吉林西部稻田土壤微生物及酶活性对碳变化响应机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国陆地生态系统的多样性,地形地貌的复杂性及地理区位的特殊性为研究陆地碳循环提供了得天独厚的天然实验室。从我国土壤背景、有机碳水平和碳库来看,我国农田有机碳水平显著低于欧美发达国家,说明我国仍是土壤有机碳(SOC)密度较低的国家,土壤有着巨大的固碳潜力。吉林西部位于全球变化研究中国东北样带内,为世界三大盐碱土区之一,气候变化、土地冻融交替显著,是土壤碳循环研究的典型地区。有关不同开发年限水稻土的固碳容量等碳变化主要是通过模型估算得到,那么,对全年不同开发年限典型时期水稻土壤各剖面的基本理化性质、土壤酶活性、土壤微生物菌群与土壤相关碳指标的响应变化关系研究,就显得尤为重要,这也是本文研究的主要内容。本研究以野外监测、实验室测试和数据分析为主要技术支持,以吉林西部典型盐碱稻田土壤(pH>8)为研究对象,对自然条件下全年四个时期(消融期、生长期、冻结前、冻结期)、不同开发年限、不同水稻土壤剖面的4种基本理化指标、土壤微生物菌群数量、4种碳指标、4种酶活性等大量实验数据指标进行机理趋势性分析的基础上,采用SPSS法和SIMCA-P软件进行重点指标间相关性分析,得到以下几方面结论。
     一、在四个时期中,未开发盐碱土壤的容重、碱化度、电导率均最高;生长期土壤容重、碱化度是4个时期中最小的,电导率在消融期最大,容重、碱化度、电导率在土壤剖面变化中,大多耕层较大,基本趋势是随剖面加深先升高再降低,即犁底层>耕层>淋溶层>母质层。实验数据分析说明有机碳含量较低的未开发年限其容重、电导率、碱化度等均较高。
     二、对于4种土壤碳指标含量,在不同开发年限4个时期中基本呈现出随土壤纵向剖面的加深而降低,个别出现先升高再降低的趋势。不同开发年限总碳(TC)含量大小变化为:25年>35年>8年>55年>15年>未开发;四个时期TC含量大小变化为:冻结前期>生长期>消融期>生长期。对有机碳(SOC)含量大小变化,不同开发年限:35年>8年>25年>55年>15年>未开发;四个时期SOC总量大小变化为:生长期>冻结期>冻结前>期>消融期。不同开发年限DOC含量大小变化:8年>55年>15年>35年>25年>未开发,四个时期DOC总量大小变化:冻结期>消融期>生长期>冻结前期。不同开发年限SMBC含量大小变化:8年>15年>35年>55年>25>年未开发,四个时期SMBC总量大小变化为:冻结前期>消融期>生长期>冻结期。总碳(TC)与可溶性有机碳(DOC)相关性不显著。
     三、不同开发年限土壤纤维素酶活性主要呈现出以下顺序:35年>25年>55.年>15年>8年>未开发,消融期和生长期酶活性变化大,四个时期纤维素酶活性:消融期>冻结前期>生长期>冻结期;纤维素酶活性与可溶性有机碳(DOC)均保持较高水平的正相关性(0.01水平显著)。
     不同开发年限土壤淀粉酶活性:35年>8年>55年>25年>15年>未开发;四个时期土壤淀粉酶活性表现为:冻结期>消融期>生长期>冻结前期,在消融期和生长期,淀粉酶与可溶性有机碳(DOC)呈现正相关性(0.01水平显著),在消融期,与有机碳(SOC)呈现负相关性(0.01水平显著),在冻结期和生长期,与有机碳(SOC)呈现正相关性(0.01水平显著)。
     不同开发年限土壤蔗糖酶活性:15年>35年>55年>25年>8年>未开发,从四个时期看:冻结期>消融期>生长期>冻结前期;蔗糖酶与土壤总碳(TC)呈现正相关性(0.01水平显著),与土壤可溶性有机碳(DOC)在消融期呈现负相关性(0.01水平显著),在其它时期呈现正相关性(0.01水平显著),在4种土壤酶中蔗糖酶活性最大,正相关显著水平最好,可以选作特征酶。
     不同开发年限土壤纤二糖酶活性:未开发>15年>35年>8年>25年>55年。从四个时期看:冻结前期>消融期>生长期>冻结期,4个时期中未开发盐碱地纤二糖酶活性均是最高的;纤二糖酶与总碳(TC)在冻结期呈现负相关性(0.01水平显著),在其它时期相关性不显著;与有机碳(SOC)在冻结前期呈现正相关性(0.01水平显著),在其它时期相关性不显著;与可溶性有机碳(DOC)在冻结前期呈现正相关性(0.01水平显著),在冻结期和消融期呈现负相关性(0.01水平显著),在生长期相关性不显著;与微生物量碳(SMBC)呈现正相关性(0.01水平显著)。土壤4种酶活性在趋势上呈现纵向剖面逐渐升高和逐渐降低及先升高后降低三种趋势。
     四、在培养土壤微生物菌群数量上:细菌>放线菌>真菌,在纵向土壤剖面上土壤三种菌呈现逐渐递减趋势。4个时期中微生物菌数:消融期>生长期>冻结前期>冻结期。4个时期中:总碳(TC)与微生物菌数无明显相关性,有机碳(SOC)与微生物菌数基本呈现正相关性(0.05水平显著),可溶性有机碳(DOC)与微生物菌数基本呈现负相关性(0.01水平显著),微生物量碳(SMBC)与土壤微生物菌数呈现正相关性(0.01水平显著)。4个时期土壤4种碳指标对土壤微生物菌群的相关性为:SMBC>DOC>SOC>TC。
     该研究成果在理论上为科学认识与评价我国北方典型盐碱稻田区自然条件下土壤碳变化提供技术参数,在实践上为实现土壤碳变化管理措施提供数据支持。
China is in the special geographic location with various terrestrial ecosystem andcomplex topography, which provides a natural laboratory for the study of terrestrialcarbon cycle. In terms of national backgrounds of soil organic carbon level andcarbon pool, soil organic carbon level in China is significantly lower than that of thedeveloped countries in Europe and America. It explains that soil organiccarbon density in China is still low, and the soil has a great potential for carbonsequestration. Due to the significance of climate change and land alternate freezingand thawing, western Jilin as one of the three saline soil areas of the world is a typicalarea for soil carbon cycle research, which is located in Northeast China Transect inthe global change research. Carbon sequestration capacity of paddy soil with differentreclamation years is mainly obtained by model estimation. It is particularly importantto make a deep analysis of influencing factors on carbon sequestration of paddy soilby exploring the response relationship between the related soil carbon fractions andthe factors like the basic physicochemical properties of Paddy soil, soil enzymeactivity and soil microbes in different soil profiles with different reclamation years ina whole year. Base on field monitoring, laboratory tests and data analysis, this paperselects typical saline paddy soil(pH>8) in western Jilin Province as the researchobjects, and make the correlation analysis of the different experimental indexesincluding four kinds of basic physicochemical index, soil microflora, four kinds ofcarbon index and four kinds of enzyme activity from different reclamation years indifferent soil profiles during four periods in a whole year(that is Ex-freezing period,Freezing period, Ablation period, Growth period).The con clusions of this study are asfollows:
     1. In every period, the bulk density, alkalinity and conductivity ofSaline soaked soil with0reclamation years are the highest; Soil bulk density andalkalinity in Growth period is the smallest of the four periods; Ablation period has themaximum conductivity; Bulk density, alkalinity and conductivity change in the soil profile, and the basic trend is first increased and then decreased with the increasingdepth, Plough layer> Topsoil> Leaching layer>parent material.
     2. The four kinds of soil carbon content with different reclamation years in fourperiods have a decreasing trend with the increasing depth in general, but theindividuals first increase and then decrease. Soil total carbon content in differentreclamation years:25years>35years>8years>55years>15years>0year. Soil totalcarbon content in the four periods: ablation period>growth period> meltperiod> freezing period. Soil organic carbon content in different reclamation years:35years>8years>25years>55years>15years>0year. DOC content in differentreclamation years:8years>55years>15years>35years>25years>0year.DOC content in the four periods: freezing period> melt period> growthperiod>.ablation period. SMBC content in different reclamation years:8years>15years>35years>55years>25years>0year. SMBC content in thefour periods:.ablation period> melt period> growth period> freezing period.
     3. The cellulose activity in different development period main show up that35years>25years>55years>15years>8years>0year. Enzyme activities of ablationand growth period have great variation. Soil cellulose and soluble organic carbonwas maintained in high level positive correlation (significant level of0.01), nosignificant correlation with soil organic carbon. The cellulose activity in thefour periods: melt period>ablation period>growth period>freezing period. Theamylase activity in different development period show up that35years>8years>55years>25years>15years>0year. Soil amylase activity show up that freezingperiod>ablation period>growth period>ablation period. Soil enzyme and soildissolved organic carbon, organic carbon showed a significant level of0.01positiveand negative correlation. The inverters activity in soil:15years>35years>55years>25years>8years>0year. The inverters activity in the four periods: freezingperiod>melt period> growth period>.ablation period. Soil inverters and soil totalcarbon, dissolved organic carbon, inorganic carbon has positive and negativecorrelation (significant level of0.01); in the4largest enzyme activity of soil enzymein significant positive correlation, the best level, can be selected as characteristic enzyme. In different development periods, fiber disaccharidase activity:0year>15years>35years>8years>25years>55years. The fiber disaccharidase activity in thefour periods: ablation period>melt period> growth period>freezing period. soilenzyme and fiber two of total carbon, organic carbon, dissolved organic carbonpresent, microbial biomass carbon (a significant level of0.01) of positive andnegative correlation; no significant correlation with soil inorganic carbon. Theactivities of four enzymes showed increasing and decreasing soil longitudinal sectionand increase firstly and then decrease two trends in the trend.
     4. In the aspect of the bacteria cultivation: bacteria> actinomycetes>fungi; Soilbacteria had a decreasing trend in the vertical soil profile. The amount of themicroflora of the4periods: the melting period> the growth period> the early stage offreezing period> the freezing period. Different periods: There was no significantcorrelation between total soil carbon and soil bacteria quantity, soil organic carbonand soil bacteria showed significantly positive correlation of0.05, soil dissolvedorganic carbon and bacterial number showed significantly negative correlation of0.01,soil microbial biomass carbon and soil microflora showed significantly positivecorrelation of0.01.The four soil carbon indicators and soil microflora in the differentperiods has the relation of: SMBC> DOC> SOC> TC。
     In theory, the results of research provide technical parameters and typicalexamples for us to correctly realize and assess the soil carbon cycle under naturalconditions in northern China.
引文
[1]. Petit J R. Climate and atmospheric history of the past420000years from theVostok ice core, Antarctica [J].Nature,1999,399:429-436.
    [2]. Prentice I C, Farquhar G D, Fasham M J R, Goulden M L, Heimann M, JaramilloV J, Kheshgi H S, Quere C L, Schlies R J and Wallace D W R. The Carbon Cycleand Atmosphere CO2[J], ln:The Intergovernmental Panel on ClimateChange(IPCC).Third Assessment Re-port. Houghton J T, Yihui D,(Eds).Cambridge University Press,Cambridge2001.Climate3.
    [3].陈宜瑜.全球变化研究进展与展望[J].第四届国际地圈-生物圈中国委员会料,2001,b,1-13.
    [4]. Post W M, Peng T H, Emanuel W R, King A W, Dale V H and DaAngelis D L.The global carbon cycle [J]. American Scientist,1990,78:310-326.
    [5]. Houghton J T,Meira Filho L G Callander B A, Harris N, Kattenberg A, MaskellK.(Eds.),IPCC.1996.Climate change1995:The science of climate changeUniverss,Cambridge.
    [6]. Song G H, Li L Q, Pan G X, et al ToPsoil organic carbon storage of China and itsloss by cultivation [J]. Biogeoehemistry,2005,4(1):47-62.
    [7]. Pan G X, Wu L S, Li L Q, et al. Organic carbon stratifieation and size distributionof. three tyPieal Paddy soils from Taihu Lake region, China [J].Journal ofEnvironmental. sciences,2008,20(4):463-465.
    [8]. Cole C V, Cerri C, Agricultural options for mitigation of greenhouse gas emissionImpactsm Adaptaptations and Mitigation of Climate Change [J].1996.745-771.
    [9]. Paustian K, Cole C, Sauerbeck D. Mitigation of greenhouse gas emission: anoverview Climate Change [J].1998,(40):135-162.
    [10]. Batjes N.H.Total carbon and nitrogen in the soils of the world[J].EuropeanJournal of Soil Science,1996,47:151-163.
    [11]. Rubey Willam V.Geologic history of seawater: an attempt to state the problem[J].Geological society of America Bulletin,1951,62:1111-1148.
    [12]. Bohn, Hinrich. Estimate of organic carbon in world soils [J].Soil Sci Soc AmJ,1976,40:468-470.
    [13]. Bohn, H L.Estimate of organic carbon in world soils [J].soil sci.socAm[J].1982,46:1118-1119.
    [14]. Post,W M, et al. Soil carbon pools and world life zones [J].Nature,1982,298:156-159.
    [15]. Somebroek W, Nachtergaele F O,HebelA.Amounts,dynamics and sequestrationof carbon in Tropic and Subtropical soils[J].Ambio,1993,22:417-426.
    [16]. Batjes N.H. Total carbon and nitrogen in the soils of the world [J].EuropeanJournal of Soil Science,1996,47:151-163.
    [17]. Rozhkov V A, et al. Soil carbon estimates and soil carbon map for Russia [R].Working paper of IIASA, Laxenburg, Austria,1996.
    [18].汪业勖,赵士洞.陆地碳循环研究中的模型方法[J].应用生态学杂志,1998,9(6):658-664.
    [19]. Scott.N.A., Tate K.R., Giltrap. Monitoring land-use effects on soil carbon inNew Zealand:Quantify ing baseline soil carbon stocks.[J].Environmentalpollution,2002,116:167-186.
    [20]. Schwartz D, Namri M. Mapping the total organic carbon in the soils of thecongo [J].Global and Planetary Chane,2002,33:77-93.
    [21].金峰,杨浩,蔡祖聪等.土壤有机碳密度及储量的统计研究[J].土壤学报,2001,38(4):522-528.
    [22].张东辉,施明恒,金峰等.土壤有机碳转化与迁移研究概况[J].土壤,2000,(6):305-309.
    [23].陈庆强,沈承德,易惟熙等.土壤碳循环研究进展[J].地球科学进展,1998,13(6):555-562.
    [24].汪业勖,赵士洞,牛栋等.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    [25].王淑平,周广胜,吕育财等.中国东北样带(NECT)土壤碳、氮、磷的梯度分布及其与气候因子的关系[J].植物生态学报,2002,26(5):513-517.
    [26].李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报.2006,43(1):46-52.
    [27].韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    [28].潘根兴,李恋卿,张旭辉.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-627.
    [29].方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义[C].王庚辰,温玉璞.温室气体浓度和排放检测及相关过程.北京:中国环境科学出版社,1996:129-139.
    [30].王绍强,周成虎,李克让等.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55(5):533-544.
    [31].李克让,王绍强,曹明奎.中国植被和土壤碳储量[J].中国科学,2003,33(1):72-80.
    [32]. Li Z, Zhao Q G. Organic carbon content and distribution in soil under differentland uses in tropical and subtropical China [J].Plant and Soil,2001,231:175-185.
    [33].周玉荣,于振良,赵士洞.我国主要森林生态系统碳储量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [34]. Buringh P. Organic of organic carbon in soils of the world [J].In:Woodwell GM,(ed).The Role of Ter-restrial Vegetation in the Global Carbon Cycle.1984,23:247-251.
    [35].杨景成,韩兴国,黄建辉等.土壤有机质对农田管理措施的动态响应[J].生态学报,2003,23(4):787-796.
    [36]. Lal R. Carbon sequestration dryland [J]. Annual Arid Zone.2000,39(1):1-10.
    [37]. Houghton T G,Hackler J L,Lawrece K T. The U.S. carbon budget: contributionsfrom land-use change [J].Science.1999,285:574-578.
    [38].刘允芬.农业生态系统碳循环研究[J].自然资源学报,1995,21(5):441-454.
    [39].刘允芬.中国农业系统碳汇功能[J].农业环境保护,1998,17(5):197-205.
    [40].黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科技通报,2006,56(7):750-763.
    [41].李长生.土壤碳储量减少:中国农业之隐患一中美农业生态系统碳循环对比研究[J].第四纪研究,2003,20(4):345-350.
    [42].孙文娟.农田土壤固碳潜力研究的关键科学问题[J].地球科学进展,2008,23(9):997-1002.
    [43]. Hontoria C, guez-Murillo J C, Saa A. Relationships between soil organic carbonand site characteristics in Peninsular Spain[J].Soil Science Society of AmericaJournal,1999,63(3):614-621.
    [44]. Houghton R.A., Effects of land use change, surface temperature, and CO2concentration terrestrial stores of carbon[J].In: GM Woodwell, Mack enzie FT,eds. Biotic Feedbacks in the Global Climatic System: Will the warming Feed theWarming New York: Oxford Univ Press,1995,333-350.
    [45]. Epstein HE BurkeIC, LAauenroth WK. Regional parterns of decomposition andprimary production rates in the U.S. Great Plains [J].Ecology,2002.83:320-327.
    [46]. Jenkinson D S, Adams D E, Wild A.Model estimates of CO2emissions from soilin respo warming [J].Nature,1991,351(23):304-306.
    [47]. Ogle S M, Breidt F J, Paustian K. Agricultural management impacts on soilorganic carbon storage under moist and dry climatic conditions of temperate andtropical reopical regions [J].Biogeocchemistry,2005,72(1):87-121.
    [48].周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105.
    [49]. Batjes N H. Total carbon and nitrogen in the soils of the world [J].EuropenJournal of Amerence,1996,47:151-163.
    [50].潘根兴,曹建华,周运超.土壤碳及其在地表系统碳循环中的意义[J].第四纪研究,2000,20(4)325-334.
    [51].全国土壤普查办公室.中国土壤[M].北京:中国农业出版社.
    [52].李庆逵.中国水稻土[M].北京:科学出版社,1992.
    [53].徐琪,杨林章,董元华等.中国稻田生态系统[M].北京:中国农业出版社,1998.
    [54].潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [55].潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000:30-37.
    [56].刘庆花,史学正等.中国水稻土有机和无机碳的空间分布特征[J].生态环境.2006,15(4):659-664.
    [57].郑建初.南方稻田土壤有机碳动态研究的重要意义及其前沿领域[J].农业环境科学学报,2006,25(增刊):334-338.
    [58].袁颖红,李辉信.不同施肥处理对红壤性水稻土微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    [59]. Houghton R.A., Effects of land use change, surface temperature, and CO2concentration t errestrial stores of carbon[J].In: GM Woodwell, Mack enzie FT,eds. Biotic Feedbacks in the Global Climatic System: Will the warming Feed theWarming New York: Oxford Univ Press,1995,333-350.
    [60].陈涛,杜丽君等.长期施肥对水稻土活性有机碳的影响[J].土壤通报,2009,40(4):809-814.
    [61].李忠佩,吴大付等.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,2006,43(1):47-51.
    [62].沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志,1999,18(3):32-38.
    [63]. Denier Van Der Gon H A C, Neue H-U. Influence of organic matterincorporation on the emission from a wetland rice field [J].GlobalBiogeochemical Cycles,1995,9(1):11-22.
    [64].孙文娟.农田土壤固碳潜力研究的关键科学问题[J].地球科学进展,2008,23(9):997-1002.
    [65].韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    [66].李道西.农田水管理下的稻田甲烷排放研究进展[J].灌溉排水学报,2010,29(1):133-135.
    [67]. K.Inubushi, Y. Furukawa, A. Hadi, et al. Seasonal changes of CO2,CH4and N2Ofluxes in relation to land-use change in tropical peatlands located in coastal areaof South Kalimantan [J]. Chemosphere,2003,52:603-608.
    [68]. Amit Garg, P.R.Shukla, Manmohan Kapshe, et al. Indian methane and nitrousoxide emissions and mitigation flexibility [J].Atmospheric Environment,2004,38:1965-1977.
    [69].杨光明.西双版纳地区水稻田CH4、CO2和N2O通量及其影响因素研究[D].云南:中国科学院西双版纳热带植物园,2007.
    [70].牟长城,石兰英,孙晓新.小兴安岭典型草丛沼泽湿地CO2, CH4和N2O的排放动态及影响因素[J].植物生态学报,2009,33(3):617-623.
    [71]. N.V.Nkongolo,R.Hatano,V.Kakembo Diffusivity Models and Greenhouse GasesFluxes from a Forest, Pasture, Grassland and Corn Field in Northern Hokkaido,Japan[J].Pedosphere,2010,20(6):24-33.
    [72]. Xie Baohua, Zhou Zaixing, Zheng Xunhua, et al. Modeling Methane Emissionsfrom Paddy Rice Fields under Elevated Atmospheric Carbon DioxideConditions [J]. Advances In Atmospheric Sciences,2010,27(1):100-114.
    [73].何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤1997,(2):61-67.
    [74].姜培坤,徐秋芳,俞益武.土壤微生物量碳(SMBC)作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [75].朴河春,洪业汤,袁芷云.贵州山区土壤中微生物生物量是能源物质碳流动的源与汇[J].生态学志,2001,20(1):33-37.
    [76].巨天珍,陈源,常成虎等.天水小陇山红豆杉(Taxus chinensis Pilg. Rehd)林土壤真菌多样性及其与生态因子的相关性[J].环境科学研究,2008,21(1):128-132.
    [77].张萍,刀志灵,郭辉军.高黎贡山不同土地利用方式对土壤微生物数量和多样性的影响[J].云南植物研究,1999,(增刊xI):84-89.
    [78]. Tabatabai M A. Soil enzymes Weaver R W, Angle J R, Bottomley PS, eds.Methods of Soil Analysis (Part2):Microbiological and Biochemical Properties[J].SSSA Book SeriesNo.5. Madison W I: Soil Science Society of America:1994,775-833.
    [79]. Schmel J.P.Clen J.Y. Microbial Response to Freeze-Thaw Cycles in Tundra andTaiga Soils [J].Soil Biology&Biochemistry,1996,28(8):1061-1066.
    [80].赵满兴,周建斌,陈竹君等.有机肥中可溶性有机碳、氮含量及其特征[J].生态学报,2007,27(1):397-403.
    [81].何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,2:61-69.
    [82].陈国潮,何振立,姚槐应.红壤微生物量季节性变化研究[J].浙江大学学报(农业与生命科学版),1999,25(4):387-388.
    [83].曹慧,孙辉,杨浩等.土壤酶活性及对土壤质量指示研究进展[J].应用与环境生物学报,2003,(1):105-109.
    [84].胡诚,曹志平等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J].生态学报,2006,26(3):808~814.
    [85].彭佩钦,张文菊等.洞庭湖典型湿地土壤碳、氮和微生物碳、氮及其垂直分布[J].水土保持学报,2005,19(1):49~53.
    [86].刘文娜,吴文良等.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3):406~411.
    [87].周鑫斌,段学军.不同土壤熟化措施对土壤微生物量碳的影响[J].山西农业科技,2003,31(2):33-36.
    [88].罗明,文启凯.不同施肥措施对棉田土壤微生物量及其活性的影响[J].土壤,2002,1:53-55.
    [89].王岩,沈其荣,史瑞和,黄东迈.土壤微生物量及其生态效应[J].南京农业大学学报,1996,19(4):45-51.
    [90].吴金水.土壤有机质及其周转动力学.见:何电源主编,中国南方土壤肥力与栽培植物肥[M].北京科学出版社,1994,28-62.
    [91].姜培坤,徐秋芳,俞益武,土壤微生物量碳作为林地土壤肥力指标[J].浙江林学院学报,2002,19(1):17-19.
    [92].熊毅,李庆逵.中国土壤[M].北京:科学出版社,1990.
    [93]. N.H.安塞波夫·卡拉塔耶夫.中国科学院土壤研究所编译室.碱土改良中的物理化学研究[M].北京:科学出版社,1997.
    [94].张葛. GLS改碱剂对盐碱土的改良作用[D].硕士学位论文,吉林农业大学,2008.
    [95].仁培,陈德明.我国盐碱土资源及其开发利用[J].土壤通报,l999,30(4):l58-159.
    [96]. Findlay R. The use of Phospholipid fatty acids to determine microbialcommunity structure. In. Akkenermanns A D L, Elsas, J D, van, B F eds,Molecular microbial ecology manual, Kluwer Dordrecht,section4,1996,1-17.
    [97].乔正良,来航线,强郁荣等.陕西主要盐碱土中微牛物生态初步研究[J].西北农业学报,2006,15(3):60-64.
    [98].冯玉杰,张巍,陈桥等.松嫩平原盐碱化草原土壤理化特性及微生物结构分析[J].土壤,2007,9(2):301-305.
    [99].杨富亿,李秀军,王志春等.吉林省西部苏打盐碱地养鱼稻田微生物研究[J].吉林农业大学学报,2003,25(6):606-610.
    [100].黄明勇,杨剑芳,王怀锋.天津滨海盐碱土地区城市绿地土壤微生物特性研究[J].土壤通报,2007,38(6):1131-1135.
    [101]. Zhang Jiangshan, Guo Jianfen, Chen Guang-shui. Soil microbial biomass andits control [J].Journal of forestry research,2005,16(4):327-330.
    [102].关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [103]. Chen.C.R, Xu Z. H. soil carbon and nitrogen Pools and mierobial ProPerties ina6-year-old slash Pine Plantation of subtropical Australia:imPaets of harvestresidue management [J].For Ecol Manage,2005,206:237-247.
    [104]. Luo J,Tillman R W,White R E, et a1.Variation in demystification activity withsoil depth under pasture[J].Soil Biol. Biochem,1998,30(7):897-903.
    [105]. Chrost, R J. Environmental control of the synthesis and activity of aquaticmicrobial ectoenzymes[A]. in: Chr. st, R. J.(Ed.), Microbial Enzymes inAquatic Environments[C]. Spring er-Verlag, New York,1991:29-53.
    [106]. Roldan A, Salnas-Garcia J R, Alguacil M M, et al. Changes in soil enzymeactivity, fertility, aggregation and C sequestration mediated by conservationtillage practices and water regime in. a maize field[J].Applied Soil Ecology,2005,30:11-20.
    [107]. Tiwari M B,Tiwari B K,Mishra R R. Enzyme activity and carbon dioxideevolution from upland and wetland rice soils under three agricultural practicesin hilly regions[J].Biol.Fertil.Soils,1989(7):359-364.
    [108]. Fenner N,Freeman C,Reynolds B. Observations of a sea-son ally shiftingthermal optimum in peat land carbon-cycling processes: implications forglobal carbon cycle and soil enzyme methodologies[J].SoilBiology&Biochemistry,2005,37:1814-1821.
    [109]. Kang H,Freeman C. Phosphatase and arylsulphatase activities inwetland soils:annual variation and controlling factors[J]. Soil Biol.Biochem.,1999,(3l):449-454.
    [110]. Hakunen R,Khknen M A,Salkinoja-Salonen.Verti-cal distribution of sedimentenzyme activities involved in the cycling of carbon, nitrogen, phosphorus andsculpture in three boreal rural. lakes[J].Water Research,2005,(39):2319-2326.
    [111]. Xuxiao-Feng,Sochang-Chun,Song Xia, et al. Carbon mineralization and therelated enzyme activity of soil in wetland[J].Ecology and Environment,2004,13(1):40-42.
    [112]. Waldrop M P,Firestone M K. Altered utilization patterns of young and old soilC by microorganisms caused by temperature shifts and. N,additions[J].Biogeochemistry,2004,(67):235-248.
    [113]. Pulford I.D, Tabatabai M A. Effect of the water logging on enzyme activities insoils[J].Soil Biology&Biochemistry,1988,20:215-219.
    [114]. Freeman C,Liska G,Ostle N J, et al. Microbial activity and enzymesdecomposition processes following peat land water table. drawdown[J].Plantand soil,1996,(180):121-127.
    [115]. Moscatelli M C, Lagomarsino A, DE Angelis, et al. Sea-sodality of soilbiological properties in apoplar plantation growing under elevated atmosphericCO2[J].Applied Soil Ecology,2005,(30):162-173.
    [116]. Sinsabaugh R L,Antibus R K,Linkins A E. An enzymes approach to theanalysis of microbial activity during plant litter decomposition Agriculture [J].Ecosystems and Environment,1991,(34):43-54.
    [117].刘建新.不同农田土壤酶活性与土壤养分相关关系研究[J].土壤通报,2004,(8):523-523-525.
    [118].朴河春,袁芷云,刘广深等.非生物应力对土壤性质的影响[J].土壤肥料,1998(3):17-21.
    [119]. EDWARDS L M.The effect of alternate freezing and thawing on aggregatestability and aggregate size distribution of some Prince Edward Island soil[J].Journal of Soil Science,1991,42:193-204.
    [120]. A.Freeze-thaw increase near-surface aggregate stability[J].Journal of SoilScience,1998,163:63-70.
    [121]. GONG JD,QIX S, XIE Z K, et a.l Effect of seasonal freezing on soil moistureand its significance foragri culture [J]. Journal of Glaciology and Geocryology,1997,19(4):328-333.
    [122]. RADKE JK, BERRYEC.Soilwaterand solutemovementand bulk densitychanges in repacked soil columns as a result of freezing and thawing underfield conditions[J].Soil Science,1998,163(8):611-624.
    [123].郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中运动[M].北京:地质出版社,2002.
    [124].李瑞平.冻融土壤水热盐运移规律及其SHAW模型模拟研究[J].内蒙古农业大学博士论文,2007.
    [125]. Lehrsch G A, Sojka R E, Carter D L, et al. Freezing effects on aggregatestability affected by texture, mineralogy, and organic matter [J].Soil ScienceSociety of Amerca,1991,55:1401-1406.
    [126]. Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soilaggregate stability[J].Catena,2002,52:1-8.
    [127].邓西民,王坚,朱文珊等.冻融作用对梨底层土壤物理性状的影响[J].科学通报,1999,43(23):2583-2587.
    [128].温美丽,刘宝元,魏欣等.冻融作用对东北黑土容重的影响[J].土壤通报.2009.40(3):492-495.
    [129]. Summerfield R J, Substrate freezing and thawing as a factor in the mineralnutrient status of mire ecosystems [J]. Plant and Soil,1973,38:557-566.
    [130]. Lipson D A. Plant-microbe competition for soil amino acids in the alpinetundra: effects of freeze-thaw and dry-rewet events [J].Oecologia,1983,113:406-414.
    [131]. Fitzhugh R D, Driscoll C T, Groffman P M, et al. Effects of soil freezingdisturbance on soil solution nitrogen, phosphorus, and carbon chemistry in anorthern hardwood ecosystem[J].Biogeochemistry,2001,56:215-238.
    [132].赵兰坡,刘淑霞,王宇等.冻融作用下黑土有机碳数量变化的研究[J].农业环境科学学报,2008,27(3):984-990.
    [133].陈宜宜,朱荫湄,胡木林.西湖底泥中酶活性与养分释放的关系[J].浙江.
    [134]. Schimel J P, Clein J S. Microbial response to freeze-thaw cycles in tundra andtaiga soils [J].soil Biology and Biochemistry,1996,28:1061-1066.
    [135].宋长春,王毅勇,王跃思等.季节性冻融期沼泽湿地CO2、CH4和N2O排放动态[J].环境科学,2005,26(4):7-12.
    [136].周旺明,王金达,刘景双等.冻融对湿地土壤可溶性碳、氮和氮矿化的影响[J].生态与农村环境学报,2008,24(3):1-6.
    [137].王忠伟,杨金艳.冻融对土壤碳影响的分析[J].中国科技信息,2009(4):24-27.
    [138]. Koponen H T, Jaakkola T, Kein nen-Toivola M M, et al. Microbialcommunities, biomass, and activities in soils as affected by freeze thawcycles[J]. Soil Biology and Biochemistry,2006,38:1861-1871.
    [139].郝瑞军,李忠佩,车玉萍.冻融交替对水稻土水溶性有机碳含量及有机碳矿化的影响[J].土壤通报,2007,38(6):1052-1057.
    [140]. Oztas T, Fayetorbay F. Effect of freezing and thawing processes on soilaggregate stability[J].Catena,2002,52:1-8.
    [141]. Grogan P, MichelsenA.Ambus P, et al. Freeze thaw regime effects on carbonand nitrogen dynamics in sub-arctic heath tundra mesocosms[J]. Soil Biologyand Biochemistry,2004,36,641-654.
    [142]. Koponen H T, Jaakkola T, Kein nen-Toivola M M, et al. Microbialcommunities, biomass, and activities in soils as affected by freeze thawcycles[J].Soil Biology and Biochemistry,2006,38:1861-1871.
    [143]. Feng X J, Leah L, Nielsen, et al. Responses of soil organic matter andmicroorganisms to freeze thaw cycles[J].Soil Biology and Biochemistry,2007,39:2027-2037.
    [144]. Bremner J M, Douglas L A. Inhibition of urease activity in soils[J].Soil Biologyand Biochemistry,1971,3:297-307.
    [145]. Chrost, R J. Environmental control of the synthesis and activity of aquaticmicrobial ectoenzymes[A].in: Chr. st, R. J.(Ed.), Microbial Enzymes inAquatic Environments[C].Spring er-Verlag, New York,1991,29-53.
    [146].魏丽红.冻融交替对黑土土壤有机质及氮钾养分的影响[D].长春:吉林农业大学,2004,47-51.
    [147].谯兴国,李法云,张营等.冻融作用对石油污染土壤酶活性和水溶性碳的影响[J].农业环境科学学报,2008,3(27):914-919.
    [148]. Koch G W,et al.The IGBP Terrestrial Transeets: SeleneePlan IGBP RePortNo36. Stockholm: IGBP,1995.
    [149]. Gcte Core Porjeet Offiee.GCTE Core Researeh:1993Allnual Report, ReportNo l, Canbera: Gcte,1994.
    [150].倪健.从生态地理特征论中国东北样带(NECT)在全球变化研究中的科学意义[J].生态学报,1999,19(5):623-629.
    [151].王权.全球变化陆地样带研究及其进展[J].球科学进展,1997,12(1):44-50.
    [152].李娜.冻融作用对吉林西部典型土壤碳氮的影响机制及温室体排放研究[D].长春,吉林大学.
    [153].地球科学数据共享台,http://www.geodata.cn/Portal/isCookieChecked=true
    [154].汤洁,卞建民,李昭阳等.基于数字技术的吉林西部水土环境综合研究[M].北京:科学技术出版社,2010.
    [155].韩维峥.吉林西部退化草地修复与碳固存的耦合分析[D].长春,吉林大学,2011.
    [156].吉林统计年鉴编辑部.2012吉林统计年鉴[M].北京:中国统计出版社.2013.
    [157].前郭尔罗斯大事记.前郭尔罗斯县人民政府网.
    [158].吉林统计年鉴编辑部.2011吉林统计年鉴[M].北京:中国统计出版社.2009.
    [159]. Sombroek W G,Nachtergaele F O,Hebel A.Amounts,dynamics and sequesteringof carbon in tropical and subtropical soils[J].AMBIO,1993,22:417-425.
    [160].刘光崧,蒋能慧,张连第等.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996,166-167.
    [161].高歧,范彩玲,黄晓书.土壤中总糖量的微波测定法[J].土壤通报,1995,26(4):190-191.
    [162].梁重山,党志,刘丛强.土壤/沉积物样品中有机碳含量的快速测定[J].土壤学报,2002,39(1):135-139.
    [163].李小涵,郝明德,王朝辉等.分析仪器,2009,26(5):78-80.
    [164].郭进,刘洪霖,黄铁生等.计算机辅助材料设计的偏最小二成法--人工神经网络研究[J].计算机与应用化学,1996,13(4):253-256.
    [165].王帅,范春彦,辛永平.基于偏最小二乘回归的研制费用估算模型[J].陕西师范大学学报(自然科学版),2007,35:29-32.
    [166].蒋红卫,夏结来.偏最小二乘回归及其应用[J].第四军医大学学报,2003,24(3):280-283.
    [167].李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,2006,43(1):46-52.
    [168]. Pan G, Li L, Wu L, et al. Storage and sequestration potential of topsoil organiccarbon in China’s paddy soils[J].Global Change Biology,2004,10:79--92.
    [169]. Yuan Y H, Li H X, Huang Q R, et al. Effects of different fertilization on soilorganic carbon distribution and storage in micro-aggregates of red paddytopsoil (In Chinese)[J]. Acta Ecologica Sinica,2004,24(12):2961-2966.
    [170]. Li L Q, Pan G X, Zhang X H, et al. Variation of organic carbon and nitrogen inaggregate size fractions of a paddy soil under fertilization practices from the Tai Lake Region, China [J]. Journal of the Science of Food and Agriculture,2007,87:1052-1058.
    [171]. Chen JG, Zhang Y Z, Zeng X B, et al. Effects of different fertilizations on soilmicrobial characteristics in a paddy soil from red earth with long-termK-deficiency (In Chinese)[J].Plant Nutrition and Fertilizer Science,2008,14(6):1200-1205.
    [172].李庆逵.中国水稻土[M].北京:科学出版社,1992,1-514.
    [173].龚子同.中国土壤系统分类:理论、方法、实践[M].北京:科学出版社,1999,109-199.
    [174]. Chen Y, Li Z P, Zhou L X, et al. Influences of fertilization on microbialbiomass and respiration intensity of paddy soils in subtropical China (InChinese)[J].Soils,2008,40(3):437-442.
    [175]. Liu Y Y, Yao H Y, Huang C Y. Influence of soil moisture regime on microbialcommunity diversity and activity in a paddy soil (In Chinese)[J].ActaPedologica Sinica,2006,43(5):828-834.
    [176].赵兰坡,冯君,王宇等.不同利用方式的苏打盐渍土剖面盐分组分及分布特征[J].土壤学报,2011,48(5):904-911.
    [177].宋威,刘松霖,赵一婷等.大安灌区土壤盐碱化程度[J].吉林水利,2009,7:1-3.
    [178].李斌,王志春,梁正伟等.吉林省大安市苏打碱土盐化与简化的关系[J].干旱地区农业研究,2007,32(25):151-155.
    [179].赵兰坡,冯君,王宇等松嫩平原盐碱地种稻开发的理论与技术问题[J].吉林农业大学学报,2012,34(3):237-241.
    [180].张悼元.工程动力地质学.中国工业出版社,1998,166-172.
    [181].方汝林.土壤冻结、消融期水盐动态的初步研究[J].土壤学报,1982,2(19):164-172.
    [182].全国土壤普查办公室.中国土壤[M].北京:中国农业出版社.
    [183].李庆逵.中国水稻土[M].北京:科学出版社,1992.
    [184].徐琪,杨林章,董元华等.中国稻田生态系统[M].北京:中国农业出版社,1998.
    [185].潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15(5):330-332.
    [186].潘根兴.地球表层系统土壤学[M].北京:地质出版社,2000,30-37.
    [187]. Schledinger W H. Carbon storage in the Calishe of arids soils: a case study ofArizona[J].Soil Science,1982,133:247-255.
    [188]. Kirschbaum M U F. Will changes in soil organic carbon act as a positive ornegative feedback on global warming[J].Biogeochemistry,2000,48:21-51.
    [189]. Jenkinson D S.The turnover of organic carbon and nitrogen in soil [J].In:PhiloTrans R Soc London B,1990,329:361-368.
    [190].杨黎芳,李贵桐.土壤无机碳研究进展[J].土壤通报,2011,42(4):986-990.
    [191].关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [192]. Chen.C.R, Xu Z.H.soil carbon and nitrogen Pools and mierobial ProPerties ina6-year-old slash Pine Plantation of subtropical Australia:imPaets of harvestresidue management [J].For Ecol Manage,2005,206:237-247.
    [193].展茗.不同稻作模式稻田碳固定、碳排放和土壤有机碳变化机制研究[D].武汉,华中农业大学.