厌氧微生物体系中还原力的产生及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧微生物体系利用有机质为底物进行代谢反应,有机质的氧化还原反应是该体系中生化反应的本质。目前学者在厌氧条件下利用微生物产生的还原力进行了一系列的研究,包括利用还原力还原降解某些污染物,产生新能源等。同时,在降解水体有机质方面也做了大量的研究,研究表明厌氧微生物体系具有强大的处理能力和经济价值,但对其作用机制缺乏深入的认识。因此,本课题通过系统的科学研究,探索其反应机理,发现其本质规律,呈献给研究人员一个整体结构。主要研究内容和研究结果如下:
     1.利用三氧化钨电致变色的特性进行高通量筛选产电菌株,在24孔板中进行产电微生物的筛选,能将电子导出体外的产电微生物可以使三氧化钨由白色变为蓝色。在环境样品巢湖底泥中筛选出27株产电微生物,大部分属于气单胞菌属和希瓦氏菌属。其中有一株乙酸氧化产电菌是兼性厌氧菌,对其产电性能和甲基橙还原脱色的性能进行了考察,证实了其胞外电子传递能力。这种类型的菌株在自然环境体系尤其是好氧和厌氧体系的交界处有很重要的作用,本研究在电化学活性细菌分布和代谢功能方面提供了一个全新视角。
     2.研究了Caldicellulosiruptor saccharolyticus体系中葡萄糖发酵产氢的过程,研究表明C. saccharolyticus葡萄糖发酵的主要产物和生成的先后顺序为氢气和乙酸首先出现,随后是乙醇和乳酸,在不同的葡萄糖浓度1.0g/L、2.0g/L、3.5g/L和7.5g/L下,最大的光密度值(OD620)分别为0.35、0.48、0.53、0.55,发现在不同的葡萄糖浓度下氢气/乙酸都大于2,介于2和4之间。为了探索造成这一现象的原因,通过外界添加同位素标记乙酸来追踪乙酸去向确定原因。实验表明60%的同位素标记乙酸转移到胞内转化为同位素标记乙醇,体系中没有产生明显的同位素标记二氧化碳,在对照组和放射性标记组同时检测到大约相同量的13CO2(O.lmmol),说明C. saccharolyticus体系中没有乙酸氧化现象发生。当生物质的增长值反算回乙酰辅酶A,与乙酸测定值相加得到理论乙酸产量,进行H2/acetate比值的修正之后,原本大于2的比值修正后都是接近2的,进一步证实了生物质增长是造成H2/acetate比值偏高的原因。
     3.首次研究报道了C. saccharolyticus在葡萄糖发酵过程中对甲基橙的降解,并提出了降解机理。C. saccharolyticus在自身所产的溶解氢的作用下,可将甲基橙降解为DPD和4-ABA, C. saccharolyticus细胞在这个过程中起至关重要的作用,因为甲基橙和氢气的化学反应是极其微弱有限的,但是在细胞表面酶Ni-Fe氢化酶的催化作用下两者可以快速反应,从而完成甲基橙脱色。甲基橙降解速率和溶解氢的浓度呈正相关性,在高溶解氢条件下脱色速率可达6.65mg/L/h或7.08mg/L/h,相反,在刚刚进行氮气吹扫后的低溶解氢条件下却只有2.16mg/L/h或0.88mg/L/h。提出的脱色机理能很好的解释添加甲基橙后还原产物乙醇产量的变化现象,这很可能是甲基橙对还原力的竞争造成的,使得葡萄糖发酵产物中还原产物产量降低。
     4.在强高温产氢菌株C. saccharolyticus体系中,葡萄糖发酵过程中原位产生的氢气可以将Pd(Ⅱ)还原为Pd(0),采用透射电子显微镜结合X射线探测器的检测方法证实了这一科学猜测。零价钯颗粒被用于甲基橙脱色和泛影酸钠脱碘的催化反应中,100mg/L的甲基橙在有钯添加的实验组中半小时内即被降解完毕,而没有钯添加的实验组中完全降解则需要6小时之久。20mg/L的泛影酸钠在有钯添加的实验组中10分钟即被降解完毕,没有钯添加的实验组几乎没有降解,说明零价钯强化了降解效果。甲基橙的脱色是在氢气、氢化酶和零价钯颗粒共同作用下完成的,而泛影酸钠的降解过程中氢化酶并没有起到明显作用,零价钯颗粒是脱碘过程中起本质作用的催化剂。更重要的是C. saccharolyticus菌体起到分散剂的作用,使形成的零价钯颗粒分散均匀,颗粒成纳米级,是一种绿色的分散体系,而且在此体系中形成的纳米钯颗粒相较于没有分散剂形成的零价钯颗粒具有更好地催化效果。总而言之,钯的参与是强化水体污染物的降解效果的很好的选择。
Organic matter is applied by anaerobic microbe as substrate for all the metabolic reactions in vivo. The REDOX reaction of organic matter is the essence of biochemical reactions in the anaerobic system. At present, many researchers have carried out a series of studies of the reducing power produced by anaerobe. The reductive degradation of some pollutants, the production of new electrical energy and the degradation of organic matter in water were included. Those studies have shown that the system of anaerobic microbial had a strong processing power and economic value. However, the mechanism in the system was not explained clearly. Therefore, this study attempted to explore the reaction mechanism and found the nature of law through scientific research systematically. The main research contents and research results are as follows:
     1.27strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3nanoclusters. These strains caused color change of WO3from white to blue in a24-well agar plate within40h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EB A reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.
     2. The ratio of H2/acetate in glucose fermentation shall be equal or less than2. However, the ratio over2is found in the literature. Two possible reasons were proposed in this study:acetate oxidation or biomass growth via acetyl-CoA. In order to find out the right reason, glucose fermentation by Caldicellulosiruptor saccharolyticus was investigated. Under different glucose concentrations (1.0g/L,2.0g/L,3.5g/L and7.5g/L), the Optical Density (OD620) reached a maximum value of0.35,0.48,0.53and0.55, respectively. It was found that the ratios of H2/acetate under different glucose concentrations were all greater than2. When CH3-13COOH was added to the system,60%of CH3-13COOH was converted to isotope ethanol. About the same amount of13CO2(0.01mmol) was detected in both the control and isotopie experiments, illustrating acetate oxidation didn't occur in this study. The corrected ratio of H2/acetate after the compensation from biomass growth was around2, demonstrating the biomass growth from acetyl-CoA was the right reason for the abnormal high ratio.
     3. It is worth to study the decolorization ability of C. saccharolyticus under the optimum growth temperature of70℃in thermal spring, for example. For the first time, this study demonstrated that C. saccharolyticus could effectively degrade methyl orange (MO) to4-aminobenzenesulfonic acid (4-ABA) and N',N-dimethyl-p-phenylenediamine (DPD) with dissolved hydrogen (DH) as the reducing equivalent. The decolorization reaction was catalyzed by Ni-Fe hydrogenase. The reaction rate was positively related to the DH concentrations. For example, the decolorization rates were6.65and7.08mg/L/h at higher DH, but decreased to2.16and0.88mg/L/h after N2purging. Furthermore, the addition of MO in glucose fermentation decreased the ethanol yield due to the limited reducing equivalents. It could be conjectured that the competition for hydrogen between azo dyes reduction and hydrogenotrophic methanogenesis processes might also exist in mixed culture fermentation.
     4. This study focused on examining the general applicability of coupling bio-Pd nanoparticle generation and bio-H2produced by C. saccharolyticus for water treatment under extreme-thermophilic conditions. Palladium was added to cell cultures to achieve a final Pd concentration of50mg L-1. Methyl orange and diatrizoate were chosen as the contaminants in water. MO (100mg/L) was degraded within30min in the cultures with Pd added, while6hours were needed without Pd addition. Diatrizoate (20mg/L) was degraded within10min in Pd added cultures. However, diatrizoate was not degraded in the culture without Pd. The degradation rates were positively correlated with dissolved hydrogen generated by C. saccharolyticus. Furthermore, the catalytic actions of Pd(0) nanoparticle and cell were distinguished during the degradation process. And cells of C. saccharolyticus dispersed the Pd(0) particles well and showed a better catalytic activity than chemic-Pd(O) without dispersant. Dissolved hydrogen produced by C. saccharolyticus should be the perfect reduction equivalent for Pd formation. Generally speaking, the biodegradation proceeding with the action of in situ bio-H2in natural environment of high temperature should be illuminated.
引文
[1]Kiran V, Gaur B. Microbial fuel cell:technology for harvesting energy from biomass. Rev Chem Eng.2013;29:189-203.
    [2]Li DB, Cheng YY, Wu C, Li WW, Li N, Yang ZC, et al. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep-Uk.2014;4.
    [3]Jones DT, Woods DR. Acetone-Butanol Fermentation Revisited. Microbiol Rev. 1986;50:484-524.
    [4]Demirel S, Bayhan I. Nitrate and bromate removal by autotrophic and heterotrophic denitrification processes:batch experiments. J Environ Health Sci.2013;11.
    [5]Zhong C, Wang YQ, Li YC, Lv JP, Hao W, Zhu JR. The characteristic and comparison of denitrification potential in granular sequence batch reactor under different mixing conditions. Chem Eng J.2014;240:589-94.
    [6]Qambrani NA, Jung SH, Ok YS, Kim YS, Oh SE. Nitrate-contaminated groundwater remediation by combined autotrophic and heterotrophic denitrification for sulfate and pH control: batch tests. Environ Sci Pollut R.2013;20:9084-91.
    [7]Lovley DR. Dissimilatory Fe(Iii) and Mn(Iv) Reduction. Microbiol Rev.1991;55:259-87.
    [8]Potter MC. Electrical effects accompanying the decomposition of organic compounds. P R Soc Lond B-Conta.1911;84:260-76.
    [9]Wang H, Correa E, Dunn WB, Winder CL, Goodacre R, Lloyd JR. Metabolomic analyses show that electron donor and acceptor ratios control anaerobic electron transfer pathways in Shewanella oneidensis. Metabolomics.2013;9:642-56.
    [10]Liu H, Logan BE. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol. 2004;38:4040-6.
    [11]Oh S, Min B, Logan BE. Cathode performance as a factor in electricity generation in microbial fuel cells. Environ Sci Technol.2004;38:4900-4.
    [12]Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, et al. Microbial fuel cells:Methodology and technology. Environ Sci Technol.2006;40:5181-92.
    [13]He Z, Minteer SD, Angenent LT. Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ Sci Technol.2005;39:5262-7.
    [14]He Z, Wagner N, Minteer SD, Angenent LT. An upflow microbial fuel cell with an interior cathode:Assessment of the internal resistance by impedance Spectroscopy. Environ Sci Technol. 2006;40:5212-7.
    [15]Deng Q, Li XY, Zuo JE, Ling A, Logan BE. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. J Power Sources.2010;195:1130-5.
    [16]Min B, Logan BE. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ Sci Technol.2004;38:5809-14.
    [17]Ringeisen BR, Henderson E, Wu PK, Pietron J, Ray R, Little B, et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP 10. Environ Sci Technol. 2006;40:2629-34.
    [18]Biffinger JC, Pietron J, Ray R, Little B, Ringeisen BR. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP 10 and oxygen reduction cathodes. Biosens Bioelectron.2007;22:1672-9.
    [19]Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol. 2006;40:3388-94.
    [20]Reimers CE, Tender LM, Fertig S, Wang W. Harvesting energy from the marine sediment-water interface. Environ Sci Technol.2001;35:192-5.
    [21]Lowy DA, Tender LM, Zeikus JG, Park DH, Lovley DR. Harvesting energy from the marine sediment-water interface II-Kinetic activity of anode materials. Biosens Bioelectron. 2006;21:2058-63.
    [22]Lowy DA, Tender LM. Harvesting energy from the marine sediment-water interface Ⅲ. Kinetic activity of quinone-and antimony-based anode materials. J Power Sources. 2008; 185:70-5.
    [23]Cheng S, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol.2006;40:364-9.
    [24]Chen GW, Choi SJ, Lee TH, Lee GY, Cha JH, Kim CW. Application of biocathode in microbial fuel cells:cell performance and microbial community. Appl Microbiol Biot. 2008;79:379-88.
    [25]Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol. 2007;41:7564-9.
    [26]Cao XX, Huang X, Liang P, Boon N, Fan MZ, Zhang L, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energ Environ Sci. 2009;2:498-501.
    [27]Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe.2001;7:297-306.
    [28]Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. Ferns Microbiol Lett.2003;223:129-34.
    [29]Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I. Novel Electrochemically Active Bacterium Phylogenetically Related to Arcobacter butzleri, Isolated from a Microbial Fuel Cell. Appl Environ Microb.2009;75:7326-34.
    [30]Zuo Y, Xing DF, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microb. 2008;74:3130-7.
    [31]Yuan SJ, He H, Sheng GP, Chen JJ, Tong ZH, Cheng YY, et al. A Photometric High-Throughput Method for Identification of Electrochemically Active Bacteria Using a WO3 Nanocluster Probe. Sci Rep-Uk.2013;3.
    [32]Yuan SJ, Li WW, Cheng YY, He H, Chen JJ, Tong ZH, et al. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat Protoc. 2014;9:112-9.
    [33]Benemann J. Hydrogen biotechnology:Progress and prospects. Nat Biotechnol. 1996;14:1101-3.
    [34]Lee HS, Salerno MB, Rittmann BE. Thermodynamic evaluation on H(2) production in glucose fermentation. Environ Sci Technol.2008;42:2401-7.
    [35]Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol.2002;82:87-93.
    [36]Ren NQ, Liu BF, Tang J, Ding J, Liu WZ, Xu JF, et al. Bio-hydrogen production by mixed culture of photo-and dark-fermentation bacteria. Int J Hydrogen Energ.2010;35:2858-62.
    [37]Ren NQ, Liu BF, Xie GJ, Ding J, Guo WQ, Xing DF. Enhanced bio-hydrogen production by the combination of dark-and photo-fermentation in batch culture. Bioresource Technol. 2010;101:5325-9.
    [38]Wang AJ, Sun D, Cao GL, Wang HY, Ren NQ, Wu WM, et al. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell. Bioresource Technol.2011; 102:4137-43.
    [39]Sun M, Sheng GP, Zhang L, Xia CR, Mu ZX, Liu XW, et al. An MEC-MR-Coupled System for Biohydrogen Production from Acetate. Environ Sci Technol.2008;42:8095-100.
    [40]Sun M, Mu ZX, Sheng GP, Shen N, Tong ZH, Wang HL, et al. Hydrogen production from propionate in a biocatalyzed system with in-situ utilization of the electricity generated from a microbial fuel cell. Int Biodeter Biodegr.2010;64:378-82.
    [41]Zhao YX, Chen YG. Nano-TiO(2) Enhanced Photofermentative Hydrogen Produced from the Dark Fermentation Liquid of Waste Activated Sludge. Environ Sci Technol.2011;45:8589-95.
    [42]Logan B, Van Ginkel SW. Increased biological hydrogen production with reduced organic loading. Water Res.2005;39:3819-26.
    [43]Kengen SWM, Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea:mechanisms for reductant disposal. Environ Technol.2010;31:993-1003.
    [44]Soboh B, Linder D, Hedderich R. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiol-Sgm.2004; 150:2451-63.
    [45]Wang JQ, Zhao CF, Meng B, Xie JH, Zhou CQ, Chen XS, et al. The proteomic alterations of Thermoanaerobacter tengcongensis cultured at different temperatures. Proteomics. 2007;7:1409-19.
    [46]de Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, de Waard P, et al. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biot.2007;74:1358-67.
    [47]van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, et al. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microb.2008;74:6720-9.
    [48]Nguyen TAD, Kim JP, Kim MS, Oh YK, Sim SJ. Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation, Int J Hydrogen Energ.2008;33:1483-8.
    [49]Schut GJ, Adams MWW. The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically:a New Perspective on Anaerobic Hydrogen Production. J Bacteriol.2009;191:4451-7.
    [50]Maru BT, Bielen AAM, Constanti M, Medina F, Kengen SWM. Glycerol fermentation to hydrogen by Thermotoga maritima:Proposed pathway and bioenergetic considerations, Int J Hydrogen Energ.2013;38:5563-72.
    [51]Greiner L, Schroder I, Muller DH, Liese A. Utilization of adsorption effects for the continuous reduction of NADP(+) with molecular hydrogen by Pyrococcus furiosus hydrogenase. Green Chem.2003;5:697-700.
    [52]Silva PJ, van den Ban ECD, Wassink H, Haaker H, de Castro B, Robb FT, et al. Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem.2000;267:6541-51.
    [53]Deksissa T, Vanrolleghem PA. Integrated modelling of conventional pollutants and organic contaminant fate in rivers:a microcosm study. Water Sci Technol.2005;52:73-81.
    [54]Ng B, Turner A, Tyler AO, Falconer RA, Millward GE. Modelling contaminant geochemistry in estuaries. Water Res.1996;30:63-74.
    [55]Martinez-Trujillo MA, Garcia-Rivero M. Review Article:Environmental Applications of Immobilized Microorganisms. Rev Mex Ing Quim.2012; 11:55-73.
    [56]Senthilvelan T, Kanagaraj J, Panda RC, Mandal AB. Biodegradation of phenol by mixed microbial culture:an eco-friendly approach for the pollution reduction. Clean Technol Envir. 2014;16:113-26.
    [57]Peres CM, Naveau H, Agathos SN. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed. Appl Microbiol Biot. 1998;49:343-9.
    [58]Madsen EL, Sinclair JL, Ghiorse WC. Insitu Biodegradation-Microbiological Patterns in a Contaminated Aquifer. Science.1991;252:830-3.
    [59]Schoemaker HE, Meijer EM, Leisola MSA, Haemmerli SD, Waldner R, Sanglard D, et al. Oxidation and Reduction in Lignin Biodegradation. Acs Symposium Series.1989;399:454-71.
    [60]Fang HHP, Li CL. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Env Sci Tec.2007;37:1-39.
    [61]Ren NQ, Li JZ, Li BK, Wang Y, Liu SR. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J Hydrogen Energ. 2006;31:2147-57.
    [62]Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol.2010;12:1011-20.
    [63]Dou JF, Liu X, Hu ZF, Deng D. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J Hazard Mater.2008; 151:720-9.
    [64]Noh SL, Choi JM, An YJ, Park SS, Cho KS. Anaerobic biodegradation of toluene coupled to sulfate reduction in oil-contaminated soils:Optimum environmental conditions for field applications. J Environ Sci Heal A.2003;38:1087-97.
    [65]Villatoro-Monzon WR, Morales-Ibarria MG, Velazquez EK, Ramirez-Saad H, Razo-Flores E. Benzene biodegradation under anaerobic conditions coupled with metal oxides reduction. Water Air Soil Poll.2008;192:165-72.
    [66]Olukanni OD, Osuntoki AA, Awotula AO, Kalyani DC, Gbenle GO, Govindwar SP. Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1. J Microbiol Biotechn.2013;23:843-9.
    [67]Wu YM, Xiao X, Xu CC, Cao DM, Du DL. Decolorization and detoxification of a sulfonated triphenylmethane dye aniline blue by Shewanella oneidensis MR-1 under anaerobic conditions. Appl Microbiol Biot.2013;97:7439-46.
    [68]Gurevich P, Oren A, Sarig S, Henis Y. Reduction of Aromatic Nitro-Compounds in Anaerobic Ecosystems. Water Sci Technol.1993;27:89-96.
    [69]Cao HB, Li YP, Zhang GF, Zhang Y. Reduction of nitrobenzene with H-2 using a microbial consortium. Biotechnol Lett.2004;26:307-10.
    [70]Patil SS, Adetutu EM, Rochow J, Mitchell JG, Ball AS. Sustainable remediation: electrochemically assisted microbial dechlorination of tetrachloroethene-contaminated groundwater. Microb Biotechnol.2014;7:54-63.
    [71]Van Nostrand JD, Khijniak TJ, Neely B, Sattar MA, Sowder AG, Mills G, et al. Reduction of nickel and uranium toxicity and enhanced trichloroethylene degradation to Burkholderia vietnamiensis PR1(301) with hydroxyapatite amendment. Environ Sci Technol.2007;41:1877-82.
    [72]Paul J, Kadam AA, Govindwar SP, Kumar P, Varshney L. An insight into the influence of low dose irradiation pretreatment on the microbial decolouration and degradation of Reactive Red-120 dye. Chemosphere.2013;90:1348-58.
    [73]Liao CS, Hung CH, Chao SL. Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere.2013;90:2109-14.
    [74]van der Zee FP, Lettinga G, Field JA. Azo dye decolourisation by anaerobic granular sludge. Chemosphere.2001;44:1169-76.
    [75]Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes:A review. J Taiwan Inst Chem E.2011;42:138-57.
    [76]Cai PJ, Xiao X, He YR, Li WW, Chu J, Wu C, et al. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biot.2012;93:1769-76.
    [77]Pearce CI, Christie R, Boothman C, von Canstein H, Guthrie JT, Lloyd JR. Reactive azo dye reduction by Shewanella strain j18143. Biotechnol Bioeng.2006;95:692-703.
    [78]Chen JM, Hao OJ. Microbial chromium (VI) reduction. Crit Rev Env Sci Tec. 1998;28:219-51.
    [79]Tandukar M, Huber SJ, Onodera T, Pavlostathis SG. Biological Chromium(VI) Reduction in the Cathode of a Microbial Fuel Cell. Environ Sci Technol.2009;43:8159-65.
    [80]Zadvomyy OA, Allen M, Brumfield SK, Varpness Z, Boyd ES, Zorin NA, et al. Hydrogen Enhances Nickel Tolerance in the Purple Sulfur Bacterium Thiocapsa roseopersicina. Environ Sci Technol.2010;44:834-40.
    [1]Sarayu K, Sandhya S. Current technologies for biological treatment of textile wastewater-a review. Appl Biochem Biotech.2012;167:645-61.
    [2]Jiang D, Li B, Jia W, Lei Y. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells. Appl Biochem Biotech.2010;160:182-96.
    [3]Bond DR., Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb.2003;69:1548-55.
    [4]Bretschger O, Obraztsova A, Sturm CA, Chang IS, Gorby YA, Reed SB, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microb.2007;73:7003-12.
    [5]Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell. Ferns Microbiol Lett.2003;223:129-34.
    [6]Tebo BM, Obraztsova AY. Sulfate-reducing bacterium grows with Cr(Ⅵ), U(Ⅵ), Mn(Ⅳ), and Fe(III) as electron acceptors. Fems Microbiol Lett.1998;162:193-8.
    [7]Yuan SJ, He H, Sheng GP, Chen JJ, Tong ZH, Cheng YY, et al. A photometric high-throughput method for identification of electrochemically active bacteria using a WO3 nanocluster probe. Sci Rep.2013;3.
    [8]Yuan S-J, Li W-W, Cheng Y-Y, He H, Chen J-J, Tong Z-H, et al. A plate-based electrochromic approach for the high-throughput detection of electrochemically active bacteria. Nat Protoc.2014;9:112-9.
    [9]Nunoura T, Oida H, Miyazaki J, Miyashita A, Imachi H, Takai K. Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiology Ecology.2008;64:240-7.
    [10]Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF. Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol.2007;41:2985-91.
    [11]Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, et al. Microbial Fuel Cells:Methodology and Technology. Environ Sci Technol.2006;40:5181-92.
    [12]Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp nov., in electricity production by a marine sediment fuel cell. Appl Environ Microb.2004;70:6023-30.
    [13]Lee JY, Phung NT, Chang IS, Kim BH, Sung HC. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. Fems Microbiol Lett. 2003;223:185-91.
    [14]Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, et al. A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe.2001;7:297-306.
    [15]Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K. Microbial fuel cells operating on mixed fatty acids. Bioresource Technol.2010;101:1233-8.
    [16]Zhang T, Cui C, Chen S, Yang H, Shen P. The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem Commun.2008;10:293-7.
    [17]Francis CA, Obraztsova AY, Tebo BM. Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1. Appl Environ Microb.2000;66:543-8.
    [18]Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp nov., a novel thermophilic member of the Geobacteraceae from the "Bag city" hydrothermal vent. Appl Environ Microb.2003;69:2985-93.
    [19]Coates JD, Ellis DJ, Gaw CV, Lovley DR. Geothrix fermentans gen. nov., sp nov., a novel Fe(Ⅲ)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol. 1999;49:1615-22.
    [20]Caccavo F, Coates JD, RosselloMora RA, Ludwig W, Schleifer KH, Lovley DR, et al. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(Ⅲ)-reducing bacterium. Arch Microbiol.1996;165:370-6.
    [21]Cummings DE, Caccavo F, Spring S, Rosenzweig RF. Ferribacterium limneticum, gen. nov., sp. nov., an Fe(Ⅲ)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol.1999;171:183-8.
    [22]Cai PJ, Xiao X, He YR, Li WW, Chu J, Wu C, et al. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biot.2012;93:1769-76.
    [23]Hong YG, Guo J, Xu ZC, Mo CY, Xu MY, Sun GP. Reduction and partial degradation mechanisms of naphthylaminesulfonic azo dye amaranth by Shewanella decolordtionis S12. Appl Microbiol Biot.2007;75:647-54.
    [24]Pearce CI, Christie R, Boothman C, von Canstein H, Guthrie JT, Lloyd JR. Reactive azo dye reduction by Shewanella strain j18 143. Biotechnol Bioeng.2006;95:692-703.
    [25]Xu MY, Guo J, Cen YH, Zhong XY, Cao W, Sun GP. Shewanella decolorationis sp nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Micr.2005;55:363-8.
    [1]Rittmann S, Herwig C. A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact.2012;11.
    [2]Abo-Hashesh M, Wang RF, Hallenbeck PC. Metabolic engineering in dark fermentative hydrogen production; theory and practice. Bioresource Technol.2011;102:8414-22.
    [3]Ketheesan B, Nirmalakhandan N. Improving net energy gain in fermentative biohydrogen production from glucose. Int J Hydrogen Energ.2011;36:11693-701.
    [4]Kim DH, Kim MS. Thermophilic fermentative hydrogen production from various carbon sources by anaerobic mixed cultures. Int J Hydrogen Energ.2012;37:2021-7.
    [5]Dong XZ, Song L. Hydrogenoanaerobacterium saccharovorans gen. nov., sp nov., isolated from H(2)-producing UASB granules. Int J Syst Evol Micr.2009;59:295-9.
    [6]Willquist K, van Niel EWJ. Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrogen Energ. 2012;37:4925-9.
    [7]Kotsopoulos TA, Zeng RJ, Angelidaki I. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 degrees C). Biotechnol Bioeng.2006;94:296-302.
    [8]Munro SA, Zinder SH, Walker LP. The Fermentation Stoichiometry of Thermotoga neapolitana and Influence of Temperature, Oxygen, and pH on Hydrogen Production. Biotechnol Progr.2009;25:1035-42.
    [9]Ljunggren M, Willquist K, Zacchi G, van Niel EWJ. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus. Biotechnol Biofuels.2011;4.
    [10]Rudolf K. Thauer. Energy Conservation in Chemotrophic Anaerobic Bacteria. Bacteriological Reviews.1977:100-80.
    [11]Schink B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol R.1997;61:262-80.
    [12]Adams MWW, Schut GJ. The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically:a New Perspective on Anaerobic Hydrogen Production. J Bacteriol.2009;191:4451-7.
    [13]Schink B, Muller N, Worm P, Stams AJM, Plugge CM. Syntrophic butyrate and propionate oxidation processes:from genomes to reaction mechanisms. Env Microbiol Rep.2010;2:489-99.
    [14]Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ. A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng.2013;110:1884-94.
    [15]de Vrije T, Mars AE, Budde MAW, Lai MH, Dijkema C, de Waard P, et al. Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus. Appl Microbiol Biot.2007;74:1358-67.
    [16]van Niel EWJ, Budde MAW, de Haas GG, van der Wal FJ, Claasen PAM, Stams AJM. Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int J Hydrogen Energ.2002;27:1391-8.
    [17]Kengen SWM, Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea:mechanisms for reductant disposal. Environ Technol.2010;31:993-1003.
    [18]Angenent LT, Karim K, A1-Dahhan MH, Domiguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol.2004;22:477-85.
    [19]Kim DH, Han SK, Kim SH, Shin HS. Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrogen Energ.2006;31:2158-69.
    [20]Zhang K, Ren NQ, Cao GL, Wang AJ. Biohydrogen production behavior of moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16 under different gas-phase conditions. Int J Hydrogen Energ.2011;36:14041-8.
    [21]Devi MP, Mohan SV, Mohanakrishna G, Sarma PN. Regulatory influence of CO2 supplementation on fermentative hydrogen production process. Int J Hydrogen Energ. 2010;35:10701-9.
    [22]van Niel EWJ, Claassen PAM, Stams AJM. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 2003;81:255-62.
    [23]Jones DT, Woods DR. Acetone-Butanol Fermentation Revisited. Microbiol Rev. 1986;50:484-524.
    [24]Andersch W, Bahl H, Gottschalk G. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by clostridium-acetobutylicum. Eur J Appl Microbiol.1983;18:327-32.
    [25]Hartmanis MGN, Klason T, Gatenbeck S. Uptake and Activation of Acetate and Butyrate in Clostridium-Acetobutylicum. Appl Microbiol Biot.1984;20:66-71.
    [26]Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, RJ Z. A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng.2013;(in press, DOI 10.1002/bit.24855).
    [27]Gommers PJF, Vanschie BJ, Vandijken JP, Kuenen JG. BIOCHEMICAL LIMITS TO MICROBIAL-GROWTH YIELDS-AN ANALYSIS OF MIXED SUBSTRATE UTILIZATION. Biotechnol Bioeng.1988;32:86-94.
    [1]Georgiou D, Metallinou C, Aivasidis A, Voudrias E, Gimouhopoulos K. Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochem Eng J.2004;19:75-9.
    [2]Zhang J, Zhang Y, Quan X, Li Y, Chen S, Zhao H, et al. An anaerobic reactor packed with a pair of Fe-graphite plate electrodes for bioaugmentation of azo dye wastewater treatment. Biochem Eng J.2012;63:31-7.
    [3]dos Santos AB, de Madrid MP, de Bok FAM, Stams AJM, van Lier JB, Cervantes FJ. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium. Enzyme Microb Tech.2006;39:38-46.
    [4]Willetts JRM, Ashbolt NJ. Understanding anaerobic decolourisation of textile dye wastewater: mechanism and kinetics. Water Sci Technol.2000;42:409-15.
    [5]Yoo ES, Libra J, Adrian L. Mechanism of decolorization of azo dyes in anaerobic mixed culture. J Environ Eng-Asce.2001; 127:844-9.
    [6]Kudlich M, Keck A, Klein J, Stolz A. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microb.1997;63:3691-4.
    [7]Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biot.2001;56:69-80.
    [8]Mutambanengwe CCZ, Togo CA, Whiteley CG. Decolorization and degradation of textile dyes with biosulfidogenic hydrogenases. Biotechnol Progr.2007;23:1095-100.
    [9]McKinlay JB, Zeikus JG. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microb.2004;70:3467-74.
    [10]Cai P-J, Xiao X, He Y-R, Li W-W, Chu J, Wu C, et al. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biot. 2012;93:1769-76.
    [11]Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microb.2007;73:1153-65.
    [12]Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiol-Sgm.2010;156:2630-40.
    [13]Yu L, Li WW, Lam MHW, Yu HQ, Wu C. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production. Appl Microbiol Biot.2012;95:255-62.
    [14]Zhang F, Zhang Y, Chen M, Zeng RJ. Hydrogen supersaturation in thermophilic mixed culture fermentation. Int J Hydrogen Energ.2012;37:17809-16.
    [15]Zheng H, O'Sullivan C, Mereddy R, Zeng RJ, Duke M, Clarke WP. Experimental and theoretical investigation of diffusion processes in a membrane anaerobic reactor for bio-hydrogen production. Int J Hydrogen Energ.2010;35:5301-11.
    [16]Willquist K, van Niel EWJ. Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrogen Energ. 2012;37:4925-9.
    [17]van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, et al. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microb.2008;74:6720-9.
    [18]Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, et al. Atoms, molecules, solids, and surfaces-applications of the generalized gradient approximation for exchange and correlation. Phys Rev B.1992;46:6671-87.
    [19]Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B Condens Matter.1992;45:13244-9.
    [20]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 1990;92:508-18.
    [21]Delley B. From molecules to solids with the DMol3 approach. J Chem Phys. 2000;113:7756-64.
    [22]Klamt A, Jonas V, Burger T, Lohrenz JCW. Refinement and parametrization of COSMO-RS. J Phys Chem A.1998;102:5074-85.
    [23]Klamt A, Schuurmann G. COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2. 1993:799-805.
    [24]Yu L, Li WW, Lam MHW, Yu HQ. Adsorption and decolorization kinetics of methyl orange by anaerobic sludge. Appl Microbiol Biot.2011;90:1119-27.
    [25]Chang JS, Chou C, Lin YC, Lin PJ, Ho JY, Hu TL. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res.2001;35:2841-50.
    [26]Hsueh CC, Chen BY. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater.2007;141:842-9.
    [27]Carliell CM, Barclay SJ, Naidoo N, Buckley CA, Mulholland DA, Senior E. Microbial Decolorization of a Reactive Azo-Dye under Anaerobic Conditions. Water Sa.1995;21:61-9.
    [28]Bras R, Ferra MIA, Pinheiro HM, Goncalves IC. Batch tests for assessing decolourisation of azo dyes by methanogenic and mixed cultures. J Biotechnol.2001;89:155-62.
    [29]Sapra R, Bagramyan K, Adams MWW. A simple energy-conserving system:Proton reduction coupled to proton translocation. P Natl Acad Sci USA.2003;100:7545-50.
    [30]Van Ginkel SW, Logan B. Increased biological hydrogen production with reduced organic loading. Water Res.2005;39:3819-26.
    [31]Angenent LT, Karim K, Al-Dahhan MH, Domiguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol.2004;22:477-85.
    [32]Shen N, Zhang F, Song XN, Wang YS, Zeng RJ. Why is the ratio of H2/acetate over 2 in glucose fermentation by Caldicellulosiruptor saccharolyticus? Int J Hydrogen Energ. 2013;38:11241-7.
    [1]Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, et al. Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc T.2005;33:76-9.
    [2]Nguyen VL. Chemical synthesis and characterization of palladium nanoparticles.2010.
    [3]Hennebel T, De Gusseme B, Boon N, Verstraete W. Biogenic metals in advanced water treatment. Trends Biotechnol.2009;27:90-8.
    [4]Deplanche K, Macaskie LE. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng.2008;99:1055-64.
    [5]Zadvornyy OA, Allen M, Brumfield SK, Varpness Z, Boyd ES, Zorin NA, et al. Hydrogen Enhances Nickel Tolerance in the Purple Sulfur Bacterium Thiocapsa roseopersicina. Environ Sci Technol.2010;44:834-40.
    [6]Hennebel T, Van Nevel S, Verschuere S, De Corte S, De Gusseme B, Cuvelier C, et al. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen. Appl Microbiol Biot.2011;91:1435-45.
    [7]Kengen SWM, Verhaart MRA, Bielen AAM, van der Oost J, Stams AJM. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea:mechanisms for reductant disposal. Environ Technol.2010;31:993-1003.
    [8]Willquist K, van Niel EWJ. Growth and hydrogen production characteristics of Caldicellulosiruptor saccharolyticus on chemically defined minimal media. Int J Hydrogen Energ. 2012;37:4925-9.
    [9]Meshulam-Simon G, Behrens S, Choo AD, Spormann AM. Hydrogen metabolism in Shewanella oneidensis MR-1. Appl Environ Microb.2007;73:1153-65.
    [10]van de Werken HJG, Verhaart MRA, VanFossen AL, Willquist K, Lewis DL, Nichols JD, et al. Hydrogenomics of the Extremely Thermophilic Bacterium Caldicellulosiruptor saccharolyticus. Appl Environ Microb.2008;74:6720-9.
    [11]Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE. Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiol-Sgm.2010;156:2630-40.
    [12]McKinlay JB, Zeikus JG. Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microb.2004;70:3467-74.
    [13]Urashima T, Ariga H, Saito T, Nakamura T, Tanaka S, Arai I. Exocellular polysaccharide produced by Streptococcus thermophilus. Milchwissenschaft.1999;54:190-3.
    [14]d'Abzac P, Bordas F, Joussein E, van Hullebusch ED, Lens PNL, Guibaud G. Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut R.2013;20:4509-19.
    [15]Kang FX, Alvarez PJ, Zhu DQ. Microbial Extracellular Polymeric Substances Reduce Ag+to Silver Nanoparticles and Antagonize Bactericidal Activity. Environ Sci Technol.2014;48:316-22.
    [16]Xu J, Sheng GP, Ma Y, Wang LF, Yu HQ. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Res. 2013;47:5298-306.
    [17]Hennebel T, Simoen H, De Windt W, Verloo M, Boon N, Verstraete W. Biocatalytic Dechlorination of Trichloroethylene With Bio-Palladium in a Pilot-Scale Membrane Reactor. Biotechnol Bioeng.2009;102:995-1002.
    [18]Cai P-J, Xiao X, He Y-R, Li W-W, Chu J, Wu C, et al. Anaerobic biodecolorization mechanism of methyl orange by Shewanella oneidensis MR-1. Appl Microbiol Biot. 2012;93:1769-76.
    [19]Hsueh CC, Chen BY. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J Hazard Mater.2007;141:842-9.
    [20]Hennebel T, De Corte S, Vanhaecke L, Vanherck K, Forrez I, De Gusseme B, et al. Removal of diatrizoate with catalytically active membranes incorporating microbially produced palladium nanoparticles. Water Res.2010;44:1498-506.
    [21]De Gusseme B, Hennebel T, Vanhaecke L, Soetaert M, Desloover J, Wille K, et al. Biogenic Palladium Enhances Diatrizoate Removal from Hospital Wastewater in a Microbial Electrolysis Cell. Environ Sci Technol.2011;45:5737-45.
    [22]Hennebel T, Benner J, Clauwaert P, Vanhaecke L, Aelterman P, Callebaut R, et al. Dehalogenation of environmental pollutants in microbial electrolysis cells with biogenic palladium nanoparticles. Biotechnol Lett.2011;33:89-95.
    [23]Hennebel T, Simoen H, Verhagen P, De Windt W, Dick J, Weise C, et al. Biocatalytic dechlorination of hexachlorocyclohexane by immobilized bio-Pd in a pilot scale fluidized bed reactor. Environ Chem Lett.2011;9:417-22.