猪乳铁蛋白肽的分子改良及改良肽的作用机制、生物学功能和重组表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪乳铁蛋白肽(Porcine lactoferricin -20, LFP-20)是来源于猪乳铁蛋白N端含20个氨基酸残基的阳离子抗菌肽。本研究以LFP-20为模板,通过分子设计对其进行改良,在此基础上研究了改良肽的抗菌活性和安全性,比较了改良抗菌肽LF-2、LF-4、LF-6与LFP-20在膜作用机制方面的差异;通过建立小鼠腿肌和腹腔大肠杆菌染菌模型,研究了改良抗菌肽LF-2、LF-6对小鼠感染大肠杆菌的保护作用,同时探讨了改良抗菌肽对健康小鼠和染菌小鼠免疫功能的影响;进一步利用大肠杆菌和毕赤巴斯德酵母表达系统成功表达了改良抗菌肽LF-6。主要研究结果如下:
     1.猪乳铁蛋白肽的分子改良及改良肽的筛选
     在分析LFP-20理化性质、氨基酸组成并对其进行结构预测的基础上,采用去除分子内二硫键、改变疏水性和芳香族氨基酸比例等策略对猪乳铁蛋白肽LFP-20进行分子改良,获得了8种改良肽。对改良肽抗菌活性研究结果表明:与模板肽LFP-20相比,改良肽LF-2、LF-4和LF-6对革兰氏阴性菌大肠杆菌、铜绿假单胞菌、猪霍乱沙门氏菌和鼠伤寒沙门氏菌的抗菌活性提高了2-64倍,对革兰氏阳性菌金黄色葡萄球菌和表皮葡萄球菌的抗菌活性提高了2-8倍,其中,以改良肽LF-6的抗菌活性最好。与模板肽LFP-20相比,在0~32μg/mL范围内三种改良肽对人和猪的红细胞溶血率没有显著增加(p>0.05)。与模板肽LFP-20相比,0~50μg/mL的改良肽LF-2、LF-4、LF-6对人和猪的外周血单核细胞增殖没有显著差异(p>0.05);在0-32μg/mL范围内,除8μg/mL和16μg/mL的LF-4以外,改良肽LF-2、LF-4、LF-6对外周血单核细胞的细胞毒性也没有显著增加(p>0.05)。
     2.猪乳铁蛋白肽及改良肽的膜作用机制研究
     扫描电镜和透射电镜观察LFP-20及其改良肽LF-2、LF-4、LF-6对E.coli和S.aureus细胞形态影响结果表明,1×MIC的LFP-20及三种改良肽作用细菌30 min后,对细菌细胞膜结构均有破坏作用,能够导致细胞膜产生不同程度的突起或破损,菌体细胞壁及细胞膜断裂、细胞内容物泄漏,细胞质电子密度明显降低,表明细菌细胞膜是这些抗菌肽作用的重要靶点。在相同浓度下,三种改良肽LF-2、LF-4、LF-6对E.coli和S.aureus细胞膜产生的去极化作用明显强于模板肽LFP-20,更容易导致细胞膜电势的破坏。8μg/mL~32μg/mL的三种改良肽对E.coli细胞外膜渗透性的增强作用均显著高于模板肽LFP-20(p<0.05);与LFP-20、LF-2、LF-4相比,LF-6导致E. coli细胞内膜渗透性的增加作用最为迅速、明显。LFP-20、LF-4和LF-6对DPX与LPS结合的最大抑制率与相近,分别为68%、56%和51%,达到50%抑制率时所需的LF-4和LF-6浓度却明显低于LFP-20,分别为7.96μg/mL和6.91μg/mL,而LFP-20达到50%抑制率时所需的浓度为17.30μg/mL; LF-4、LF-6置换DPX-LPS分子中DPX,结合LPS的能力稍弱于LFP-20,但实现与LPS最大结合所需肽浓度却明显低于LFP-20。16μg/mL和32μg/mL的四种抗菌肽对脂质体膜具有相似的破坏潜能,但与模板肽LFP-20相比,64μg/mL的三种改良肽对脂质体膜PC:PG(1:1)和PG呈现了更强的破坏作用,引发了40%以上钙黄绿素的释放。上述研究结果揭示,膜破坏机制是LFP-20及其三种改良肽对E.coli和S.aureus的主要杀菌机制;与LFP-20相比,LF-2、LF-4、LF-6提高的抗菌活性可能它们增强的对细菌细胞膜去极化作用、对细菌细胞内外膜渗透性、更容易与LPS结合以及对脂质体膜的破坏潜能密切相关。
     3.猪乳铁蛋白肽及改良肽对小鼠感染大肠杆菌保护作用的研究
     在研究LFP-20及其改良肽LF-2、LF-6对ICR小鼠急性毒性的基础上,建立了ICR小鼠腿肌和腹腔大肠杆菌感染模型,比较了LFP-20与改良肽LF-2、LF-6抵抗小鼠感染大肠杆菌的能力。急性毒性研究结果表明,LFP-20、LF-2、LF-6对ICR小鼠的LD5o分别为34.25 mg/kg、6.54 mg/kg和口29.52 mg/kg。腿肌感染E.coli K88试验结果表明,2mg/kg和口8 mg/kg的三种抗菌肽对小鼠腿肌染菌都具有预防效果,除2 mg/kg LFP-20外,另外五种剂量的抗菌肽均显著降低了小鼠腿肌E.coli活菌数(p<0.05);其中,8 mg/kgLF-6对小鼠腿肌染菌的抑制效果最为显著(p<0.05),该组小鼠腿肌匀浆组织中的活菌数为3.85士0.24(lg CFU/g)。预防腹腔感染E.coli K88试验结果表明:与E.coli组相比,2 mg/kg和8 mg/kg的三种抗菌肽对染菌小鼠腹腔液、肝脏和肠系膜淋巴结感染的大肠杆菌都具有显著的抑制效果(p<0.05),其中以8 mg/kg LF-6的抑菌效果最好,其腹腔液、肝脏和肠系膜淋巴结中大肠杆菌活菌数分别为1.18±0.10(lg CFU/mL)、3.85±0.24 (lg CFU/g)和3.00±0.15(lg CFU/g)。E.coli组盲肠内容物中大肠杆菌、乳酸菌和双歧杆菌活菌数分别为5.57士0.16(lg CFU/g)、6.32±0.09 (lg CFU/g)和5.54±0.17(lg CFU/g);各抗菌肽组的大肠杆菌(除2 mg/kg LFP-20外)均显著低于E.coli组(p<0.05),乳酸菌数和双歧杆菌数(除8 mg/kg LFP-20外)均显著高于E. coli组(p<0.05)。E.coli组粪便中大肠杆菌、乳酸菌和双歧杆菌活菌数分别为6.07±0.09 (lg CFU/g)、5.88±0.04(lg CFU/g)和5.88±0.04(lg CFU/g),各抗菌肽组粪便大肠杆菌活菌数均显著低于E.coli组(p<0.05); 2 mg/kg LF-2组的乳酸菌数显著高于E.coli组(p<0.05);六个抗菌肽组的双歧杆菌数均显著高于E.coli组(p<0.05)。上述研究结果揭示,LFP-20及改良肽LF-2、LF-6可以通过体内抑菌作用增强小鼠抵抗E.coli K88感染能力,同时,能够改善由于感染引起的肠道双歧杆菌和乳酸菌数量降低,并且改良肽LF-2和LF-6的体内抑菌效果好于模板LFP-20。
     4.猪乳铁蛋白肽及改良肽对小鼠免疫功能影响的研究
     LFP-20及改良肽LF-2、LF-6对ICR小鼠免疫功能影响的研究结果表明:与正常对照组小鼠相比,2 mg/kg的LF-2和LF-6显著增加了小鼠的胸腺指数(p<0.05),而8 mg/kg的LF-2和LF-6显著降低了小鼠的胸腺指数(p<0.05)和脾脏指数(p<0.05); 8 mg/kg LF-6显著提高了外周血淋巴细胞百分率(p<0.05),2 mg/kg LF-6显著提高了小鼠外周血白细胞总数;2 mg/kg的LFP-20、LF-2、LF-6和8 mg/kg LF-2、LF-6显著降低了小鼠外周血CD3+CD4+淋巴细胞的比例,2 mg/kg LF-2、LF-6和8 mg/kg LF-2显著增加了小鼠外周血中的B细胞比例(p<0.05),但对NK细胞的数量没有显著影响;8 mg/kg LF-2和2 mg/kg LF-6组小鼠脾脏淋巴细胞的LPS刺激指数和ConA刺激指数显著升高(p<0.05)。
     LFP-20及改良肽LF-2、LF-6对E.coli K88感染小鼠免疫功能影响的研究结果表明:与正常对照组相比,E.coli组小鼠的胸腺指数显著降低,2 mg/kg的LF-2、LF-6和8 mg/kg的LFP-20、LF-2均有使感染小鼠胸腺指数升高的趋势(p>0.05)。与正常对照组相比,E.coli组小鼠的外周血淋巴细胞百分率有所增加(p>0.05);与E.coli组相比,六个抗菌肽组的外周血淋巴细胞百分率均显著降低(p<0.05)。与正常对照组相比,E.coli组小鼠的外周血CD3+CD8+细胞的比例显著降低,CD3+CD4+和CD3+CD8+细胞的比值显著升高,NK细胞的比例显著降低;2 mg/kg的LFP-20、LF-6和8 mg/kg的LFP-20、LF-2使小鼠外周血CD3+CD8+细胞的比例显著高于E.coli组(p<0.05);与E.coli组小鼠相比,8mg/kg LF-2显著提高了小鼠外周血中NK细胞的比例(p<0.05)。E. coli组小鼠脾脏淋巴细胞的LPS刺激指数和ConA刺激指数均显著高于正常对照组(p<0.05);六个抗菌肽组的LPS刺激指数和ConA刺激指数均显著低于E.coli组;与正常对照组相比,2 mg/kg和8 mg/kg LFP-20组小鼠脾脏淋巴细胞的LPS刺激指数显著升高(p<0.05);2 mg/kgLFP-20组ConA刺激指数显著升高(p<0.05)。与正常对照组相比,E.coli组小鼠脾细胞的抗体生成能力没有显著变化,但2 mg/kg的三种抗菌肽和8 mg/kg的LF-2、LF-6使小鼠脾细胞的抗体生成能力显著提高(p<0.05)。与正常对照组相比,E. coli组细胞因子IL-1、IL-10、TNF-α和趋化因子MCP-1、MIP-1α基因表达水平显著升高(p<0.05);LF-2降低了由E.coli感染导致的MCP-1、MIP-1α、IL-10基因表达水平升高(p<0.05),显著增加了IFN-γ基因表达水平(p<0.05);与E. coli组相比,2 mg/kg LF-6显著降低由E. coli感染导致的MCP-1、MIP-1α、和IL-10基因表达水平;8 mg/kg LF-6显著降低了由E. coli感染导致的MCP-1、MIP-1α、IL-1、IL-10和TNF-α基因表达水平(p<0.05)。
     5.猪乳铁蛋白肽改良肽的重组表达研究
     改良抗菌肽LF-6在大肠杆菌中的重组表达。根据大肠杆菌密码子偏好性及改良肽LF-6的氨基酸序列设计引物,并通过套叠PCR成功扩增目的基因EK-LF-6及TEV-LF-6,将目的基因构建至表达载体pET32a,成功构建了大肠杆菌重组菌株BL21(DE3)pLysS-pET32a-TEV-LF-6和BL21(DE3)pLysS- pET32a- EK-LF-6,经诱导表达和SDS-PAGE分析,融合蛋白Trx-EK- LF-6及Trx-TEV- LF-6均有明显表达;Bradford法蛋白定量、凝胶条带分析及计算获得可溶性融合蛋白Trx-TEV-LF-6及Trx-EK-LF-6的表达量分别为40.60 mg/L和42.13 mg/L;两种融合蛋白经蛋白酶切割后,目标抗菌肽LF-6的理论表达量分别为5.59 mg/L和6.13 mg/L。对两种融合蛋白进行分离纯化及TEV酶和EK酶切割相应融合蛋白,结果表明TEV酶的切割效率高于EK酶。对切割产物进行冷冻干燥浓缩并使用琼脂糖孔穴扩散法检测其活性,结果表明TEV酶切割融合蛋白的产物对E.coli K88及ATCC25922具有一定抑菌活性,且对E.coli K88的抗菌活性强于对大肠杆菌ATCC25922,该结果表明经过TEV酶切割后残留在LF-6 N端的Gly对LF-6活性的影响较小。
     改良抗菌肽LF-6在巴斯德毕赤酵母中的重组表达。根据酵母偏爱密码子及LF-6氨基酸序列设计引物,通过套叠PCR扩增获得目的基因后,将其构建至诱导型分泌表达载体pPICZaA,重组质粒PICZa-LF-6转化蛋白酶缺陷型酵母菌株SMD1168构建重组菌株SMD1168-pPICZaA-LF-6,经甲醇诱导重组菌株表达目标抗菌肽LF-6;取发酵上清进行Tricine-SDS-PAGE检测结果表明,重组菌株诱导6天后目的肽LF-6表达量达较高水平;对发酵液上清进行浓缩后,Bradford法测定LF-6的表达量为20 mg/L。琼脂糖孔穴扩散法对抑菌活性的检测结果表明重组表达的LF-6对E.coli K88具有一定的抑菌活性。
     综上所述,本论文通过对LFP-20的分子改良,获得了对革兰氏阴性菌和革兰氏阳性菌抗菌活性明显提高且在一定浓度范围内对红细胞溶血率和外周血单核细胞毒性没有显著增强的改良肽LF-2和LF-6;与模板肽LFP-20相比,改良肽LF-2和LF-6对细菌具有更强的破膜作用机制,并可以通过体内抑菌作用增强小鼠抵抗E. coli K88感染能力,改善由于感染引起的肠道有益菌双歧杆菌和乳酸菌数量降低:改良肽LF-2和LF-6还能够通过改善小鼠胸腺指数、外周血中B细胞比例、刺激脾脏淋巴细胞转化等发挥免疫调节功能,控制由于E.coli感染导致的动物模型免疫指标异常变化:此外,还利用大肠杆菌和毕赤酵母表达系统成功表达了改良肽LF-6,理论表达量分别为5.59 mg/L和20mg/L,表达产物对E. coli具有明显抑菌活性。
Porcine lactoferricin-20 (LFP-20) is a 20-amino acid residue of cationic antimicrobial peptide derived from the porcine lactoferrin N terminus. In this study, we designed the analogs using LFP-20 as a template and screening the antibacterial activity, hemolytic activity and cytotoxicity to peripheral blood mononuclear cells of analogs. Furthermore, the comparative studies of modified peptides LF-2, LF-4, LF-6 and LFP-20 in the membrane mechanism of action were conducted. The protective effects of analogs against E.coli were investigated using mouse model with E.coli infection in thigh and abdominal cavity. Then, effects of analogs on the immune function of health and infected mouse with Escherichia.coli infection were discussed. Moreover, the analog LF-6 was expressioned successfully using E.coli expression system and Pichia pastoris expression system. The main results are as follows:
     1. Molecular improvement and screening of porcine lactoferricin
     Eight analogs were obtained by strategies of removing the intermolecular disulfide bonds, changing the proportion of hydrophobic and aromatic amino acids of LFP-20 based on the analysis of LFP-20 physicochemical properties, amino acid composition and structure prediction. Compared to LFP-20, the analogs LF-2, LF-4 and LF-6 exhibited 2~64 times increased antimicrobial activities against gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa, Salmonella choleraesuis, Salmonella typhimurium, and 2-8 times increased antibacterial activities against gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis. Among three analogs, LF-6 showed the best antimicrobial activities. LF-2, LF-4 and LF-6 did not induce increased hemolytic activity significantly (p> 0.05) to human and porcine erythrocyte below 32μg/mL compared to LFP-20. Furthermore, the proliferations of human and porcine peripheral blood mononuclear cells (PBMCs) were not influenced significantly (p> 0.05) by LF-2, LF-4 and LF-6 below 50μg/mL. Except 8μg/mL and 16μg/mL LF-4, the cytotoxicities of LF-2, LF-4 and LF-6 to PBMCs were not also increased significantly (p> 0.05) below 32μg/mL compared to LFP-20.
     2. Membrane mechanism of action of porcine lactoferricin and analogs
     The effects of LFP-20 and its analogs LF-2, LF-4, LF-6 on E.coli and S.aureus morphology observed by SEM and TEM showed four peptides led to different degrees of membrane protrusions or damage, the cell wall and membrane abruption, cell contents leak, decreasing cytoplasmic electron density at 1×MIC after 30 min incubation. These results indicated that cytoplasmic membrane of bacteria is one of the important targets of LFP-20 and its analogs LF-2. LF-4, LF-6.
     At the same concentration, three analogs LF-2, LF-4, LF-6 caused stronger membrane depolarization of E.coli and S.aureus than LFP-20, which more likely to lead to ion channel formation on cell membrane. Compared to LFP-20, three analogs enhanced the E.coli outer membrane permeability significantly (p<0.05) at 8~32μg/mL. Among four peptides, LF-6 led to the most rapid and obvious inner membrane permeability of E.coli. LFP-20, LF-4, LF-6 had similar inhibiting rate (Imax) to binding ability between DPX and LPS, which were 68%,56% and 51% respectively. However, the concentrations of LF-4 and LF-6 required for 50% inhibition rate (I50) to binding ability between DPX and LPS were significantly lower than LFP-20, which were 7.96μg/mL and 6.91μg/mL respectively, and the I50 of LFP-20 was 17.30μg/mL. Although the ability of replacement DPX molecule in DPX-LPS of LF-4, LF-6 weaker than LFP-20, peptides concentration required to achieve maximum binding with LPS for LF-4 and LF-6 lower significantly than LFP-20. Four antimicrobial peptides had similar damage potential to the liposome membrane at 16μg/mL and 32μg/mL. However, compared with LFP-20, three analogs presented a more damage potential on liposome membrane PC: PG (1:1) and PG at 64μg/mL, causing more than 40% calcein release. These results revealed that membrane disruption mechanism is the major mechanism of action of LFP-20 and three analogs against E.coli and S.aureus. Compared with LFP-20, the enhanced antimicrobial activity of LF-2, LF-4 and LF-6 were related to the increased cytoplasmic membrane depolarization, inner and outer membrane permeability, more easily combined with LPS and the damage potential to liposome membrane.
     3. Protective effects of porcine lactoferricin and analogs on E.coli infected mouse
     Based on the study of acute toxicity of LFP-20 and analogs LF-2, LF-6 to ICR mouse, the mouse thigh and abdominal infection model with E.coli K88 were established to compare the protective ability LFP-20 and LF- 2, LF-6 against E.coli infection. The results showed that LD50 of LFP-20 and LF-2, LF-6 were 34.25 mg/kg,16.54 mg/kg and 29.52 mg/kg. The effects of LFP-20 and LF-2, LF-6 to mouse thigh-infection model showed that three peptides have a protective effect on mouse infected with E.coli K.88 at 2 mg/kg and 8 mg/kg. In addition to 2 mg/kg LFP-20, another five doses of the peptides significantly reduced the number of in thigh muscle (p<0.05). The inhibitory effect of 8 mg/kg LF-6 in thigh muscle was the most significant (p<0.05), and the number of E.coli in homogenate of thigh muscle was 3.85±0.24 (lg CFU/g).
     The effects of LFP-20 and LF-2, LF-6 on mouse abdominal infection model showed that 2 mg/kg and 8 mg/kg of the three peptides could inhibit the infection of E.coli K88 significantly (p<0.05) of peritoneal fluid, liver and mesenteric lymph nodes in mouse model. The inhibitory effect of 8 mg/kg LF-6 was the most significant (p<0.05) compared with E.coli control, and the number of E.coli in homogenate of peritoneal fluid, liver and mesenteric lymph nodes were 1.18±0.10 (lg CFU/mL),3.85±0.24 (lg CFU/g) and 3.00±0.15 (lg CFU/g), respectively. The number of E.coli, Lactobacillus and Bifidobacterium in cecum contents of E.coli control were 5.57±0.16 (lg CFU/g),6.32±0.09 (lg CFU/g) and 5.54±0.17 (lg CFU/g). The number of E.coli in cecum contents of peptides groups (in addition to 2 mg/kg LFP-20) were significantly lower than E.coli control (p<0.05), and the number of Lactobacillus and Bifidobacterium (in addition to 8 mg/kg LFP-20) were significantly higher than E.coli control (p<0.05). The number of E.coli in fecal of six peptides groups were significantly lower than E.coli control (p<0.05), and the number of Lactobacillus of 2 mg/kg LF-2 were significantly higher than E.coli control (p<0.05). The number of Bifidobacterium of six peptides groups were significantly higher than E.coli control (p<0.05). The results revealed that the ability to resist E.coli K88 infection of mouse could be enhanced by LFP-20 and analogs LF-2, LF-6 through bacteriostasis in vivo and improve the number decrease of Lactobacillus and Bifidobacterium caused by intestinal infection at the same time. LF-2 and LF-6 held the better bacteriostasis than LFP-20 in vivo.
     4. Effects of porcine Iactoferricin and analogs on immune function in mouse
     The results of effect of LFP-20 and analogs LF-2, LF-6 on immune function in ICR mice showed that 2 mg/kg LF-2 and LF-6 increased the mouse thymus index(p<.05); 8 mg/kg LF-2 and LF-6 reduced mice thymus index (p<0.05) and spleen index (p<0.05) compared with control mouse. The percentage of peripheral blood lymphocytes and the total number of peripheral white blood cells were also increased significantly (p<0.05) by 8 mg/kg LF-6 and 2 mg/kg LF-6 respectively. The proportion of peripheral blood CD3+CD4+ lymphocytes of mouse were reduced significantly (p<0.05) by LFP-20, LF-2, LF-6 at 2 mg/kg and LF-2, LF-6 at 8 mg/kg.2 mg/kg LF-2, LF-6, and 8 mg/kg LF-2 could increased the proportion of peripheral blood B cells significantly (p<0.05), but had no significant influence on the number of NK cells. The LPS stimulation index and ConA stimulation index to spleen lymphocytes in 8 mg/kg LF-2 and 2 mg/kg LF-6 group were significant (p<0.05) higher than that of control group.
     The results of effect of LFP-20 and analogs LF-2, LF-6 on immune function in ICR mice infected with E.coli K88 showed that the thymus index of mouse in E.coli control was decreased significantly compared to the health control. The thymus index of 2 mg/kg LF-2, LF-6, and 8 mg/kg LFP-20, LF-2 groups had increasing trend compared to E.coli control. Compared with health control, the percentage of peripheral blood lymphocytes of E.coli control had increasing trend (p> 0.05). But the LFP-20 and analogs LF-2, LF-6 decreased the percentage of peripheral blood lymphocytes significantly (p<0.05) compared to E.coli control. The peripheral blood CD3+CD8+numbers of E.coli control was significantly decreased and the ratio of CD3+CD4+and CD3+CD8+increased significantly (p<0.05). The number of NK cells was also reduced significantly (p<0.05) by E.coli infection. The number of peripheral blood CD3+CD8+cells of 2 mg/kg of LFP-20, LF-6, and 8 mg/kg of the LFP-20, LF-2 groups were significantly higher than that of E.coli control (p<0.05), and 8 mg/kg LF-2 increased the proportion of peripheral blood NK cells significantly (p<0.05). The LPS and ConA stimulation index to mouse spleen lymphocytes of E.coli control were significantly higher than that of health control (p<0.05). Six peptides decreased the LPS and ConA stimulation index significantly (p<0.05) compared to E.coli control. The LPS stimulation index to mouse spleen lymphocytes of 2 mg/kg and 8 mg/kg LFP-20 the ConA stimulation index of 2 mg/kg LFP-20 was significantly higher (p<0.05) than E.coli control. Compared with health control, the antibody formation ability of spleen cells in mouse of E.coli control did not influenced significantly, but 2 mg/kg of three antimicrobial peptides and 8 mg/kg LF-2, LF-6 enhanced the antibody formation ability of spleen cells significantly (p<0.05). The gene expression levels of cytokines IL-1, IL-10, TNF-a and chemokine MCP-1, MIP-la of E.coli control were significantly higher than those of health control (p<0.05). LF-2 reduced the gene expression level of MCP-1 and increased the gene expression level of MIP-1α, IL-10 significantly (p<0.05) compared with E.coli control.2 mg/kg LF-6 reduced the MCP-1, MIP-la and IL-10 gene expression levels significantly (p<0.05), and 8 mg/kg LF-6 reduced the MCP-1, MIP-la, IL-1, IL-10 and TNF-a gene expression level significantly (p<0.05) compared with E.coli control.
     5. The recombinant expression of porcine Iactoferricin analog
     The recombinant expression of analog LF-6 in E.coli. The primers were designed according to E.coli codon preference and amino acid sequence of LF-6, then target genes EK-LF-6 and TEV-LF-6 were amplified successfully by overlap PCR. After constructed the target genes into expression vector pET32a, the recombinant E. coli strain BL21 (DE3) pLysS- pET32a- TEV- LF-6 and BL21 (DE3) pLysS- pET32a- EK- LF-6 were obtained. The expression of fusion protein Trx-EK-LF-6 and Trx-TEV-LF-6 were detected through IPTG induction and SDS-PAGE analysis. Expression levels of soluble fusion protein Trx-TEV-LF-6 and Trx-EK-LF-6 were 40.60 mg/L and 42.13 mg/L respectively by proteins determination using Bradford method, gel analysis and calculated. The theory expression levels of LF-6 were 5.59 mg/L and 6.13 mg/L after two fusion proteins cleaved by protease. The two fusion proteins cleaved by TEV and EK after purification. Results showed that the cleavage efficiency of TEV higher than EK. The antimicrobial activies of cleavage products were detected using agar hole diffusion method after freeze-drying of the products. Results showed that cleavage products of TEV had antimicrobial activities against both E.coli ATCC25922 and E.coli K88, but exhibited higher potential to against E.coli K88. These indicated that the Gly residue in the LF-6 N terminal less affected the antimicrobial activity of LF-6 after TEV cleavage
     The recombinant expression of analog LF-6 in P. pastoris. The primers were designed according to yeast codon preference and amino acid sequence of LF-6, then target gene were amplified successfully by overlap PCR. After constructed the target gene into expression vector pPICZaA, recombinant plasmid PICZa-LF-6 were transformed into protease-deficient yeast strain SMD1168. Recombinant strain P.pastoris SMD1168-pPICZaA-LF-6 was obtained. The expression of antimicrobial peptides LF-6 was induced by methanol and the fermentation supernatant were detected. Tricine-SDS-PAGE results showed that the expression level of target peptide LF-6 reached a high level after the recombinant strain induced for 6 days. LF-6 expression level was measured using the concentrated fermentation supernatant by Bradford method, which was 20 mg/L. The expression product exhibited the antimicrobial activities against E.coli K88
     In summary, we obstained the analogs LF-2 and LF-6 with increased antimicrobial activity against gram-negative and gram-positive bacteria through the molecular improvement of LFP-20. The hemolysis rate and cytotoxicity to PBMCs of LF-2 and LF-6 were not enhanced significantly at a certain range of concentration. Compared to template peptide LFP-20, analogs LF-2 and LF-6 showed stronger damage potential on bacterial cytoplasmic membrane and enhanced capacity to resist the infection of mice with E.coli K88 in vivo. LF-2 and LF-6 could also improve the number reduction of Bifidobacterium and Lactobacillus caused by infection. LF-2 and LF-6 were able to regulate the immune functions through changing the thymus index, proportion of B cells in peripheral blood, transformation efficiency of spleen lymphocyte, and control the abnormal changes in immune parameters ofanimal model caused by E.coli infection. In addition, analog LF-6 were expressed successfully using E. coli and P. pastoris expression system. The theory expression levels of LF-6 were 5.59 mg/L and 20mg/L repectively, and products exhibited obvious antibacterial activity against E.coli.
引文
Abiraj, K., Prasad, H. S., Gowda, A. S., and Gowda, D. C. (2004). Design, synthesis and antibacterial activity studies of model peptidess of proline/arginine-rich region in bactenecin7. Protein Pept Lett 11,291-300.
    Aguilera, O., Ostolaza, H., Quiros, L. M., and Fierro, J. F. (1999). Permeabilizing action of an antimicrobial lactoferricin-derived peptide on bacterial and artificial membranes. Febs Letters 462,273-277.
    Alvarez-Bravo, J., Kurata, S., and Natori, S. (1995). Mode of action of an antibacterial peptide, KLKLLLLLKLK-NH2. J Biochem 117,1312-1316.
    Andersen, J. H., Jenssen, H., and Gutteberg, T. J. (2003). Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir. Antiviral Res 58,209-215.
    Andersen, J. H., Jenssen, H., Sandvik, K., and Gutteberg, T. J. (2004). Anti-HSV activity of lactoferrin and lactoferricin is dependent on the presence of heparan sulphate at the cell surface. J Med Virol 74,262-271.
    Andersen, J. H., Osbakk, S. A., Vorland, L. H., Traavik, T., and Gutteberg, T. J. (2001). Lactoferrin and cyclic lactoferricin inhibit the entry of human cytomegalovirus into human fibroblasts. Antiviral Res 51,141-149.
    Ando, S., Mitsuyasu, K., Soeda, Y., Hidaka, M., Ito, Y., Matsubara, K., Shindo, M., Uchida, Y., and Aoyagi, H. (2010). Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 16,171-177.
    Andreu, D., and Rivas, L. (1998). Animal antimicrobial peptides:an overview. Biopolymers 47,415-433.
    Auvynet, C., El Amri, C., Lacombe, C., Bruston, F., Bourdais, J., Nicolas, P., and Rosenstein, Y. (2008). Structural requirements for antimicrobial versus chemoattractant activities for dermaseptin S9. FEBS J 275,4134-4151.
    Auvynet, C., and Rosenstein, Y. (2009). Multifunctional host defense peptides:antimicrobial peptides, the small yet big players in innate and adaptive immunity. FEBS J 276, 6497-6508.
    Azumi, K., Yoshimizu, M., Suzuki, S., Ezura, Y., and Yokosawa, H. (1990). Inhibitory effect of halocyamine, an antimicrobial substance from ascidian hemocytes, on the growth of fish viruses and marine bacteria. Experientia 46,1066-1068.
    Baker, H. M., and Baker, E. N. (2004). Lactoferrin and iron:structural and dynamic aspects of binding and release. Biometals 17,209-216.
    Bals, R., Wang, X., Meegalla, R. L., Wattler, S., Weiner, D. J., Nehls, M. C., and Wilson, J. M. (1999). Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 67,3542-3547.
    Baroni, A., Donnarumma, G., Paoletti, I., Longanesi-Cattani, I., Bifulco, K., Tufano, M. A., and Carriero, M. V. (2009). Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilical vein endothelial cells. Peptides 30, 267-272.
    Barreda, D. R., Hanington, P. C., and Belosevic, M. (2004). Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28, 509-554.
    Bechinger, B. (1997). Structure and functions of channel-forming peptides:magainins. cecropins, melittin and alamethicin. J Membr Biol 156,197-211.
    Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K., and Tomita, M. (1992). Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta 1121,130-136.
    Bellamy, W., Wakabayashi, H., Takase, M., Kawase, K., Shimamura, S., and Tomita, M. (1993). Killing of Candida-Albicans by Lactoferricin-B, a Potent Antimicrobial Peptide Derived from the N-Terminal Region of Bovine Lactoferrin. Med Microbiol Immun 182, 97-105.
    Berkhout, B., van Wamel, J. L. B., Beljaars, L., Meijer, D. K. F., Visser, S., and Floris, R. (2002). Characterization of the anti-HIV effects of native lactoferrin and other milk proteins and protein-derived peptides. Antivir Res 55,341-355.
    Bertevello, P. L., Logullo, A. F., Nonogaki, S., Campos, F. M., Chiferi, V., Alves, C. C., Torrinhas, R. S., Gama-Rodrigues, J. J., and Waitzberg, D. L. (2005). Immunohistochemical assessment of mucosal cytokine profile in acetic acid experimental colitis. Clinics (Sao Paulo) 60,277-286.
    Beutler, B. (2004). Innate immunity:an overview. Mol Immunol 40,845-859.
    Bhunia, A., Mohanram, H., and Bhattacharjya, S. (2009). Lipopolysaccharide bound structures of the active fragments of fowlicidin-1, a cathelicidin family of antimicrobial and antiendotoxic peptide from chicken, determined by transferred nuclear Overhauser effect spectroscopy. Biopolymers 92,9-22.
    Bin-Hafeez, B., Ahmad, I., Haque, R., and Raisuddin, S. (2001). Protective effect of Cassia occidentalis L. on cyclophosphamide-induced suppression of humoral immunity in mice. J Ethnopharmacol 75,13-18.
    Bin-Hafeez, B., Haque, R., Parvez, S., Pandey, S., Sayeed, I., and Raisuddin, S. (2003). Immunomodulatory effects of fenugreek (Trigonella foenum graecum L.) extract in mice. Int Immunopharmacol 3,257-265.
    Biragyn, A., Coscia, M., Nagashima, K., Sanford, M., Young, H. A., and Olkhanud, P. (2008). Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 83,998-1008.
    Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J., and Kwak, L. W. (2002). Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298,1025-1029.
    Bjorstad, A., Askarieh, G., Brown, K. L., Christenson, K., Forsman, H., Onnheim, K., Li, H. N., Teneberg, S., Maier, O., Hoekstra, D., et al. (2009). The host defense peptide LL-37 selectively permeabilizes apoptotic leukocytes. Antimicrob Agents Chemother 53, 1027-1038.
    Blazyk, J., Wiegand, R., Klein, J., Hammer, J., Epand, R. M, Epand, R. F., Maloy, W. L., and Kari, U. P. (2001). A novel linear amphipathic beta-sheet cationic antimicrobial peptide with enhanced selectivity for bacterial lipids. Journal of Biological Chemistry 276, 27899-27906.
    Blondelle, S. E., and Houghten, R. A. (1991). Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry 30,4671-4678.
    Blondelle, S. E., Takahashi, E., Weber, P. A., and Houghten, R. A. (1994). Identification of antimicrobial peptides by using combinatorial libraries made up of unnatural amino acids. Antimicrob Agents Chemother 38,2280-2286.
    Boman, H. G. (1991). Antibacterial Peptides-Key Components Needed in Immunity. Cell 65, 205-207.
    Boman, H. G. (1995). Peptide Antibiotics and Their Role in Innate Immunity. Annual Review of Immunology 13,61-92.
    Boman, H. G. (2003). Antibacterial peptides:basic facts and emerging concepts. J Intern Med 254,197-215.
    Boman, H. G., Nilsson, I., and Rasmuson, B. (1972). Inducible antibacterial defence system in Drosophila. Nature 237,232-235.
    Bowdish, D. M., Davidson, D. J., Speert, D. P., and Hancock, R. E. (2004). The human cationic peptide LL-37 induces activation of the extracellular signal-regulated kinase and p38 kinase pathways in primary human monocytes. J Immunol 172,3758-3765.
    Braff, M. H., Hawkins, M. A., Di Nardo, A., Lopez-Garcia, B., Howell, M. D., Wong, C., Lin, K., Streib, J. E., Dorschner, R., Leung, D. Y. M., and Gallo, R. L. (2005a). Structure-function relationships among human cathelicidin peptides:Dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174, 4271-4278.
    Braff. M. H., Zaiou, M., Fierer, J., Nizet, V., and Gallo, R. L. (2005b). Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens. Infect Immun 73,6771-6781.
    Breukink, E., and de Kruijff, B. (1999). The lantibiotic nisin, a special case or not? Biochim Biophys Acta 1462,223-234.
    Brines, R. D., and Brock, J. H. (1983). The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic digestion. Biochim Biophys Acta 759,229-235.
    Britigan, B. E., Lewis, T. S., Waldschmidt, M., McCormick, M. L., and Krieg, A. M. (2001). Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. J Immunol 167,2921-2928.
    Brock, J. H. (2002). The physiology of lactoferrin. Biochem Cell Biol 80,1-6.
    Brogden, K. A. (2005). Antimicrobial peptides:pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3,238-250.
    Caccavo, D., Pellegrino, N. M., Altamura, M., Rigon, A., Amati, L., Amoroso, A., and Jirillo, E. (2002). Antimicrobial and immunoregulatory functions of lactoferrin and its potential therapeutic application. J Endotoxin Res 8,403-417.
    Chaly, Y. V., Paleolog, E. M., Kolesnikova, T. S., Tikhonov, Ⅱ, Petratchenko, E. V., and Voitenok, N. N. (2000). Neutrophil alpha-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur Cytokine Netw 11,257-266.
    Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E., Odell, E., Evans, R. W., and Siligardi, G. (2004a). Structure and association of human lactoferrin peptides with Escherichia coli lipopolysaccharide. Antimicrob Agents Chemother 48,2190-2198.
    Chapple, D. S., Hussain, R., Joannou, C. L., Hancock, R. E. W., Odell, E., Evans, R. W., and Siligardi, G. (2004b). Structure and association of human lactoferrin peptides with Escherichia coli lipopolysaccharide. Antimicrob Agents Ch 48,2190-2198.
    Chapple, D. S., Mason, D. J., Joannou, C. L., Odell, E. W., Gant, V., and Evans, R. W. (1998). Structure-function relationship of antibacterial synthetic peptides homologous to a helical surface region on human lactoferrin against Escherichia coli serotype O111. Infection and Immunity 66,2434-2440.
    Chen, H. L., Yen, C. C., Lu, C. Y., Yu, C. H., and Chen, C. M. (2006). Synthetic porcine lactoferricin with a 20-residue peptide exhibits antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. J Agric Food Chem 54,3277-3282.
    Chen, T., Tang, L., and Shaw, C. (2003). Identification of three novel Phyllomedusa sauvagei dermaseptins (sVI-sVIII) by cloning from a skin secretion-derived cDNA library. Regul Pept 116,139-146.
    Chen, X., Niyonsaba, F., Ushio, H., Hara, M., Yokoi, H., Matsumoto, K., Saito, H., Nagaoka, I., Ikeda, S., Okumura, K., and Ogawa, H. (2007). Antimicrobial peptides human beta-defensin (hBD)-3 and hBD-4 activate mast cells and increase skin vascular permeability. Eur J Immunol 37,434-444.
    Cherkasov, A., Hilpert, K., Jenssen, H., Fjell, C. D., Waldbrook, M., Mullaly, S. C., Volkmer, R., and Hancock, R. E. W. (2009). Use of Artificial Intelligence in the Design of Small Peptide Antibiotics Effective against a Broad Spectrum of Highly Antibiotic-Resistant Superbugs. Acs Chem Biol 4,65-74.
    Cheshenko, N., and Herold, B. C. (2002). Glycoprotein B plays a predominant role in mediating herpes simplex virus type 2 attachment and is required for entry and cell-to-cell spread. J Gen Virol 83,2247-2255.
    Christensen, B., Fink, J., Merrifield, R. B., and Mauzerall, D. (1988). Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A 85,5072-5076.
    Cirioni, O., Giacometti, A., Ghiselli, R., Bergnach, C., Orlando, F., Silvestri, C., Mocchegiani, F., Licci, A., Skerlavaj, B., Rocchi, M., et al. (2006). LL-37 protects rats against lethal sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 50,1672-1679.
    Colgrave, M. L., Kotze, A. C., Huang, Y. H., O'Grady, J., Simonsen, S. M., and Craik, D. J. (2008). Cyclotides:natural, circular plant peptides that possess significant activity against gastrointestinal nematode parasites of sheep. Biochemistry 47,5581-5589.
    Dagan, A., Efron, L., Gaidukov, L., Mor, A., and Ginsburg, H. (2002). In vitro antiplasmodium effects of dermaseptin S4 derivatives. Antimicrob Agents Chemother 46, 1059-1066.
    Daher, K. A., Selsted, M. E., and Lehrer, R. I. (1986). Direct inactivation of viruses by human granulocyte defensins. J Virol 60,1068-1074.
    Davidson, D. J., Currie, A. J., Reid, G. S., Bowdish, D. M., MacDonald, K. L., Ma, R. C. Hancock, R. E., and Speert, D. P. (2004a). The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172,1146-1156.
    Davidson, D. J., Currie, A. J., Reid, G. S., Bowdish, D. M., MacDonald, K. L., Ma, R. C. Hancock, R. E., and Speert, D. P. (2004b). The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172,1146-1156.
    Diamond, G. (2001). Natures antibiotics:the potential of antimicrobial peptides as new drugs. Biologist (London) 48,209-212.
    Dorschner. R. A., Lopez-Garcia, B., Peschel, A., Kraus, D., Morikawa, K., Nizet. V., and Gallo, R. L. (2006). The mammalian ionic environment dictates microbial susceptibility to antimicrobial defense peptides. Faseb J 20,35-42.
    Duncker, S. C., Lorentz, A., Schroeder, B., Breves, G., and Bischoff, S. C. (2006). Effect of orally administered probiotic E. coli strain Nissle 1917 on intestinal mucosal immune cells of healthy young pigs. Vet Immunol Immunopathol 111,239-250.
    Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J., and Rebuffat, S. (2007). Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat Prod Rep 24,708-734.
    Eisenberg, D., Weiss, R. M., and Terwilliger, T. C. (1982a). The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299,371-374.
    Eisenberg, D., Weiss, R. M., Terwilliger, T. C., and Wilcox, W. (1982b). Hydrophobic Moments and Protein-Structure. Faraday Symp Chem S,109-120.
    Fehlbaum, P., Bulet, P., Chernysh, S., Briand, J. P., Roussel, J. P., Letellier, L., Hetru, C., and Hoffmann, J. A. (1996). Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci U S A 93,1221-1225.
    Fernandes, J. M., and Smith, V. J. (2002). A novel antimicrobial function for a ribosomal peptide from rainbow trout skin. Biochem Biophys Res Commun 296,167-171.
    Field, D., Connor, P. M., Cotter, P. D., Hill, C., and Ross, R. P. (2008). The generation of nisin variants with enhanced activity against specific gram-positive pathogens. Mol Microbiol 69,218-230.
    Finlay, B. B., and Hancock, R. E. (2004). Can innate immunity be enhanced to treat microbial infections? Nat Rev Microbiol 2,497-504.
    Fjell, C. D., Jenssen, H., Hilpert, K., Cheung, W. A., Pante, N., Hancock, R. E., and Cherkasov, A. (2009). Identification of novel antibacterial peptides by chemoinformatics and machine learning. J Med Chem 52,2006-2015.
    Fuchs, S. M., and Raines, R. T. (2004). Pathway for polyarginine entry into mammalian cells. Biochemistry 43,2438-2444.
    Gabay, J. E. (1994). Ubiquitous natural antibiotics. Science 264,373-374.
    Ganz, T. (2003). Defensins:antimicrobial peptides of innate immunity. Nat Rev Immunol 3, 710-720.
    Ganz, T. (2005). Defensins and other antimicrobial peptides:a historical perspective and an update. Comb Chem High Throughput Screen 8,209-217.
    Ganz, T., and Lehrer, R. I. (1994). Defensins. Curr Opin Immunol 6,584-589.
    Gazit, E., Boman, A., Boman, H. G., and Shai, Y. (1995). Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34, 11479-11488.
    Giacometti, A., Cirioni, O., Ancarani, F., Del Prete, M. S., Fortuna, M., and Scalise, G. (1999). In vitro activities of polycationic peptides alone and in combination with clinically used antimicrobial agents against Rhodococcus equi. Antimicrob Agents Chemother 43, 2093-2096.
    Giacometti, A., Cirioni, O., Del Prete, M. S., Paggi, A. M., D'Errico, M. M., and Scalise, G. (2000a). Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides 21,1155-1160.
    Giacometti, A., Cirioni, O., Ghiselli, R., Goffi, L., Mocchegiani, F., Riva, A., Scalise, G., and Saba, V. (2000b). Polycationic peptides as prophylactic agents against methicillin-susceptible or methicillin-resistant Staphylococcus epidermidis vascular graft infection. Antimicrob Agents Chemother 44,3306-3309.
    Giacometti, A., Cirioni, O., Kamysz, W., D'Amato, G, Silvestri, C., Del Prete, M. S., Lukasiak, J., and Scalise, G. (2003). Comparative activities of cecropin A, melittin, and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii. Peptides 24,1315-1318.
    Giangaspero, A., Sandri, L., and Tossi, A. (2001). Amphipathic alpha helical antimicrobial peptides. Eur J Biochem 268,5589-5600.
    Gifford, J. L., Hunter, H. N., and Vogel, H. J. (2005). Lactoferricin:a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cellular and Molecular Life Sciences 62,2588-2598.
    Gluhovschi. C., Gluhovschi, G., Herman, D., Potencz, E., Trandafirescu, V., Schiller, A., Petrica, L., Velciov, S., Bozdog, G., Bob, F., et al. (2007). The effect of steroids on lymphocyte profile in primary chronic glomerulonephritis. Empirical or tailored therapy? Int Immunopharmacol 7,1265-1270.
    Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M., and Wilson. J. M. (1997). Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88,553-560.
    Gordon, Y. J., Huang, L. C., Romanowski, E. G., Yates, K. A., Proske, R. J., and McDermott, A. M. (2005). Human cathelicidin (LL-37), a multifunctional peptide, is expressed by ocular surface epithelia and has potent antibacterial and antiviral activity. Curr Eye Res 30,385-394.
    Hale, J. D., and Hancock, R. E. (2007). Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther 5,951-959.
    Han, S. B., Kim, Y.H., Lee, C. W., Park, S. M., Lee, H. Y., Ahn, K. S., Kim, I. H., and Kim, H. M. (1998). Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai. Immunopharmacology 40,39-48.
    Hancock, R. E., and Chapple, D. S. (1999). Peptide antibiotics. Antimicrob Agents Chemother 43,1317-1323.
    Hancock, R. E., and Diamond, G. (2000). The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8,402-410.
    Hancock, R. E., and Scott, M. G. (2000). The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97,8856-8861.
    Hancock, R. E. W., and Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24,1551-1557.
    Hara, S., and Yamakawa, M. (1995). A novel antibacterial peptide family isolated from the silkworm, Bombyx mori. Biochem J 310 (Pt 2),651-656.
    Hara, T., Kodama, H., Kondo, M., Wakamatsu, K., Takeda, A., Tachi, T., and Matsuzaki, K. (2001a). Effects of peptide dimerization on pore formation:Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers 58,437-446.
    Hara, T., Mitani, Y, Tanaka, K., Uematsu, N., Takakura, A., Tachi, T., Kodama, H., Kondo, M., Mori, H., Otaka, A., et al. (2001b). Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers:a cross-linking study. Biochemistry 40, 12395-12399.
    Haug, B. E., Strom, M. B., and Svendsen, J. S. (2007). The medicinal chemistry of short lactoferricin-based antibacterial peptides. Curr Med Chem 14,1-18.
    Haukland, H. H., Ulvatne, H., Sandvik, K., and Vorland, L. H. (2001). The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm. FEBS Lett 508,389-393.
    Haversen, L. A., Engberg, I., Baltzer, L., Dolphin, G, Hanson, L. A., and Mattsby-Baltzer, I. (2000). Human lactoferrin and peptides derived from a surface-exposed helical region reduce experimental Escherichia coli urinary tract infection in mice. Infect Immun 68, 5816-5823.
    Heilborn, J. D., Nilsson, M. F., Kratz, G., Weber, G., Sorensen, O., Borregaard, N., and Stahle-Backdahl, M. (2003). The cathelicidin anti-microbial peptide LL-37 is involved in re-epithelialization of human skin wounds and is lacking in chronic ulcer epithelium. J Invest Dermatol 120,379-389.
    Herasimenka, Y., Benincasa, M., Mattiuzzo, M., Cescutti, P., Gennaro, R., and Rizzo, R. (2005). Interaction of antimicrobial peptides with bacterial polysaccharides from lung pathogens. Peptides 26,1127-1132.
    Hiemstra, P. S., Fernie-King, B. A., McMichael, J., Lachmann, P. J., and Sallenave, J. M. (2004). Antimicrobial peptides:mediators of innate immunity as templates for the development of novel anti-infective and immune therapeutics. Curr Pharm Des 10, 2891-2905.
    Hilpert, K., Elliott, M., Jenssen, H., Kindrachuk, J., Fjell, C. D., Korner, J., Winkler, D. F., Weaver, L. L., Henklein, P., Ulrich, A. S., et al. (2009). Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16,58-69.
    Hilpert, K., Elliott, M. R., Volkmer-Engert, R., Henklein, P., Donini, O., Zhou, Q., Winkler, D. F., and Hancock, R. E. (2006). Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13,1101-1107.
    Hsu, S. T., Breukink, E., de Kruijff, B., Kaptein, R., Bonvin, A. M., and van Nuland, N. A. (2002). Mapping the targeted membrane pore formation mechanism by solution NMR: the nisin Z and lipid Ⅱ interaction in SDS micelles. Biochemistry 41,7670-7676.
    Hung, S. L., Srinivasan, S., Friedman, H. M., Eisenberg, R. J., and Cohen, G. H. (1992). Structural basis of C3b binding by glycoprotein C of herpes simplex virus. J Virol 66, 4013-4027.
    Hunter, H. N., Demcoe, A. R., Jenssen, H., Gutteberg, T. J., and Vogel, H. J. (2005). Human lactoferricin is partially folded in aqueous solution and is better stabilized in a membrane mimetic solvent. Antimicrob Agents Ch 49,3387-3395.
    Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H., and Vogel, H. J. (1998a). Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37,4288-4298.
    Hwang, P. M., Zhou, N., Shan, X., Arrowsmith, C. H., and Vogel, H. J. (1998b). Three-dimensional solution structure of lactoferricin B. an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37,4288-4298.
    Ikeda, M., Nozaki, A., Sugiyama, K., Tanaka, T., Naganuma, A., Tanaka. K., Sekihara, H., Shimotohno, K., Saito, M., and Kato, N. (2000). Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res 66, 51-63.
    Isamida, T., Tanaka, T., Omata, Y., Yamauchi, K., Shimazaki, K., and Saito, A. (1998). Protective effect of lactoferricin against Toxoplasma gondii infection in mice. Journal of Veterinary Medical Science 60,241-244.
    Javadpour, M. M., Juban, M. M., Lo, W. C., Bishop, S. M., Alberty, J. B., Cowell, S. M., Becker, C. L., and McLaughlin, M. L. (1996). De novo antimicrobial peptides with low mammalian cell toxicity. J Med Chem 39,3107-3113.
    Jenssen, H. (2005). Anti herpes simplex virus activity of lactoferrin/lactoferricin--an example of antiviral activity of antimicrobial protein/peptide. Cell Mol Life Sci 62, 3002-3013.
    Jenssen, H., Andersen, J. H., Mantzilas, D., and Gutteberg, T. J. (2004a). A wide range of medium-sized, highly cationic, alpha-helical peptides show antiviral activity against herpes simplex virus. Antiviral Res 64,119-126.
    Jenssen, H., Andersen, J. H., Uhlin-Hansen, L., Gutteberg, T. J., and Rekdal, O. (2004b). Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Res 61,101-109.
    Jenssen, H., Hamill, P., and Hancock, R. E. (2006). Peptide antimicrobial agents. Clin Microbiol Rev 19,491-511.
    Jones, E. M., Smart, A., Bloomberg, G, Burgess, L., and Millar, M. R. (1994). Lactoferricin, a New Antimicrobial Peptide. Journal of Applied Bacteriology 77,208-214.
    Juvvadi, P., Vunnam, S., Merrifield, E. L., Boman, H. G., and Merrifield, R. B. (1996). Hydrophobic effects on antibacterial and channel-forming properties of cecropin A-melittin hybrids. J Pept Sci 2,223-232.
    Kagan, B. L., Selsted, M. E., Ganz, T., and Lehrer, R. I. (1990). Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci U S A 87,210-214.
    Kamysz, W., Okroj, M., and Lukasiak, J. (2003). Novel properties of antimicrobial peptides. Acta Biochim Pol 50,461-469.
    Kavanagh, K., and Dowd, S. (2004). Histatins:antimicrobial peptides with therapeutic potential. J Pharm Pharmacol 56,285-289.
    Kim, H. H., Lee, W. S., Yang, J. M., and Shin, S. (2003). Basic peptide system for efficient delivery of foreign. Bba-Mol Cell Res 1640,129-136.
    Kim, H. M., Oh, G. T., Hong, D. H., Hyun, B. H., Cha, Y. N., Yoo, B. S., and Han, S. B. (1996). Facilitation of apoptosis by autologous serum and related immunosuppression in the splenocyte culture. Immunopharmacology 34,39-50.
    Kim, J. E., Kim, B. J., Jeong, M. S., Seo, S. J., Kim, M. N., Hong, C. K., and Ro, B. I. (2005). Expression and modulation of LL-37 in normal human keratinocytes, HaCaT cells, and inflammatory skin diseases. J Korean Med Sci 20,649-654.
    Koczulla, R., von Degenfeld, G., Kupatt, C., Krotz, F., Zahler, S., Gloe, T., Issbrucker, K. Unterberger, P., Zaiou, M., Lebherz, C., et al. (2003). An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111,1665-1672.
    Kruisbeek, A. M. (1976). Age-related changes in ConA- and LPS-induced lymphocyte transformation. I. Effect of culture conditions on mitogen responses of blood and spleen lymphocytes from young and aged rats. Mech Ageing Dev 5,125-138.
    Kullberg, B. J., Netea, M. G, Vonk, A. G, and van der Meer, J. W. (1999). Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. FEMS Immunol Med Microbiol 26,299-307.
    KuoLee, R., Zhao, X., Austin, J., Harris, G., Conlan, J. W., and Chen, W. (2007). Mouse model of oral infection with virulent type A Francisella tularensis. Infect Immun 75, 1651-1660.
    Kyte, J., and Doolittle, R. F. (1982). A Simple Method for Displaying the Hydropathic Character of a Protein. Journal of Molecular Biology 157,105-132.
    Ladokhin, A. S., Selsted, M. E., and White, S. H. (1997). Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers:pore formation by melittin. Biophys J 72, 1762-1766.
    Lai, Y. P., and Gallo, R. L. (2009). AMPed up immunity:how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30,131-141.
    Latal, A., Degovics, G., Epand, R. F., Epand, R. M., and Lohner, K. (1997). Structural aspects of the interaction of peptidyl-glycylleucine-carboxyamide, a highly potent antimicrobial peptide from frog skin, with lipids. Eur J Biochem 248,938-946.
    Lea, R. G., McIntyre, S., Baird, J. D., and Clark, D. A. (1998). Tumor necrosis factor-alpha mRNA-positive cells in spontaneous resorption in rodents. Am J Reprod Immunol 39, 50-57.
    Leem, J. Y., Nishimura, C., Kurata, S., Shimada, I., Kobayashi, A., and Natori, S. (1996). Purification and characterization of N-beta- alanyl-5- S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). J Biol Chem 271,13573-13577.
    Lehrer, R. I. (2007). Multispecific myeloid defensins. Curr Opin Hematol 14,16-21.
    Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., and Selsted, M. E. (1989). Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84,553-561.
    Lehrer, R. I., and Ganz, T. (2002). Cathelicidins:a family of endogenous antimicrobial peptides. Curr Opin Hematol 9,18-22.
    Lehrer, R. I., Selsted, M. E., Szklarek, D., and Fleischmann, J. (1983). Antibacterial activity of microbicidal cationic proteins 1 and 2, natural peptide antibiotics of rabbit lung macrophages. Infect Immun 42,10-14.
    Leon-Sicairos, N., Reyes-Lopez, M., Ordaz-Pichardo, C., and de la Garza, M. (2006). Microbicidal action of lactoferrin and lactoferricin and their synergistic effect with metronidazole in Entamoeba histolytica. Biochem Cell Biol 84,327-336.
    Leprovost, F., Nocart, M., Guerin, G., and Martin, P. (1994). Characterization of the Goat Lactoferrin Cdna-Assignment of the Relevant Locus to Bovine U12 Synteny Group. Biochem Bioph Res Co 203,1324-1332.
    Leung, K. P., Abercrombie, J. J., Campbell, T. M., Gilmore, K. D., Bell, C. A., Faraj, J. A., and DeLuca, P. P. (2009). Antimicrobial peptides for plaque control. Adv Dent Res 21, 57-62.
    Liepke, C., Adermann, K., Raida, M., Magert, H. J., Forssmann, W. G., and Zucht, H. D. (2002). Human milk provides peptides highly stimulating the growth of bifidobacteria. European Journal of Biochemistry 269,712-718.
    Lupetti, A., Paulusma-Annema, A., Welling, M. M., Senesi, S., van Dissel, J. T., and Nibbering, P. H. (2000). Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother 44,3257-3263.
    Lydon, J. P., O'Malley, B. R., Saucedo, O., Lee, T., Headon, D. R., and Conneely, O. M. (1992). Nucleotide and primary amino acid sequence of porcine lactoferrin. Biochim Biophys Acta 1132,97-99.
    Lynn, D. J., and Bradley, D. G. (2007). Discovery of alpha-defensins in basal mammals. Dev Comp Immunol 31,963-967.
    Macdonald, T. T., and Monteleone, G. (2005). Immunity, inflammation, and allergy in the gut. Science 307,1920-1925.
    Mann, D. M., Romm, E., and Migliorini, M. (1994). Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J Biol Chem 269,23661-23667.
    Marcos, J. F., Beachy, R. N., Houghten, R. A., Blondelle, S. E., and Perez-Paya, E. (1995). Inhibition of a plant virus infection by analogs of melittin. Proc Natl Acad Sci U S A 92, 12466-12469.
    Marcos, J. F., Munoz, A., Perez-Paya, E., Misra, S., and Lopez-Garcia, B. (2008). Identification and rational design of novel antimicrobial peptides for plant protection. Annu Rev Phytopathol 46,273-301.
    Martin, P., and Leibovich, S. J. (2005). Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol 15,599-607.
    Masuda, M., Nakashima, H., Ueda, T., Naba, H., Ikoma, R., Otaka, A., Terakawa, Y., Tamamura, H., Ibuka, T., Murakami, T., and et al. (1992). A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin Ⅱ). Biochem Biophys Res Commun 189, 845-850.
    Matsuzaki. K., Mitani, Y. Akada, K. Y., Murase, O., Yoneyama, S., Zasloff, M., and Miyajima, K. (1998a). Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa. Biochemistry 37,15144-15153.
    Matsuzaki, K., Sugishita, K., Harada, M., Fujii, N., and Miyajima, K. (1997). Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Biochim Biophys Acta 1327,119-130.
    Matsuzaki, K., Sugishita, K., Ishibe, N., Ueha, M., Nakata, S., Miyajima, K., and Epand, R. M. (1998b). Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37,11856-11863.
    Matsuzaki, K., Sugishita, K., and Miyajima, K. (1999). Interactions of an antimicrobial peptide, magainin 2, with lipopolysaccharide-containing liposomes as a model for outer membranes of gram-negative bacteria. FEBS Lett 449,221-224.
    McCann. K. B., Lee, A., Wan, J., Roginski, H., and Coventry, M. J. (2003). The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J Appl Microbiol 95,1026-1033.
    McPhee, J. B., Scott, M. G., and Hancock, R. E. (2005). Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb Chem High Throughput Screen 8, 257-272.
    Miller, K. (1983). The stimulation of human B and T lymphocytes by various lectins. Immunobiology 165,132-146.
    Molhoek, E. M., den Hertog, A. L., de Vries, A. M., Nazmi, K., Veerman, E. C., Hartgers, F. C., Yazdanbakhsh, M., Bikker, F. J., and van der Kleij, D. (2009). Structure-function relationship of the human antimicrobial peptide LL-37 and LL-37 fragments in the modulation of TLR responses. Biol Chem 390,295-303.
    Mookherjee, N., Brown, K. L., Bowdish, D. M., Doria, S., Falsafi, R., Hokamp, K., Roche, F. M., Mu, R., Doho, G. H., Pistolic, J., et al. (2006). Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J Immunol 776,2455-2464.
    Moore, A. J., Devine, D. A., and Bibby, M. C. (1994). Preliminary experimental anticancer activity of cecropins. Pept Res 7,265-269.
    Moser, C., Weiner, D. J., Lysenko, E., Bals, R., Weiser, J. N., and Wilson, J. M. (2002). beta-Defensin 1 contributes to pulmonary innate immunity in mice. Infect Immun 70, 3068-3072.
    Mullaly, S. C., and Kubes, P. (2006). The role of TLR2 in vivo following challenge with Staphylococcus aureus and prototypic ligands. J Immunol 177,8154-8163.
    Murakami, M., Lopez-Garcia, B., Braff, M., Dorschner, R. A., and Gallo, R. L. (2004). Postsecretory processing generates multiple cathelicidins for enhanced topical antimicrobial defense. J Immunol 172,3070-3077.
    Mygind, P. H., Fischer, R. L., Schnorr, K. M., Hansen, M. T., Sonksen, C. P., Ludvigsen, S., Raventos, D., Buskov, S., Christensen, B., De Maria, L., et al. (2005). Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975-980.
    Naidu, S. S., Erdei, J., Czirok, E., Kalfas, S., Gado, I., Thoren, A., Forsgren, A., and Naidu, A. S. (1991). Specific Binding of Lactoferin to Escherichia-Coli Isolated from Human Intestinal Infections. Apmis 99,1142-1150.
    Nes, I. F., Diep, D. B., and Holo, H. (2007). Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189,1189-1198.
    Niyonsaba, F., Someya, A., Hirata, M., Ogawa, H., and Nagaoka, I. (2001). Evaluation of the effects of peptide antibiotics human beta-defensins-1/-2 and LL-37 on histamine release and prostaglandin D(2) production from mast cells. Eur J Immunol 31,1066-1075.
    Nizet, V., Ohtake, T., Lauth, X., Trowbridge, J., Rudisill, J., Dorschner, R. A., Pestonjamasp, V., Piraino, J., Huttner, K., and Gallo, R. L. (2001). Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414,454-457.
    Odell, E. W., Sarra, R., Foxworthy, M., Chapple, D. S., and Evans, R. W. (1996). Antibacterial activity of peptides homologous to a loop region in human lactoferrin. Febs Letters 382,175-178.
    Ohsaki, Y., Gazdar, A. F., Chen, H. C., and Johnson, B. E. (1992). Antitumor activity of magainin analogues against human lung cancer cell lines. Cancer Res 52,3534-3538.
    Okumura, M., Fujii, Y., Inada, K., Nakahara, K., and Matsuda, H. (1993). Both CD45RA+ and CD45RA- subpopulations of CD8+ T cells contain cells with high levels of lymphocyte function-associated antigen-1 expression, a phenotype of primed T cells. J Immunol 150,429-437.
    Omata, Y., Satake, M., Maeda, R., Saito, A., Shimazaki, K., Yamauchi, K., Uzuka, Y., Tanabe, S., Sarashina, T., and Mikami, T. (2001). Reduction of the infectivity of Toxoplasma gondii and Eimeria stiedai sporozoites by treatment with bovine lactoferricin. J Vet Med Sci 63,187-190.
    Oren, Z., Ramesh, J., Avrahami, D., Suryaprakash, N., Shai, Y., and Jelinek, R. (2002). Structures and mode of membrane interaction of a short alpha helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. Eur J Biochem 269,3869-3880.
    Oren, Z., and Shai, Y. (1998). Mode of action of linear amphipathic alpha-helical antimicrobial peptides. Biopolymers 47,451-463.
    Orsi, N. (2004). The antimicrobial activity of lactoferrin:Current status and perspectives. Biometals 17,189-196.
    Otte, J. M., Werner, I., Brand, S., Chromik, A. M., Schmitz, F., Kleine, M., and Schmidt, W. E. (2008). Human beta defensin 2 promotes intestinal wound healing in vitro. J Cell Biochem 104,2286-2297.
    Ourth, D. D., and Renis, H. E. (1993). Antiviral melanization reaction of Heliothis virescens hemolymph against DNA and RNA viruses in vitro. Comp Biochem Physiol B 105, 719-723.
    Park, H. J., Cho, D. H., Kim, H. J., Lee, J. Y., Cho, B. K., Bang, S. I., Song, S. Y., Yamasaki, K., Di Nardo. A., and Gallo, R. L. (2009). Collagen synthesis is suppressed in dermal fibroblasts by the human antimicrobial peptide LL-37. J Invest Dermatol 129,843-850.
    Park, Y. Lee, D. G. Jang, S. H., Woo, E. R., Jeong, H. G, Choi, C. H., and Hahm, K. S. (2003). A Leu-Lys-rich antimicrobial peptide:activity and mechanism. Biochim Biophys Acta 1645,172-182.
    Pathak, N., Salas-Auvert, R., Ruche, G., Janna, M. H., McCarthy, D., and Harrison, R. G. (1995). Comparison of the effects of hydrophobicity, amphiphilicity, and alpha-helicity on the activities of antimicrobial peptides. Proteins 22,182-186.
    Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V., and Hancock, R. E. (2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 46,605-614.
    Penco, S., Scarfi, S., Giovine, M., Damonte, G., Millo, E., Villaggio, B., Passalacqua, M., Pozzolini, M., Garre, C., and Benatti, U. (2001). Identification of an import signal for, and the nuclear localization of, human lactoferrin. Biotechnol Appl Biochem 34,151-159.
    Pentecost, B. T., and Teng. C. T. (1987). Lactotransferrin is the major estrogen inducible protein of mouse uterine secretions. J Biol Chem 262,10134-10139.
    Peschel, A., Jack, R. W., Otto, M., Collins, L. V., Staubitz, P., Nicholson, G., Kalbacher, H., Nieuwenhuizen, W. F., Jung, G., Tarkowski, A., et al. (2001). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine. J Exp Med 193, 1067-1076.
    Pierce, A., Colavizza, D., Benaissa, M., Maes, P., Tartar, A., Montreuil, J., and Spik, G (1991). Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem 196, 177-184.
    Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., and Shai, Y. (1992). Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Giochemistry 31,12416-12423.
    Powers, J. P., and Hancock, R. E. (2003a). The relationship between peptide structure and antibacterial activity. Peptides 24,1681-1691.
    Powers, J. P., Rozek, A., and Hancock, R. E. (2004). Structure-activity relationships for the beta-hairpin cationic antimicrobial peptide polyphemusin I. Biochim Biophys Acta 1698, 239-250.
    Powers, J. P. S., and Hancock, R. E. W. (2003b). The relationship between peptide structure and antibacterial activity. Peptides 24,1681-1691.
    Prohaszka, Z., Nemet, K., Csermely, P., Hudecz, F., Mezo, G, and Fust, G (1997). Defensins purified from human granulocytes bind Clq and activate the classical complement pathway like the transmembrane glycoprotein gp41 of HIV-1. Mol Immunol 34,809-816.
    Reichhart, J. M., Meister, M., Dimarcq, J. L., Zachary, D., Hoffmann, D., Ruiz, C., Richards, G., and Hoffmann, J. A. (1992). Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11,1469-1477.
    Rice, P., Longden, I., and Bleasby, A. (2000). EMBOSS:the European Molecular Biology Open Software Suite. Trends Genet 16,276-277.
    Richards, S. J., Norfolk, D. R., Swirsky, D. M., and Hillmen, P. (1998). Lymphocyte subset analysis and glycosylphosphatidylinositol phenotype in patients with paroxysmal nocturnal hemoglobinuria. Blood 92,1799-1806.
    Rosenfeld, Y., Papo, N., and Shai, Y. (2006). Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem 281,1636-1643.
    Roy, A., Kucukural, A., and Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5,725-738.
    Saido-Sakanaka, H., Ishibashi, J., Momotani, E., and Yamakawa, M. (2005). Protective effects of synthetic antibacterial oligopeptides based on the insect defensins on Methicillin-resistant Staphylococcus aureus in mice. Dev Comp Immunol 29,469-477.
    Samuelsen, O., Haukland, H. H., Ulvatne, H., and Vorland, L. H. (2004). Anti-complement effects of lactoferrin-derived peptides. FEMS Immunol Med Microbiol 41,141-148.
    Sang, Y., and Blecha, F. (2008). Antimicrobial peptides and bacteriocins:alternatives to traditional antibiotics. Anim Health Res Rev 9,227-235.
    Sawyer, J. R., and Blattner, F. R. (1991). Rapid detection of antigen binding by antibody fragments expressed in the periplasm of Escherichia coli. Protein Eng 4,947-953.
    Schibli, D. J., Epand, R. F., Vogel, H. J., and Epand, R. M. (2002). Tryptophan-rich antimicrobial peptides:comparative properties and membrane interactions. Biochem Cell Biol 80,667-677.
    Schibli, D. J., Hwang, P. M., and Vogel, H. J. (1999). The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles. FEBS Lett 446, 213-217.
    Schmidtchen, A., Pasupuleti, M., Morgelin, M., Davoudi, M., Alenfall, J., Chalupka, A., and Malmsten, M. (2009). Boosting antimicrobial peptides by hydrophobic oligopeptide end tags. J Biol Chem 284,17584-17594.
    Scocchi, M., Zelezetsky, I., Benincasa, M., Gennaro, R., Mazzoli, A., and Tossi, A. (2005). Structural aspects and biological properties of the cathelicidin PMAP-36. FEBS J 272, 4398-4406.
    Scott, M. G., Dullaghan, E., Mookherjee, N., Glavas, N., Waldbrook, M., Thompson, A. Wang, A. K., Lee, K., Doria, S., Hamill, P., et al. (2007). An anti-infective peptide that selectively modulates the innate immune response. Nat Biotechnol 25,465-472.
    Scott, M. G., Yan, H., and Hancock, R. E. (1999). Biological properties of structurally related alpha-helical cationic antimicrobial peptides. Infect Immun 67,2005-2009.
    Scott, R. W., DeGrado, W. F., and Tew, G. N. (2008). De novo designed synthetic mimics of antimicrobial peptides. Curr Opin Biotechnol 19,620-627.
    Selsted, M. E., Brown, D. M., DeLange, R. J., and Lehrer, R. I. (1983). Primary structures of MCP-1 and MCP-2, natural peptide antibiotics of rabbit lung macrophages. J Biol Chem 258,14485-14489.
    Selsted, M. E., and Ouellette, A. J. (2005). Mammalian defensins in the antimicrobial immune response. Nat Immunol 6,551-557.
    Shai, Y. (1995). Molecular Recognition between Membrane-Spanning Polypeptides. Trends in Biochemical Sciences 20,460-464.
    Shai, Y. (2002). From innate immunity to de-novo designed antimicrobial peptides. Curr Pharm Des 8,715-725.
    Shai, Y., and Oren, Z. (2001). From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22,1629-1641.
    Shieh, M. T., WuDunn, D., Montgomery, R. I., Esko, J. D., and Spear, P. G. (1992). Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J Cell Biol 116,1273-1281.
    Shimazaki, K., Tazume, T., Uji, K., Tanaka, M., Kumura, H., Mikawa, K., and Shimo-Oka, T. (1998). Properties of a heparin-binding peptide derived from bovine lactoferrin. J Dairy Sci 81,2841-2849.
    Shin, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., Tomita, M., Otsuka, Y., and Yamazaki, S. (1998). Antibacterial activity of bovine lactoferrin and its peptides against enterohaemorrhagic Escherichia coli O157:H7. Lett Appl Microbiol 26,407-411.
    Shinoda, I., Takase, M., Fukuwatari, Y., Shimamura, S., Koller, M., and Konig, W. (1996). Effects of lactoferrin and lactoferricin on the release of interleukin 8 from human polymorphonuclear leukocytes. Biosci Biotechnol Biochem 60,521-523.
    Silvestro, L., Weiser, J. N., and Axelsen, P. H. (2000). Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Antimicrob Agents Chemother 44,602-607.
    Simpson, M. A., and Gozzo, J. J. (1978). Spectrophotometric determination of lymphocyte mediated sheep red blood cell hemolysis in vitro. J Immunol Methods 21,159-165.
    Skerlavaj, B., Romeo, D., and Gennaro, R. (1990). Rapid membrane permeabilization and inhibition of vital functions of gram-negative bacteria by bactenecins. Infect Immun 58, 3724-3730.
    Sorensen, O. E., Cowland, J. B., Theilgaard-Monch, K., Liu, L., Ganz, T., and Borregaard, N. (2003). Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170,5583-5589.
    Sorensen, O. E., Thapa, D. R., Roupe, K. M., Valore, E. V., Sjobring, U., Roberts, A. A., Schmidtchen, A., and Ganz, T. (2006). Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116,1878-1885.
    Specian, R. D., and Oliver, M. G. (1991). Functional biology of intestinal goblet cells. Am J Physiol 260, C183-193.
    Strom, M. B., Rekdal. O., and Svendsen, J. S. (2000). Antibacterial activity of 15-residue lactoferricin derivatives. J Pept Res 56,265-274.
    Strom, M. B., Rekdal, O., and Svendsen, J. S. (2002). The effects of charge and Iipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin. J Pept Sci 8,36-43.
    Subbalakshmi, C., Krishnakumari, V, Nagaraj, R., and Sitaram, N. (1996). Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin. FEBS Lett 395,48-52.
    Tian, Z. G., Dong, T. T., Teng, D., Yang, Y. L., and Wang, J. H. (2009). Design and characterization of novel hybrid peptides from LFB15(W4,10), HP(2-20), and cecropin A based on structure parameters by computer-aided method. Appl Microbiol Biotechnol 82, 1097-1103.
    Tjabringa, G. S., Aarbiou, J., Ninaber, D. K., Drijfhout, J. W., Sorensen, O. E., Borregaard, N., Rabe, K. F., and Hiemstra, P. S. (2003). The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171,6690-6696.
    Tokumaru, S., Sayama, K., Shirakata, Y., Komatsuzawa, H., Ouhara, K., Hanakawa, Y., Yahata, Y., Dai, X., Tohyama, M., Nagai, H., et al. (2005). Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175,4662-4668.
    Tomita, M., Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., and Kawase, K. (1991). Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74,4137-4142.
    Trybala, E., Bergstrom, T., Svennerholm, B., Jeansson, S., Glorioso, J. C., and Olofsson, S. (1994). Localization of a functional site on herpes simplex virus type 1 glycoprotein C involved in binding to cell surface heparan sulphate. J Gen Virol 75 (Pt 4),743-752.
    Trybala, E., Liljeqvist, J. A., Svennerholm, B., and Bergstrom, T. (2000). Herpes simplex virus types 1 and 2 differ in their interaction with heparan sulfate. J Virol 74,9106-9114.
    Trybala, E., Roth, A., Johansson, M., Liljeqvist, J. A., Rekabdar, E., Larm, O., and Bergstrom, T. (2002). Glycosaminoglycan-binding ability is a feature of wild-type strains of herpes simplex virus type 1. Virology 302,413-419.
    Tsuji, M., Takema, M., Miwa, H., Shimada, J., and Kuwahara, S. (2003). In vivo antibacterial activity of S-3578, a new broad-spectrum cephalosporin:Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa experimental infection models. Antimicrob Agents Ch 47,2507-2512.
    Ueta, E., Tanida, T., and Osaki, T. (2001). A novel bovine lactoferrin peptide, FKCRRWQWRM, suppresses Candida cell growth and activates neutrophils. J Pept Res 57,240-249.
    Varoga, D., Pufe, T., Harder, J., Schroder, J. M., Mentlein, R., Meyer-Hoffert, U., Goldring, M. B., Tillmann, B., Hassenpflug, J., and Paulsen, F. (2005). Human beta-defensin 3 mediates tissue remodeling processes in articular cartilage by increasing levels of metalloproteinases and reducing levels of their endogenous inhibitors. Arthritis Rheum 52, 1736-1745.
    Viljanen, P., Koski, P., and Vaara, M. (1988). Effect of small cationic leukocyte peptides (defensins) on the permeability barrier of the outer membrane. Infect Immun 56, 2324-2329.
    Vogel, H. J., Schibli, D. J., Jing, W., Lohmeier-Vogel, E. M., Epand, R. F., and Epand, R. M. (2002). Towards a structure-function analysis of bovine lactoferricin and related tryptophan- and arginine-containing peptides. Biochem Cell Biol 80,49-63.
    von Kockritz-Blickwede, M., and Nizet, V. (2009). Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87,775-783.
    Vongsa, R. A., Zimmerman, N. P., and Dwinell, M. B. (2009). CCR6 regulation of the actin cytoskeleton orchestrates human beta defensin-2- and CCL20-mediated restitution of colonic epithelial cells. J Biol Chem 284,10034-10045.
    Vorland, L. H., Ulvatne, H., Andersen, J., Haukland, H., Rekdal, O., Svendsen, J. S., and Gutteberg, T. J. (1998). Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand J Infect Dis 30,513-517.
    Vorland, L. H., Ulvatne, H., Rekdal, O., and Svendsen, J. S. (1999). Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scand J Infect Dis 31,467-473.
    Wachinger, M., Kleinschmidt, A., Winder, D., von Pechmann, N., Ludvigsen, A., Neumann, M., Holle, R., Salmons, B., Erfle, V., and Brack-Werner, R. (1998). Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression. J Gen Virol 79 (Pt 4),731-740.
    Wakabayashi, H., Abe, S., Okutomi, T., Tansho, S., Kawase, K., and Yamaguchi, H. (1996). Cooperative anti-Candida effects of lactoferrin or its peptides in combination with azole antifungal agents. Microbiology and Immunology 40,821-825.
    Wakabayashi, H., Bellamy, W., Takase, M., and Tomita, M. (1992). Inactivation of Listeria-Monocytogenes by Lactoferricin, a Potent Antimicrobial Peptide Derived from Cows Milk. J Food Protect 55,238-240.
    Wakabayashi, H., Matsumoto, H., Hashimoto, K., Teraguchi, S., Takase, M., and Hayasawa, H. (1999). N-Acylated and D enantiomer derivatives of a nonamer core peptide of lactoferricin B showing improved antimicrobial activity. Antimicrob Agents Chemother 43,1267-1269.
    Wakabayashi, H., Takase, M., and Tomita, M. (2003). Lactoferricin derived from milk protein lactoferrin. Curr Pharm Design 9,1277-1287.
    Wakabayashi, H., Teraguchi, S., and Tamura, Y. (2002). Increased Staphylococcus-killing activity of an antimicrobial peptide, lactoferricin B, with minocycline and monoacylglycerol. Biosci Biotechnol Biochem 66,2161-2167.
    Wakabayashi, H., Uchida, K., Yamauchi, K., Teraguchi, S., Hayasawa, H., and Yamaguchi, H. (2000). Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother 46,595-602.
    Wang, F., Fang, X., Xu, Z., Peng, L., and Cen, P. (2004). Fusion expression of human beta-defensin-2 from multiple joined genes in Escherichia coli. Prep Biochem Biotechnol 34.215-225.
    Wang, P., Bang, J. K., Kim, H. J., Kim, J. K., Kim, Y., and Shin, S. Y. (2009). Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 30,2144-2149.
    Wang, Y P., Li, X. Y, Song, C. Q., and Hu, Z. B. (2002). Effect of astragaloside Ⅳ on T, B lymphocyte proliferation and peritoneal macrophage function in mice. Acta Pharmacol Sin 23,263-266.
    Warren, R. B., Chalmers, R. J., Griffiths, C. E., and Menter, A. (2008). Methotrexate for psoriasis in the era of biological therapy. Clin Exp Dermatol 33,551-554.
    Wartha, F., Beiter, K., Normark, S., and Henriques-Normark, B. (2007). Neutrophil extracellular traps:casting the NET over pathogenesis. Curr Opin Microbiol 10,52-56.
    Whittington, C. M., Papenfuss, A. T., Bansal, P., Torres, A. M., Wong, E. S., Deakin, J. E., Graves, T., Alsop, A., Schatzkamer, K., Kremitzki, C., et al. (2008). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Res 18,986-994.
    Willey, J. M., and van der Donk, W. A. (2007). Lantibiotics:peptides of diverse structure and function. Annu Rev Microbiol 61,477-501.
    Williams, S. D., Hsu, F. F., and Ford, D. A. (2000). Electrospray ionization mass spectrometry analyses of nuclear membrane phospholipid loss after reperfusion of ischemic myocardium. J Lipid Res 41,1585-1595.
    Wu, M., and Hancock, R. E. (1999). Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Antimicrob Agents Chemother 43, 1274-1276.
    Wu, M., Maier, E., Benz, R., and Hancock, R. E. (1999). Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38,7235-7242.
    Yamauchi, K., Tomita, M., Giehl, T. J., and Ellison, R. T.,3rd (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61,719-728.
    Yang, D., Biragyn, A., Hoover, D. M., Lubkowski, J., and Oppenheim, J. J. (2004). Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22,181-215.
    Yang, D., Chen, Q., Chertov, O., and Oppenheim, J. J. (2000a). Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J Leukoc Biol 68,9-14.
    Yang, D., Chertov, O., and Oppenheim, J. J. (2001a). Participation of mammalian defensins and cathelicidins in anti-microbial immunity:receptors and activities of human defensins and cathelicidin (LL-37). J Leukoc Biol 69,691-697.
    Yang, L., Harroun, T. A., Weiss, T. M., Ding, L., and Huang, H. W. (2001b). Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81,1475-1485.
    Yang, L., Weiss, T. M., Lehrer, R. I., and Huang, H. W. (2000b). Crystallization of antimicrobial pores in membranes:magainin and protegrin. Biophys J 79,2002-2009.
    Yasin, B., Pang, M., Turner, J. S., Cho, Y, Dinh, N. N., Waring, A. J., Lehrer, R. I., and Wagar, E. A. (2000). Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur J Clin Microbiol Infect Dis 19,187-194.
    Yeaman, M. R., and Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55,27-55.
    Yeaman, M. R., and Yount, N. Y. (2007). Unifying themes in host defence effector polypeptides. Nat Rev Microbiol 5,727-740.
    Yeaman, M. R., Yount, N. Y, Waring, A. J., Gank, K. D., Kupferwasser, D., Wiese, R., Bayer, A. S., and Welch, W. H. (2007). Modular determinants of antimicrobial activity in platelet factor-4 family kinocidins. Biochim Biophys Acta 1768,609-619.
    Zaiou, M. (2007). Multifunctional antimicrobial peptides:therapeutic targets in several human diseases. J Mol Med 85,317-329.
    Zanetti, M. (2005). The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7,179-196.
    Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin:isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A 84,5449-5453.
    Zasloff, M. (2002a). Antimicrobial peptides in health and disease. N Engl J Med 347, 1199-1200.
    Zasloff, M. (2002b). Antimicrobial peptides of multicellular organisms. Nature 415,389-395.
    Zasloff, M. (2002c). Antimicrobial peptides of multicellular organisms. Nature 415,389-395.
    Zhang, L., Rozek, A., and Hancock, R. E. (2001a). Interaction of cationic antimicrobial peptides with model membranes. J Biol Chem 276,35714-35722.
    Zhang, L. J., Rozek, A., and Hancock, R. E. W. (2001b). Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry 276,35714-35722.
    Zhang, X. F., Zhang, X. M., and Yang, Q. (2007). Effect of compound mucosal immune adjuvant on mucosal and systemic immune responses in chicken orally vaccinated with attenuated Newcastle-disease vaccine. Vaccine 25,3254-3262.
    Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. Bmc Bioinformatics 9.
    Zhang, Y. (2009). I-TASSER: Fully automated protein structure prediction in CASP8. Proteins 77,100-113.
    王云起,刘飞鹏,李月琴,张欣,蔡继业(2005).天蚕素A-蜂毒素杂合肽用pBV220载体的表达、纯化和活性测定.中国生物工程杂志.25(10)29-23
    王辉,安利国,杨桂文(2007).牙鲆不同组织抗菌肽的提取及部分性质检测.水产科学.26(2):87-90.
    安春菊,盛长忠,李德森,杜荣骞(2003).一类潜在的新药——抗菌肽.中国新药杂志.12(9):704-707.
    肖业臣,温硕洋,黄亚东,杨婉莹,曹阳(2004).昆虫抗菌肽和抗真菌肽结构与功能的关系及分子设计.昆虫学报.47(5):659-669.
    侯晓姝,胡宗利,陈国平,李勇,王炳琴,李栀恩(2009).抗菌肽的抗菌机制及其临床应用.微生物学通报.36(1):97-105.
    冯兴军,王建华,杨雅麟,滕达,刘立恒(2004).乳铁蛋白肽(Lactoferricin)作用机制研究进展.中国生物工程杂志.24(1):23-26.
    吴甜甜,杨洁(2009).天然抗菌肽的研究进展及应用前景.生物技术通报.1:27-30.
    张兰廷,刘忠渊,张富春(2008).抗菌肽结构与功能关系及分子改造研究进展.生物技术.18(5):89-92.
    杨玉荣,梁宏德,卫红丽(2009).鸵鸟皮肤抗菌肽对雏鸡免疫器官指数及T淋巴细胞数量的影响初探.中国农学通报.25(10):46-48.
    许玉澄,张双全,戴祝英(1998).家蚕抗菌肽的抗癌作用.动物学研究.19(4):263-268.19(4):263-268.
    赖玉平,彭沂非,郁正艳,黄静,吴自荣(2004).DCD-1L在毕赤酵母中的克隆和表达.中国生物工程杂志.24(2):61-65.
    邓超,王联结(2008).阳离子抗菌肽的研究进展.中国生物工程杂志.28(6):100-107.
    陈晓生,张辉华,田允波,温刘发,贺建华,罗竞标,黄国庆(2005).抗菌肽作饲料添加剂对肉鸭生长性能的影响.黑龙江畜牧兽医.3:64-65.
    马卫明,佘锐萍,靳红,彭芳珍,胡艳欣(2005).猪小肠抗菌肽的抗菌作用研究.中国兽医杂志.41(1):3-7.
    黄栩林,庞广昌,杨静静(2008).Trpi免疫调节功能的研究.食品科学.29(4):381-385.
    牛明福,李翔,伍家发.(2008).抗菌肽的分子设计研究进展.上海畜牧兽医通讯.4:2-5.
    刘泉波,刘作义.(2005).新生儿肠道双歧杆菌数量与其相关影响因素的探讨.中国微生态学杂志.17(2):120~121.
    吕密凯.(1999).灭活的双歧杆菌对抗生素脱污染小鼠肠道生理菌群的调整.中国微生态学杂志.11(3):149.
    徐叔云,卞如濂,陈修主编.药理试验方法学[M].3版,北京:人民卫生出版社,2002:1433-1435.
    姚俊,王德成,佘锐萍,等.(2009).猪小肠抗菌肽对SPF鸡肠道粘膜免疫功能的影响.科学技术与工程.17:4918-4913.
    胡云龙,胡泰山,林世康等.(1999).Cecropin B抗菌肽基因的定向诱变与表达.药物生物技术.6(4):608-612.