253-256.
    [4] Machek V, Kuznetsov B N, Ryndin Y A, Kovalchuk V I, Chlebek J. Preparation ofhydrogenation Pt/activated carbon catalyst from a platinum complex [J]. React. Kinet.Catal. Lett.,1981,18:253-256.
    [5] Wilson O M, Knecht M R, Garcia-Martinez J C, Crooks R M. Effect of Pd NanoparticleSize on the Catalytic Hydrogenation of Alcohol [J]. J. Am. Chem. Soc.2006,128:4510-4511.
    [6] Nishimura S. Handbook of Heterogeneous Catalytic Hydrogenation for OrganicSynthesis [M]. Wiley, New York,2001
    [7] Antolini E, Ferretti M, Gemme S. Microstructural characterisation of electroless-nickelcoatings on zirconia powder [J]. J. Mater. Sci.,1996,31:2187.
    [8] Beecroft L L, Ober C K [J]. Nanocomposite Materials for Optical Applications. Chem.Mater.,1997,9(6):1302-1317.
    [9] Eisazadeh H, Spinks G, Wallace G G. Characterization of nanostructured materials byM ssbauer spectrometry [J]. J. Mater. Forum.,1993,17:241.
    [10] Zhang H T, Wu G, Chen X H, Qiu X G. Synthesis and magnetic properties of nickelnanocrystals [J]. J. Mater. Res. Bull.,2006,41:495.
    [11] Bettge M, Chatterjee J, Haik Y. Physically synthesized Ni-Cu nanoparticles for magnetichyperthermia [J]. J. BioMagn. Res. Technol.,2004,2:4.
    [12] Okawa K, Sekine M, Maeda M, Tada M, Abe M, Matsushita N, Nishio K, Handa H.Heating ability of magnetite nanobeads with various sizes for magnetic hyperthermia at120kHz, a noninvasive frequency [J]. Appl. Phys.,2006,99:81-102.
    [13] Lewis L N. Nanocomposite Materials for Optical Applications [J]. J. Chem. Rev.,1993,93:2693.
    [14] Puntes V F, Krishnan K M, Alivisatos A P. Colloidal Nanocrystal Shape and SizeControl: The Case of Cobalt [J]. Science,2001,291:2115.
    [15] Hou Y, Gao S. Monodisperse nickel nanoparticles prepared from a monosurfactantsystem and their magnetic properties [J].J. Mater. Chem.,2003,13:1510.
    [16] Sun S, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt Nanoparticles andFerromagnetic FePt Nanocrystal Superlattices [J]. Science,2000,287:1989.
    [17] Chen C C, Herhold A B, Johnson C S, Alivisatos A P. Size Dependence of StructuralMetastability in Semiconductor Nanocrystals [J]. Science,1997,276:398.
    [18] Liu Z, Li S, Yang Y, Peng S, Hu Z, Qian Y. Complex-surfactant-assisted hydrothermalroute to ferromagnetic nickel nanobelts [J]. Adv. Mater.,2003,22:1946.
    [19] Yu J S, Kang S, Yoon S B, Chai G. Fabrication of ordered uniform porous carbonnetworks and their application to a catalyst supporter [J]. J. Am. Chem. Soc.,2002,124(32):9382-9383.
    [20] Iijima S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [21]朱艳秋.巴基管及其工程材料的研究[D].北京:清华大学机械工程系,1996.
    [22]应永飞.纳米碳管加氢催化剂的制备及其在催化加氢中的应用[D].浙江:浙江工业大学,2003.
    [23] Li X S, Zhu H W, Ci L J, et al. Hydrogen uptake by graphitized multi-walled carbonnanotubes under moderate pressure and at room temperature [J]. Carbon,2001,39:2077-2079.
    [24] Che G L, Lakshmi B B, Fisher E R, Martin C R. Carbon nanotubele membranes ofelectrochemical energy storage and production [J]. Nature,1998,393:346-349.
    [25]成会明.碳纳米管制备,结构,物性及应用[M].化学工业出版社,2002.28-32.
    [26] Menon M., Andriotis A N, Froudakis G E. Curvature dependence of the metal catalystatom interaction with carbon nanotubes walls [J]. Chem. Phys. Lett.,2000,320(5-6):425-434.
    [27] Park C, Baker R T K. Catalytic Behavior of Graphite Nanofiber Supported NickelParticles.2. The Influence of the Nanofiber Structure [J], J. Phys. Chem. B,1998,102(26):5168-5177.
    [28] Baker R T K, Laubernds K, Wootsch A, Paal Z. Pt/graphite nanofiber catalyst inn-hexane test reaction [J]. J. Catal.,2000,193(1):165-167.
    [29] Treacy M M J, Ebbesen T M, Gibson J M. Exceptionally high Young's modulusobserved for individual carbon nanotubes [J]. Nature,1996,381:678-680.
    [30] Tang J, Qin L C, Sasaki T, Yudasaka M, Matsushita A, Iijima S. Compressibility andpolygonization of single-walled carbon nanotubes under hydrostatic pressure [J]. Phys.Rev. Lett.,2000,85:1887.
    [31] Hilding J, Grulke E A, Sinnott S B, Qian D L, Andrews R, Jagtoyen M. Sorption ofButane on Carbon Multiwall Nanotubes at Room Temperature [J]. Langmuir,2001,17(24):7540-7544.
    [32] Ulbricht H, Moos G, Hertel T. Physisorption of molecular oxygen on single-wall carbonnanotube bundles and graphite [J]. Phys. Rev. B,2002,66(7):0754041-0754047.
    [33] Ulbricht H, Kriebel J, Moos G, Hertel T, Desorption kinetics and interaction of Xe withsingle-wall carbon nanotube bundles [J]. Chem. Phys. Lett.,2002,363(3-4):252-260.
    [34] Iijima S, Ichihashi T, Ando Y. Pentagons, heptagons and negative curvature ingraphitemicrotubule growth [J]. Nature,1992,356:776-778.
    [35] Ball P. Roll up for the revolution [J]. Nature,2001,414:142.
    [36] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzenedecomposition [J]. Cryst. Growth,1976,32:335-349.
    [37] Iijima S, Ichihashi T. Single-shell carbon nanotubes of1-nm diameter [J]. Nature,1993,363:603-605.
    [38] Baughman R, Zakhidov A, Heer W. Carbon nanotubes-the route toward applications [J].Science,2002,297(5582):787-792.
    [39] Wang F, Arai S, Endo M. Metallization of multi-walled carbon nanotubes with copperby an electroless deposition process [J]. Electrochem. Commun.,2004,6:1042-1044.
    [40] Arai S, Endo M. Carbon nanofiber–copper composite powder prepared byelectrodeposition [J]. Electrochem. Commun.,2003,5:797-799.
    [41] Arai S, Endo M, Hashizume S, Shimojim Y. Nickel-coated carbon nanofibers preparedby electroless deposition [J]. Electrochem. Commun.,2004,42:641-644.
    [42] Chen Y. Chemical preparation and characterization of metal–metalloid ultrafineamorphous alloy particles [J]. Catal. Today,1998,44:3-16.
    [43] Heer W A D, Chatelain A, Ugarte D. A carbon nanotube field-emission electron source[J]. Science,1995,270:1179-1180.
    [44] Nugent J M, Santhanam K S V, Rubio. Fast electron transfer kinetics on multiwalledcarbon nanotube microbundle electrodes [J]. Nano Lett.,2001,1(2):87
    [45]冯立群,顾晓青,孙祥群.非晶态镍磷合金的耐蚀性及应用[J].腐蚀与防护,1986,17(1):17-21.
    [46] Smith G V, Brower W E. Amorphous alloy catalysts [J]. Proc. Int. Congr. Catal.7th,Tokyo,1980,355.
    [47] Li H X, Li H, Zhang J, Dai W L, Qiao M H. Ultrasound-assisted preparation of a highlyactive and selective Co-B amorphousalloycatalyst in uniform spherical nanoparticles [J].J. Catal.,2007,246:301-307.
    [48] Molnar S, Smith G V, Bartok M. New catalytic materials from amorphous metal a1loys[J]. Adv. Catal.,1989,36:329-383.
    [49] Li H X, Wang W J, Deng J F. Glucose Hydrogenation to Sorbitol over a Skeletal Ni-PAmorphousAlloyCatalyst (Raney Ni-P)[J]. J. Catal.,2000,191(1):257-260.
    [50] Chen Y. Chemical Preparation and characterization of metal-metalloid ultrafineamorphous alloy Particles [J]. Catal. Today.,1998,44(l-4):3-16.
    [51] Baiker A. Metallic glasses in heterogonous catalysis [J]. Faraday Discuss Chem. Soc.,1989,87:239-251.
    [52]丁马太编.材料化学导论[M].第一版.厦门大学出版社,1995.125-130.
    [53]熊中强.非晶态合金催化剂研究[J].化学进展,2005,7:35.
    [54] Wonterghem J V, Morup S C, Koch J W, Charles S, Wells W S. Formation of ultra-fineamorphous alloys particles by reduction in aqueous solution [J]. Nature,1986,322:622.
    [55] Liu B S, Li H X, Cao Y, Deng J F, Sheng C, Zhou S Y. Preparation and characterizationof Ni P amorphous alloy/ceramic composite membrane [J]. J. Membr. Sci.,1997,135(1):33-39.
    [56] Li H X, Li H, Dai W L, Qiao M H. Preparation of the Ni-B amorphous alloys withVariable boron content and its correlation to the hydrogenation activity [J]. Appl. Catal.A: General,2003,238:119-130.
    [57] Li H X, Wu Y D, Zhang J, Dai W L, Qiao M H. Liquid phase acetonitrile hydrogenationto ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst [J].Appl. Catal. A: General,2004,275(1):199-206.
    [58] He Y G, Qiao M H, Hu H R, et al. Preparation of amorphous Ni-B alloy: the effect offeeding order, Precursor salt, pH and adding rate [J]. Mater. Lett.,2002,56:952-957.
    [59]周容廷等.化学镀镍的原理与工艺[M].北京:国防工业出版社,1975.23-52.
    [60]阎洪编著.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999.1-31.
    [61] Hidber P C, Helbig W, Kim E, Whitesides G M. Microcontact Printing of PalladiumColloids: Micron-Scale Patterning by Electroless Deposition of Copper [J]. Langmuir,1996,12(5):1375-1380.
    [62] Jang J W, Kim P G, Tu K N, Frear D R, Thompson P. Solder reaction-assistedcrystallization of electroless Ni-P under bump metallization in low cost flip chiptechnology [J]. J. Appl. Phys.,1999,85:8456-8684.
    [63] Chen X H, Xia J T, Peng J C, Li W Z, Xie S S. Carbon-nanotube metal-matrixcomposites prepared by electroless plating [J]. Compos. Sci. Technol.,2000,60(2):301-306.
    [64] Bai G Y, Niu L B, Qiu M D, He F, Fan X X, Dou H Y, Zhang X F. Liquid-phaseselective hydrogenation of benzophenone over ultrasonic-assisted Ni-La-B amorphousalloy catalyst [J]. Catal. Commun.,2010,12(3):212-216.
    [65]石秋杰等.轻稀土氧化物对非晶态NiB合金催化剂的改性研究[J].分子催化,1999,13(1):9
    [66] Hou Y J, Wang Y Q, He F, Han S, Mi Z T, Wu W, Min E Z. Liquid phase hydrogenationof2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts [J]. Mater. Lett.,58(7-8):1267-1271.
    [67] Narváez L, Dominguéz O, Mart nez J R, Ruiz F. Preparation of (Ni-B)/SiO2, Ni/SiO2and NiO/SiO2nanocomposites [J]. J. Non-Cryst. Solids,2003,318:37-42.
    [68]徐长青,朱大建. Ni-B/SiO2非晶态催化剂对苯乙酮的催化加氢研究[J].分子催化,2004,18(4):281.
    [69] Li J, Qiao M H, Deng J F. Amorphous Ni-B/γ-Al2O3catalyst prepared in a modifieddrying approach and its excellent activity in benzene hydrogenation [J]. Mol. Catal. A:Chemical,2001,169(1-2):295.
    [70]李江,乔明华,邓景发.前驱体干燥法对非晶态Ni-B/γ-Al2O3催化剂性能的影响[J].高等学校化学学报,2001,22(6):1022.
    [71]刘英. Ni-P-Al2O3化学镀工艺研究[J].郑州纺织工学院学报,2001,12(1):24-26.
    [72]石秋杰,雷经新,张宁.糠醛液相加氢用Mo改性Ni-B/Ni-B/TiO2-Al203非晶态合金催化剂[J].物理化学学报,2007,23(1):98.
    [73]胡长员,李凤仪.碳纳米管对非晶态NiB合金催化剂性能的影响[J].分子催化,2005,19(5):346.
    [74]杨军等.非晶态合金材料作催化剂的研究-超细非晶态NiB催化剂的制备与催化性能研究[J].化学学报,1994,1(52):59.
    [75]王来军,李伟,张明慧,陶克毅.粉末化学镀法制备的NiB/TiO2非晶态合金催化剂对环丁烯砜加氢反应的催化性能[J].催化学报,2003,24(11):816-820.
    [76]华丽,胡长员,李凤仪.乙二胺功能化处理CNTs对NiB/CNTs催化剂性能的影响[J].分子催化,2006,20(3):240.
    [77]宋华,唐龙,武显春.负载型Ni-B/γ-Al2O3非晶态合金催化剂的结构及苯加氢性[J].现代化工,2010,30(1):54-56.
    [78] Xie G W, Lü Z G, Wang G X. Preparation and catalytic hydrogenation properties ofamorphous Ni-P alloy supported on carbon nanofibers [J]. Mater. Chem. Phys.,2009,118:281-283.
    [79] Hassan H B, Hamid Z A. Electroless Ni-B supported on carbon for direct alcohol fuelcell applications [J]. Int. J. Hydrogen Energy,2011,36:849.
    [80] Silva et al. Effect of metal composition and hydrogen selective in steam reforming ofmethanol over catalysts prepared from amorphous alloys [J]. Appl. Catal. A,2001,(218).
    [81] Blanco T C, Pierna A R, Barroso J. Ethanol and CO electro-oxidation with amorphousalloys as electrodes [J]. J. Power Sources,2011,196:4337-4341.
    [82]莫里森R T [美],博伊德R N.有机化学[M].北京:科学出版社,1980.
    [83] Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y. Size-SelectiveOlefin Hydrogenation by a Pd Nanocluster Provided in an Apo-Ferritin Cage [J]. Angew.Chem.,2004,116(19):2581-2584.
    [84]梁丽华.烯烃催化加氢反应的讨论[J].松辽学刊(自然科学版),2000,2(1):56-59.
    [85] Bach R D, Wolber G J. Mechanism of oxygen transfer from oxaziridine to ethylene: theconsequences of HOMO-HOMO interactions on frontier orbital narrowing [J]. J. Am.Chem. Soc.,1984,106(5):1410-1415.
    [86]金杏妹.工业应用催化剂[M].上海:华东理工出版社,2004.
    [87] Nag N K. On the mechanism of the hydrogenation reactions occurring underhydro-processing conditions [J]. Appl. Catal.,1984,10(1):53.
    [88] Rooney J J. The exchange with deuterium of two cycloalkanes on palladium films:π-Bonded intermediates in heterogeneous catalysis [J]. J. Catal.,1963,2(1):53.
    [89] Prasad K H V, Prasad K B S, Mallikarjunan M M, Vaidyeswaran R. Self-poisoning andrate multiplicity in hydrogenation of benzene [J]. J. Catal.,1983,84:65.
    [90]许越.化学反应动力学[M].北京:化学工业出版社,2005.
    [91] Lin J Y, Pittman Jr C U. Homogeneous styrene hydrogenation catalyzed by thepyrophosphito-bridged Pt2(P2O5H2)44-complex [J]. J. Organomet. Chem.,1996,512:69-78.
    [92] Joshi A M, MacFarlane K S, James B R. Kinetics and mechanism of H2-hydrogenationof styrene catalyzed by [RuCl(dppb)μ-Cl)]2(dppb=1,4-bis(diphenylphosphino)butane).Evidence for hydrogen transfer from a dinuclear molecular hydrogen species [J]. J.Organomet. Chem.,1995,488:161-167.
    [93] Nijhuisa T A, Dautzenberg F M, Moulijn J A. Modeling of monolithic and trickle-bedreactors for the hydrogenation of styrene [J]. Chem. Eng. Sci.,2003,58:1113-1124.
    [94]张国胜,孙玉峰,刘晓芳,沈宁福. Ni-Zr-Al基非晶合金催化剂的苯加氢反应动力学研究[J].郑州工业大学学报,1999,20(4):14-16转32.
    [95] Aben P C. Proc.4th intern. Congr. Catal [M].1968,1:395.
    [96] Neyestanaki A K, Backman H, Maki-Arvela P. Kinetics and stereo-selectivity ofo-xylene hydrogenation over Pd/Al2O3[J]. J. Mol. Catal. A: Chem.,2003,193:237-250.
    [97] Yoon B, Pan H B, Wai C M. Relative Catalytic Activities of CarbonNanotube-Supported Metallic Nanoparticles for Room-Temperature Hydrogenation ofBenzene [J]. J. Phys. Chem. C,2009,113:1520-1525.
    [98] Grove, Philos W R. On Voltaic Series and the Combination of Gases by Platinum [J].Phil. Mag.,1839,14:127-130.
    [99] Kordesch K, Simader G. Fuel Cells and Their Applications [M]. VCH, Weinheim,1996.
    [100]毛宗强.质子交换膜燃料电池(PEMFC)最新进展[J].新能源,1999,21(1):7.
    [101] Wang J, Wasmus S, Savinell R F. Evaluation of ethanol,1-propanol, and2-propanol in adirect oxidation polymer-electrolyte fuel cell. A real-time mass spectrometry study [J]. J.Electrochem. Soc.,1995,142:4218-4224.
    [102] Pramanik H, Basu S, Modeling and experimental validation of overpotentials of a directethanol fuel cell [J]. Chem. Eng. Process.,2010,49:635-642.
    [103] Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A.Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolytemembrane-direct ethanol fuel cells [J]. Electrochem. Commun.,2009,11(5):1077-1080.
    [104] Tripkovi A V, Popovi K D, Grgur B N, Blizanac B, Ross P N, Markovi N M.Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkalinesolutions [J]. Electrochim. Acta,2002,47:3707-3714.
    [105] Chen S L, Schell M. Excitability and multistability in the electrochemical oxidation ofprimary alcohols [J]. Electrochim. Acta,2000,45:3069-3080.
    [106] Maiyalagan T, Alaje T O, Scott K. Highly stable Pt-Ru nanoparticles supported onthree-dimensional cubic ordered mesoporous carbon (Pt-Ru/CMK-8) as promisingelectrocatalysts for methanol oxidation [J]. J. Phys. Chem. C,2012,116(3):2630-2638.
    [107] Beard B C, Ross P N J. Characterization of a Titanium-Promoted Supported PlatinumElectrocatalyst [J]. J. Electrochem. Soc.,1986,133(9):1839-1845.
    [108] Hu F P, Chen C L, Wang Z Y, Wei GY, Shen P K. Mechanistic study of ethanol oxidationon Pd–NiO/C electrocatalyst [J]. Electrochim. Acta,2006,52:1087.
    [109] Rego R, Oliveira M C, Alcaide F,álvarez G. Development of a carbon paper-supportedPd catalyst for PEMFC application [J]. Int. J. Hydrogen Energy,2012,37(8):7192-7199.
    [110] Trojanowicz M. Analytical applications of carbon nanotubes: a review [J]. Trends Anal.Chem.,2006,25:480.
    [111] Xu C W, Cheng L, Shen P K, Liu Y. Methanol and ethanol electrooxidation on Pt and Pdsupported on carbon microspheres in alkaline media [J]. Electrochem. Commun.,2007,9:997.
    [112] Wang H, Xu C, Cheng F, Jiang S. Pd nanowire arrays as electrocatalysts for ethanolelectrooxidation [J]. Electrochem. Commun.,2007,9:1212.
    [113] Bavio M A, Kessler T. CO electrooxidation on Pt-Ru catalysts supported on carbonnanotubes [J]. Int. J. Hydrogen Energy,2012, in press.
    [114] Morimoto Y, Emest B Y. CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Snelectrodes [J]. J. Electroanal. Chem.,1998,441:77.
    [115] El-Shafei A A, Abd El-Maksuod S A, Moussa M N H. Effect of some ad-atoms on theelectrocatalytic oxidation of ethanol on a Pt electrode in alkaline medium [J]. J.Electroanal. Chem.,1992,336:73.
    [116] Jou L S, Chang J K, Twhang T J, Sun I W. Electrodeposition of Palladium-Copper Filmsfrom1-Ethyl-3-methylimidazolium Chloride-Tetrafluoroborate Ionic Liquid on IndiumTin Oxide Electrodes [J]. J. Electrochem. Soc.,2009,156:193.
    [117] He Q G, Chen W, Mukerjee S, Chen S, Laufek F. Carbon-supported Pd-M (M=Au andSn) nano-catalysts for the electrooxidation of ethanol in high pH media [J]. J. PowerSources,2009,187:298-304.
    [118] Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M.Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes andtheir use in passive and active direct alcohol fuel cells with ananion-exchange membrane(alcohol=methanol, ethanol, glycerol)[J]. J. Power Sources,2009,190:241-251.
    [119]黄令.纳米晶镍-钼合金电沉积层的结构与性能[D].厦门:厦门大学,1997.
    [120]黄令,许书楷,汤皎宁,杨防祖,周绍民. Ni-Mo-PTFE复合电极的制备及其对甲醇氧化的催化性能[J].应用化学,1997,14:21-24.
    [121] Jin G P, Ding Y F, Zheng P P. Electrodeposition of nickel nanoparticles on functionalMWCNT surfaces for ethanol oxidation [J]. J. Power Sources,2007,166:80-86.
    [122] Xu C W, Hu Y H, Rong J H, Jiang S P, Liu Y L. Ni hollow spheres as catalysts formethanol and ethanol electrooxidation [J]. Electrochem. Commun.,2007,9(8):2009-2012.
    [123] Kim J W, Park S M. Electrochemical oxidation of ethanol at thermally preparedRuO2-modified electrodes in alkaline media [J]. J. Electrochem. Soc.,1999,146:1075-1080.
    [124] Gupta S S, Datta J. Electrode kinetics of ethanol oxidation on novel CuNi alloysupported catalysts synthesized from PTFE suspension [J]. J. Power Sources,2005,145:124-132.
    [125] Tarasevich M R, Karichev Z R, Bogdanovskaya V A, Lubnin E N, Kapustin A V.Kinetics of ethanol electrooxidation at RuNi catalysts [J]. Electrochem. Commun.,2005,7:141-146.
    [126] Thompson S D, Jordan L R, Shukla A K. Platinum electrodeposition fromH3Pt(SO3)2OH solutions [J]. Electroanal. Chem.,2001,(515):61.
    [127] Arai S, Endo M, Kaneko N, Ni-deposited multi-walled carbon nanotubes byelectrodeposition [J]. Carbon,2004,42:641-644.
    [128] Ang L M, Hor T S A, Xu G Q, Tung C H, Zhao S P, Wang J L S. Decoration of activatedcarbon nanotubes with copper and nickel [J]. Carbon,2000,38:363-372.
    [129] Liu H P, Cheng G A, Zheng R T, Zhao Y, Liang C L. Influence of synthesis process onpreparation and properties of Ni/CNT catalyst [J]. Diamond Relat. Mater.,2006,15:15-21.
    [130] Libor Z, Zhang Q. The synthesis of nickel nanoparticles with controlled morphology andSiO2/Ni core-shell structures [J]. Mater. Chem. Phys.,2009,114:902-907.
    [131] Tang Y T, Yang D, Qin F, Hu J H, Wang C C, Xu H L. Decorating multi-walled carbonnanotubes with nickel nanoparticles for selective hydrogenation of citral [J]. J. SolidState Chem.,2009,182:2279-2284.
    [132] Sun Y P, Rollins H W, Guduru R. eparations of Nickel, Cobalt, and Iron Nanoparticlesthrough the Rapid Expansion of Supercritical Fluid Solutions (RESS) and ChemicalReduction [J]. Chem. Mater.,1999,11(1):7-9.
    [133] Fleischmann M, Korinek K, Pletcher D. The kinetics and mechanism of the oxidation ofamines and alcohols at oxide-covered nickel, silver, copper and cobalt electrodes [J]. J.Chem. Soc., Perkin Trans.,1972,2(10):1396-403.
    [134] Fleischmann M, Korinek K, Pletcher D. The oxidation of organic compounds at a nickelanode in alkaline solution [J]. J. Electroanal. Chem.,1971,31(1):39-49.
    [135] Metheo A J, Machado S A S, Rabelo F J B, Santos J R J. Electrochemical study ofethanol oxidation on nickel in alkaline media [J]. J. Braz. Chem. Soc.,1994,5(3):161-165.
    [136]郑一雄.镍基非晶态合金纳米颗粒材料的制备,结构与电催化性能研究[D].厦门:厦门大学博士论文,2007.
    [137] Allen J R, Florido F, Young S D, Daunert S, Bachas L G. Nitriteselective electrode basedon an electropolymerized cobalt phthalocyanine [J]. Electroanal.,1995,7(8):710-713.
    [138] Bettelheim A, White B A, Raybuck S A, Murray R W. Electrochemical polymerizationof amino-, pyrrole-, and hydroxy-substituted tetraphenylporphyrins [J]. Prog. Inorg.Chem.,1987,26(7):1009-1017.
    [139] El-Shafei A A. Electrocatalytic oxidation of methanol at a nickel hydroxide/glassycarbon modified electrode in alkaline medium [J]. J. Electroanal. Chem.,1999,471(2):89-95.
    [140] Taraszewska J, Roslonek G. Application of glassy carbon electrode modified with Nitetraazamacrocyclic complexes in carbonate solutions to electrocatalytic oxidation ofalcohols [J]. Electrochim. Acta,1994,39(11):1887-1889.
    [141] Hassan H B, Hamid Z A. Electrodeposited Ni-Cr2O3nanocomposite anodes for ethanolelectrooxidation [J]. Int. J. Hydrogen Energy,2011,36:5117-5127.
    [142] Bode H, Dehmelt K, Witte J. Nickel hydroxid elektrode-I. Uber das nickel(II)-hydroxidhydrat [J]. Electrochim. Acta,1966,11(8):1079-1087.
    [143] Schrebler G R S, Vilche J R, Arvia A J. Rate processes related to the hydrated nickelhydroxide electrode in alkaline solutions [J]. J. Electrochem. Soc.,1978,125(10):1578-1587.
    [144] Singh D J. Characteristics and effects of γ-NiOOH on cell performance and a method toquantify it in nickel electrodes [J]. J. Electrochem. Soc.,1998,145(1):116-120.
    [145] Oliva P, Leonardi J, Laurent J F. Review of the structure and the electrochemistry ofnickel hydroxides and oxyhydroxides [J]. J. Power Sources,1982,8(2):229-55.
    [146] Zhang C, Park S M. The anodic oxidation of nickel in alkaline media studied by spectroelectrochemical techniques [J]. J. Electrochem. Soc.1987,134:2966-2970.
    [147] Zhang C, Park S M. In-situ spectroelectrochemical studies on the anodic oxidation ofnickel hydroxide in alkaline media [J]. J. Electrochem. Soc.,1989,136:3333-3342.
    [148] Geng H Z, Kim K K, So K P, Lee Y S, ChangY, Lee Y H. Effect of acid treatment oncarbon nanotube-based flexible transparent conducting films [J]. J. Am. Chem. Soc.,2007,129:7758-7759.
    [149] Chen J L, Chen Q H, Ma Q, Li Y D, Zhu Z H. Chemical treatment of CNTs in acidicKMnO4solution and promoting effects on the corresponding Pd-Pt/CNTs catalyst [J]. J.Mol. Catal. A: Chem.,2012,356:114-120.
    [150] Ziyatdinova G, Gainetdinova A, Morozov M, Budnikov H, Grazhulene S, Red’kin A.Voltammetric detection of synthetic water-soluble phenolic antioxidants using carbonnanotube based electrodes [J]. J. Solid State Electrochem.,2012,16(1):127-134.
    [151] Carpenter C R, Shipway P H, Zhu Y, Weston D P. Effective dispersal of CNTs in thefabrication of electrodeposited nanocomposites [J]. Surf. Coat. Technol.,2011,205(20):4832-4837.
    [152]王茂章等.碳纤维的制造,性质和应用[J].科学出版社,1984,312.
    [153] Kim B, Sigmund W M. Functionalized multiwall carbon nanotube/gold nanoparticlecomposites [J]. Langmuir,2004,20:8239-8242.
    [154] Li C S, Tang Y P, Yao K F, Zhou F, Ma Q, Lin H, Tao M S, Liang J. Decoration ofmultiwall nanotubes with cadmium sulfide nanoparticles [J]. Carbon,2006,44:2021-2026.
    [155] Reddy A L M, Ramaprabhu S. Hydrogen storage properties of nanocrystalline Ptdispersed multi-walled carbon nanotubes [J]. Int. J. Hydrogen Energy,2007,32:3998-4004.
    [156] Yin Y D, Li Z Y, Zhong Z Y, Gates B, Xia Y N, Venkateswaran S J. Synthesis andcharacterization of stable aqueous dispersions of silver nanoparticles through the Tollensprocess [J]. J. Mater. Chem.,2002,12:522-527.
    [157] Liu J L, Tao K Y, Li W, Zhang M H, Wang P F, Wang L J. A novel method to prepareamorphous alloy catalyst with silver inducing and KBH4reducing [J]. Catal. Commun.,2004,5:301-304.
    [158] Liu B, Qiao M H, Wang J Q, Xie S H, Li H X, Fan K N. Amorphous Ni-B/SiO2catalystprepared by microwave heating and its catalytic activityin acrylonitrile hydrogenation[J]. J. Chem. Technol. Biotechnol.,2003,78:512-517.
    [159] Hou Y J, Wang Y Q, He F, Mi W L, Li Z H, Mi Z T, Wu W, Min E. Effects of lanthanumaddition on Ni-B/γ-Al2O3amorphous alloy catalysts used in anthraquinonehydrogenation [J]. Appl. Catal. A: General,2004,259:35-40.
    [160] Li H, Li H X, Deng J F. Glucose hydrogenation over Ni-B/SiO2amorphous alloycatalyst and the promoting effect of metal dopants [J]. Catal. Today,2002,74:53-63.
    [161] Ge S H, Wu Z J, Zhang M H. Sulfolene hydrogenation over an amorphous Ni-B alloycatalyst on MgO [J]. Ind. Eng. Chem. Res.,2006,45:2229-2234.
    [162] Wu Z J, Zhang M H. Study on the deactivation of supported amorphous Ni-B catalyst inhydrogenation [J]. J. Mol. Catal. A: Chem.,2007,273:277-283.
    [163] Wu Z J, Zhang M H, Ge S H, Zhang Z L, Li W, Tao K Y. Synthesis and characterizationof a porous amorphous Ni-B catalyst on titania by silver-catalyzed electroless plating [J].J. Mater. Chem.,2005,15:4928-4933.
    [164] Panissod P, Bakonyi I. Local boron environment in Ni100-xBxmetallic glasses: An NMRstudy [J]. Phys. Rev. B,1983,28:2374-2381.
    [165] Gaskell P H. A new structural model for amorphous transition metal silicides boridesphosphides and carbides [J]. J. Non-Cryst. Sol.,1979,32:207-224.
    [166] Baskaran I, Kumar R S, Sankara T S N, Stephen A. Formation of electroless Ni-Bcoatings using low temperature bath and evaluation of their characteristic properties [J].Surf. Coat. Technol.,2006,200:6888-6894.
    [167] Gaevskaya T V, Novotortseva I G, Tsybulskaya L S. The effect of boron on themicrostructure and properties of electrodeposited nickel films [J]. Met. Finish.,1996,94:100-103.
    [168] Kumar P S, Nair P K. X-ray diffraction studies on the relative proportion anddecomposition of amorphous phase in electroless Ni-B deposits [J]. Mater.,1994,4:183-198.
    [169] Riedel W. Electroless Plating [M]. ASM International, Ohio,1991.
    [170] Warren B E. X-ray Diffraction [M]. Addison-Wesley Publishing Company,1969.
    [171] Endo M, Koyama T. Heat resistance properties of vapor growth carbon fibers in air [J].Tanso,1980,101:59-62.
    [172] Zahedi E, Seif A. Exohedral chemical functionalization of C48B6N6with NH3: Bindingenergies and electronic structures of C48B6N6-(NH3)n=1-6[J]. Superlattices Microstruct.,2012,51(2):290-299.
    [173] Bratkovsky A M, Rashkeev S N, Wendin G. Electronic structure, ferromagnetism, andEELS spectra of crystalline alloys FenB and NinB (n=1,2,3): Aspects of universalbehavior [J]. Phys. Rev. B,1993,48:6260-6270.
    [174] Bratkovsky A M, Rashkeev S N, Smirnov A V, Wendin G. Universality in electronicstructure and EELS spectra of Fe-B and Ni-B crystalline and amorphous systems [J].Europhys. Lett.,1994,26:43-49.
    [175] Jaswal S S. Electronic structure and properties of transition-metal-metalloid glasses:Ni1-xPx[J]. Phys. Rev. B,1986,34:8937-8940.
    [176] Li H, Li H X, Dai W, Fang Z, Deng J F. XPS studies on surface electronic characteristicsof Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties [J].Appl. Surf. Sci.,1999,152:25-34.
    [177] Okamoto Y, Nitta Y, Imanaka T, Teranishi S J. Surface state and catalytic activity andselectivity of nickel catalysts in hydrogenation reactions: III. Electronic and catalyticproperties of nickel catalysts [J]. J. Catal.,1980,64:397-404.
    [178] Imanaka T, Nitta Y, Teranishi S. Thermal Dehydration and Decomposition Reactions ofBivalent Metal Oxalates in the Solid State [J]. Bull. Chem. Soc. Jpn,1973,46:1134-1141.
    [179] Okamoto Y, Nitta Y, Imanaka T, Teranishi S J. Surface electronic properties and COhydrogenation activity of nickel deposited on rutile TiO2(100)as a model supportedcatalyst [J]. Chem. Soc. Faraday Trans.,1979,175:2027-2039.
    [180] Deng J F, Yang J, Sheng S, Chen H, Xiong G J. The Study of Ultrafine Ni-B and Ni-PAmorphous Alloy Powders as Catalysts [J]. J. Catal.,1994,150:434-438.
    [181] Hausleitner C H, Hafner J. Structureal modeling of transition-metai-metaiioid glasses byuse of tightbinding-bond force [J]. Phys. Rev. B,1993,47:5689-5709.
    [182] Shen B, Wei S, Fang K, Deng J F. Two-photon photoconductivity in SiC photodiodesand its application to autocorrelation measurements of femtosecond optical pulses [J].Appl. Phys. A,1997,65:295-297.
    [183] Li H X, Li H, Dai W L, Qiao M H. Preparation of the Ni-B amorphous alloys withvariable boron content and its correlation to the hydrogenation activity [J]. Appl. Catal.A Gen.,2003,238:119-130.
    [184] Kovtyukhova N I, Mallouk T E, Pan L, Dickey E C. Individual single-walled nanotubesand hydrogels made by oxidative exfoliation of carbon nanotube ropes [J]. J. Am. Chem.Soc.,2003,125:9761-9769.
    [185] Boudjahem A G, Redjel A, Mokrane T. Preparation, characterization and performance ofPd/SiO2catalyst for benzene catalytic hydrogenation [J]. J. Ind. Eng. Chem.,2012,18(1):303-308.
    [186] Keles M, Altan O, SerindagO. Synthesis and characterization ofbis(diphenylphosphinomethyl)amino ligands and their Ni(II), Pd(II) Complexes:Application to Hydrogenation of Styrene [J]. Heteroat. Chem.,2008,19:113-118.
    [187] Liu Z, Li Z L, Wang F, Liu J J, Ji J, Park K C, Endo M. Electroless preparation andcharacterization of Ni-B nanoparticles supported on multi-walled carbon nanotube andtheir catalytic activity towards hydrogenation of styrene. Mater. Res. Bull.,2012,47:338-343.
    [188] Wang W T, Liu H Z, Wu T B, Zhang P, Ding G D, Liang S G, Jiang T, Han B X. Rucatalyst supported on bentonite for partial hydrogenation of benzene to cyclohexene [J].J. Mol. Catal. A: Chem.,2012,355:174-179.
    [189] Liu S C, Liu Z Y, Zhao S H, Wu Y M. Study on the nanosized amorphous Ru-Fe-B ZrO2alloy catalyst for benzene selective [J]. J. Nat. Gas Chem.,2006,153:319-326.
    [190] Molina R, Poncelet G. J. Hydrogenation of Benzene over Alumina-Supported NickelCatalysts Prepared from Ni(II) Acetylacetonate [J[. Catal.,2001,199:162-170.
    [191] Keane M A. The Hydrogenation ofo-, m-, andp-Xylene over Ni/SiO2[J]. J. Catal.,1997,166:347.
    [192] Coughlan B, Keane M A. The effects of the environment on the growth of nickel metalparticles supported on a range of Y zeolites prepared by ion exchange and impregnation[J]. Zeolites,1991,11:12.
    [193] Yoon K J, Vannice M A. Benzene hydrogenation over supported and unsupportedpalladium: II. Reaction model [J]. J. Catal.,1983,82:457.
    [194] Lindsford L P, Salmi T. Dehydrogenation of isopropyl alcohol over Co-Ni/Mg oxidecatalysts [J]. Ind. Eng. Chem. Res.,1993,32:34.
    [195] Houalla M, Delannay F, Delmon B. Physico-chemical characterisation of impregnatedand ion-exchanged silica-supported nickel oxide [J]. J. Chem. Soc., Faraday Trans.,1980,76:2128.
    [196] Wang L, Liu X Z, Yang M, Fan Y J, Zhan J H. Electroless plating of nickel nanoparticleson CdS nanowires [J]. Eur. J. Inorg. Chem.,2009,7:897-902.
    [197] Ikuhara Y H, Mori H, Saito T, Iwamoto Y. High-temperature hydrogen adsorptionproperties of precursor-derived nickel nanoparticle-dispersed amorphous silica [J]. J.Am. Ceram. Soc.,2007,90:546-552.
    [198] Chen D Y, Meng Y Y, Zeng D C, Liu Z W, Yu H Y, Zhong X C. CTAB-assistedlow-temperature synthesis of SrFe12O19ultrathin hexagonal platelets and its formationmechanism [J]. Mater. Lett.,2012,76(1):84-86.
    [199] Marek G, Miguel A et al. Pt-catalyzed formation of Ni nanoshells on carbon nanotubes[J]. Angew. Chem.,2007,199:7156-7160.
    [200] Bottomley F Q. The reactions of hydrazine with transition-metal complexes [J]. Rev.Chem. Soc.,1970,24:617-638.
    [201] Gland J L, Fisher G B, Mitchell G E. Catalytic decomposition of hydrazine on tungstencarbide: the influence of adsorbed oxygen [J]. Chem. Phys. Lett.,1985,119:89.
    [202] Nikoobakht B, El-Sayed M A. Evidence for bilayer assembly of cationic surfactants onthe surface of gold nanorods [J]. Langmuir,2001,17:6368-6373.
    [203] Grzelczak M, Pe′rez-Juste J. Pt-catalyzed growth of Ni nanoparticles in aqueous CTABsolution [J]. Chem. Mater.,2008,20:5399-5405.
    [204] Anan’ev A V, Boltoeva M Y, Sukhov N L, Bykov G L, Ershov B G. Catalyticdecomposition of hydrazine in weakly alkaline solutions on platinum nanoparticles [J].Radiochem.,2004,46(6):531-535.
    [205] Hameed R M A, El-Khatib K M. Ni-P and Ni-Cu-P modified carbon catalysts formethanol electro-oxidation in KOH solution [J]. Int. J. Hydrogen Energy,2010,35:2517.
    [206] Tusi M M, Polanco N S O, Silva S G D, Spinacé E V, Neto A O, The high activity ofPtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium [J].Electrochem. Commun.,2011,13:143-146.
    [207] Fleishmann M, Korinek K, Pletcher D. The oxidation of organic compounds at a nickelanode in alkaline solution [J]. J. Electroanal. Chem.,1971,31:39-49.
    [208] Song S Q, He C X, Liu J C, Wang Y, Brouzgou A, Tsiakaras P. Two-step sequence forsynthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediateproducts [J]. Appl. Catal. B: Environmental,2012,119:227-233.
    [209] Shen P K, Xu C W. Alcohol oxidation on nanocrystalline oxide Pd/C promotedelectrocatalysts [J]. Electrochem. Commun.,2006,8:184-188.
    [210] Lo Y L, Hwang B J. Air Electrode: Identification of Intraelectrode Rate Phenomena viaAC Impedance [J]. J. Electrochem. Soc.,1995,142:4167-4165.
    [211] Liu Z, Li Z L, Wang F, Liu J J, Ji J, Wang J J, Wang W H, Qin S Y, Zhang L H.Synthesis of multi-walled carbon nanotube supported nickel catalysts by hydrazinereduction and their electrocatalytic activity on ethanol electro-oxidation [J]. Mater. Lett.,2011,65:3396-3398.
    [212] Danaee I, Jafarian M. Electrooxidation of methanol on Ni-Mn alloy modified graphiteelectrode [J]. Electrochim. Acta,2010,55:2093-2100.
    [213] Raoof J B, Ojani R, Hosseini SR. A novel, effective and low cost catalyst for methanoloxidation based on nickel ions dispersed onto poly(o-toluidine)/Triton X-100film at thesurface of multi-walled carbon nanotube paste electrode [J]. J. Power Sources,2011,196:1855-1863.
    [214] Nosek M, Weroński P, Nowak P, Barbasz J. Voltammetric Studies of Colloidal ParticleMonolayer on a Gold Rotating Disk Electrode [J]. Colloids Surf., A,2012, in press.
    [215] Hanson D R, Burkholder J B, Howard C J, Ravishankara A R. Measurement of hydroxyland hydroperoxy radical uptake coefficients on water and sulfuric acid surfaces [J]. J.Phys. Chem.,1992,96(12):4979-4985.
    [216] Laviron E. General expression of the linear potential sweep voltammogram in the caseof diffusionless electrochemical systems [J]. J. Electroanal. Chem.,1979,101:19-28.
    [217] Pariente F, Lorenzo E, Tobalina F, Abruna H D. Aldehyde biosensor based on thedetermination of NADH enzymically generated by aldehyde dehydrogenase [J]. Anal.Chem.,1995,67:3936.
    [218] Ta K P, Newman J. Mass transfer and kinetic phenomena at the nickel hydroxideelectrode [J]. J. Electrochem. Soc.,1998,145:3860-3874.