玉米丝黑穗病的抗性QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝黑穗病是一种世界性病害,也是我国玉米产区的主要病害之一。培育抗病品种是防治丝黑穗病危害的最经济有效途径,而抗病育种成效取决于对抗源和抗性遗传机制的认识。采用现代生物技术发掘我国主要玉米种质中的抗丝黑穗病基因及其连锁分子标记,可为建立高效的抗病育种及种质改良技术提供理论依据。本研究以Mo17(抗病)×黄早四(感病)的F_2和F_3群体为作图和抗病性评价群体,采用SSR和AFLP分子标记构建遗传连锁图谱,在吉林公主岭和黑龙江哈尔滨地区进行田间抗病鉴定,利用复合区间定位方法进行抗病QTL分析。主要研究结果如下:
     (1)以Mo17×黄早四的F_2分离群体(191个单株)为作图群体,构建了含有84个SSR位点和48个AFLP位点的遗传连锁图谱,覆盖玉米基因组1542.9cM,平均图距为11.7cM。
     (2)在吉林公主岭地区检测到5个QTL,分别位于第1、2、3、8、9染色体上,解释的表型方差为10.0%~16.3%。在黑龙江哈尔滨地区也检测到5个QTL,分别位于第1、2、3、4、7染色体上,解释的表型方差的4.6%~13.4%。对吉林和黑龙江两个地点的抗病鉴定结果进行联合QTL分析,共检测到6个QTL,分别位于第1、2、3、4、8、9条染色体上,解释的表型方差为4.6%~15.3%。
     (3)本研究在第1、2、3染色体上各稳定检测到1个抗性QTL,且支持这三个QTL的LR值较大。第1、2染色体上的QTL表现为超显性效应,第3染色体上的QTL表现为加性效应。第1、3染色体上QTL等位基因来自亲本Mo17,而第2染色体上的QTL等位基因来自黄早四。
     (4)本研究所检测到的QTL作用方式主要表现为加性和超显性两种类型。
Head smut of com is a cosmopolitan disease. It causes a significant yield losses and quality, degradation especially in spring maize area. Development of varieties or hybrids resistant to this disease is one of the effective approaches to control the disease. Molecular marker technology will contribute to explore the useful information in efforts to develop resistant germplasm efficiently through locating the QTL relevant to diseases resistance. In this study, we mapped and characterized quantitative trait Loci (QTL) conferring resistance to head smut. A mapping population (F2) with 191 individuals was derived from the cross of two elite inbreds (Mo 17 and Huangzao4), and the corresponding 184 F3 families (7 missed) were evaluated for head smut resistance with two replications in Jilin and Heilongjiang provinces, respectively. The F2 population was genotyped with 49 AFLP and 91 SSR markers, and QTL analysis was performed with composite interval mapping (CIM). The main results are as follows:
    (1) A genetic linkage map with 84 SSR and 48 AFLP markers were constructed, spanning maize genome 1542.9cM with average distance of 11.7cM between adjacent markers.
    (2) In Jilin, 5 putative QTL conferring resistance to head smut were detected on chromosomes 1, 2, 3, 8 and 9, respectively, accounting for 10.0% to 16.3% of the phenotypic variation. In Heilongjiang, 5 putative QTL conferring resistance to head smut were detected on chromosomes 1, 2, 3, 4 and 7, respectively, accounting for 4.6% to 13.45% of the phenotypic variation. Pooled analysis based on the two environments was conducted, and 6 putative QTL were detected on chromosomes 1, 2, 3, 4, 8 and 9, respectively, explaining 4.6% to 15.3% of the phenotypic variation.
    (3)'In the study, 3 QTL with high LR values could be consistently detected on chromosomes 1, 2 and 3, respectively. Two of them located on chromosomes 1 and 2 displayed over-dominant effects, and the other QTL mapped on chromosome 3 was additive. The QTL alleles relevant to head smut resistance on chromosomes 1 and 3 were contributed by the parent Mo 17, while the QTL allele on chromosome 2 was contributed by Huangzao4.
    (4) Most of the QTL relevant to head smut resistance identified in this paper showed additive or over-dominant effects.
引文
1.白金铠,潘顺法,戚佩坤.高粱玉米丝黑穗菌交互接种试验.植物保护学报,1964,3(3):216
    2.白金铠,宋佐衡,陈捷等,梁景颐,刘伟成,吕国忠,赵廷昌,周永力.玉米病害的病菌变异与抗病品种选育.玉米科学,1994,1:67~72
    3.陈翠霞,邢全华,梁春阳,于元杰,粱凤山,王洪刚,王振林,王斌.南方玉米锈病抗病基因的定位及不同遗传背景对基因标记的比较分析.遗传学报,2003(4):341~344
    4.段永钊,李兴鑫,艾方珍,杨金惠,李发民.陕西省玉米丝黑穗病抗源筛选与鉴定.西北农业学报,1992,1(4):83~86
    5.植物病理学报(第二版).华南农业大学,河北农业大学主编.北京:农业出版社,1985,157~160
    6.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002
    7.华致莆,白宝璋,赵晓军.玉米丝黑穗病生理分化的研究.吉林农业大学学报,1995,17(2):32~37
    8.晋齐鸣,李建平,张秀文,王广祥,宋淑云,刘煜才,王立新.松辽平原玉米主要病虫害综合治理体系研究.玉米科学,2000,8(2):84~88
    9.贾菊生,张前.玉米丝黑穗病菌冬孢子萌发条件的研究.植物保护学报,1990,17(2):109~112
    10.康绍兰,李兴红,乔秀娟,张国保,马跃辉,韩福才,陈柏柱.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅰ.河北农业大学学报,1994,17(3):78~84
    11.李兴红,康绍兰,李金云,张国保,马跃辉,韩福才,陈柏柱.玉米丝黑穗病菌冬孢子生物学特性的研究Ⅱ.河北农业大学学报,1995,18(1):57~61
    12.刘聪莉.鉴定玉米对丝黑穗病抗性的简易方法.莱阳农学院学报,1997,14(4):259~260
    13.刘锡若,薛国典.玉米品种对丝黑穗病的抗病性和幼苗诊断的研究.植物保护学报,1983,10(4):274~275
    14.马秉元,李亚玲.玉米丝黑穗病早期特异症状.植物保护,1982,(3):11
    15.马秉元,李亚玲,段双科.玉米对丝黑穗病的抗性与遗传初步研究.中国农业科学,1983,4:12~17
    16.Matyac CA,Kommedahl T.由丝轴黑粉菌诱导的玉米苗期褪绿斑及其在抗病性鉴定中的应用.烟台师范学院报(自然科学版),1985,3(1):70
    17.梅振邦,徐国英,王河成,侯光弟,李谨谊.玉米对丝黑穗病的抗性遗传规律.山西农业科学,1982,11:10~13
    18.潘家驹.作物育种学总论.北京:农业出版社,1996,160~161
    19.宋淑云,孙秀华,郭文广,刘继荣.玉米种质资源抗丝黑穗病鉴定.吉林农业科学,2000,25(3):32~33
    20.王凤格,刘贤德,王振华,张世煌,李新海,袁力行,韩晓清,李明顺.玉米抗甘蔗花叶病毒QTL的初步研究.作物学报,2003,29(1):69~74
    21.王桂林,张树娥,崔良国,王奎生,王长明.山东省的优异玉米种质资源.作物品种资源,1992,2:15~16
    22.王金华,王铨茂.玉米丁布对玉米丝黑穗病菌抗性关系的研究.植物保护学报,1989,16(3):187~191
    23.吴建宇,丁俊强,杜彦修,陈伟程.两个玉米矮花叶病显性互补抗病基因的发现和定位.遗传学报,2002,29(12):1092~1095
    24.吴建宇,席章营,盖钧镒.玉米抗病遗传育种的研究进展.玉米科学,1999,7(2):6~11
    25.吴新兰,庞志超,田立民,胡吉成.高粱丝黑穗菌的生理分化.植物病理学报,1982,12(1):13~18
    26.吴新兰,庞志超,田立民,胡吉成.玉米丝黑穗病菌侵染条件与栽培防病措施的研究.植物保护学报,1981,8(1):41~46
    27.薛庆中,张能义,熊兆飞,李羽中,朱立煌.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24(6):631~638
    
    
    28.徐秀德,赵廷昌.高粱丝黑穗菌生理小种鉴定初报.辽宁农业科学,1991,1:46~47
    29.玉米种质资源抗丝黑穗病鉴定协作组.玉米种质资源抗丝黑穗病鉴定研究.作物品种资源,1992,1:27~28
    30.袁邦前.玉米丝黑穗病的发生及防治.云南农业,2002,2:16
    31.张志德.玉米抗丝黑穗病性苗期鉴定方法的研究.植物保护学报,1984,11(4):283~284
    32.张天文,王进保.凉州区玉米丝黑穗病的发生与防治技术.甘肃农业科技,2002,6:41
    33.赵羹梅,王淑芳,刘聪莉.玉米丝黑穗病原菌侵染的一些细胞学研究.植物病理学报,1991,21:267~270
    34.赵晋锋,宋殿珍,张文忠,栗红生,刘景秀,杨国英.玉米丝黑穗病的发生与防治及对抗病育种的一些探讨.山西农业科学,2002,30(2):60~62
    35.郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景.遗传,1997,19(2):40~44
    36. Agrama HAS, Zacharia AG, Said M, Tuinstra M. Identification of quantitative trait loci for nitrogen use efficiency in maize. Maydica, 1999, 41: 205~210
    37. Ali A, Baggett JR. Inheritance of resistance to head smut disease in corn. J Amer Sco Hort Sci, 1990, 115(4): 668~672
    38. Al-Slhaily IA, Mankin CJ, Semeniuk G. Physiologic specialitzation of to sorghum and corn. Phytopath, 963, 53: 723~726
    39. Bentolila S, Guitton C, Bouver N, Sailland A, Nykaza S, Freyssient G. Identification of an RFLP marker tightly linked to the htl gene in maize. Theor Appl Genet, 1991, 82:393~398
    40. Bernardo R, Bourrier M, Olivier JL. Generation means analysis of resistance to head smut in maize. Agronomie, 1992, 12:303~306
    41. Bohn M, Schulz B, Kreps R, Klein D, Melchinger AE. QTL mapping for resistance against the European corn borer (Ostrinia nubilalis H) in early maturing European dent germplasm. Theor Appl Genet, 2000, 101:907~917
    42. Brewbaker JL, Lu XW. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kühn) Clint. Maize Genetics Cooperation Newsletter (MNL), 1999, 73:36
    43. Brown AF, Juvik JA, Pataky JK. Quantitative trait loci in sweet corn associated with partial resistance to stewart's wilt, northern corn leaf blight, and common rust. Phytopathology, 2001, 91:293~300
    44. Bubeck DM, Goodman MM, Beavis WD, Grant D. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop Sci, 1993, 33:838~847
    45. Chaba Jampatong, Michael D, Mcmullen, Dean Barry B, Larry L, Darrah, Patrick F, Heike Kross. Quantitative trait loci for first-and second-generation European corn borer resistance derived from the maize inbred Mo47. Crop Sci, 2002, 42:584~593
    46. Clements MJ, Dudley JW, White DG. Quantitative trait loci associated with resistance to gray leaf spot of corn, Phytopathology, 2000, 90:1018~1025
    47. Delaney DE, Webb CA, Hulbert SH. A novel rust resistance gene in maize Showing overdominance. MPMI, 1998, 11:242~245
    48. Dingerdissen AL, Geiger HH, Lee M, Schechert A, Welz-HG. Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Mol Breed, 1996, 12: 143~156
    49. Dutzmann S, Duben J. Maiskopbrand zuküenftig auch in Deutschland von Bedeutung, Mais, 1993, 21:140~142
    50. Freymark PJ, Lee M, Woodman WL, Martinson CA. Quantitative and qualitative trait loci affecting host-plant response to Exserohilum turcium in maize (Zea mays L): Components of resistance. Theor Appl Genet, 1993, 87: 537~544
    51. Freymark P, Lee M, Martinson C, Woodman W. Molecular-marker-facilitated investigation of host-plant response
    
    to Exserohilum turcium in maize (Zea mays L): Components of resistance. Theor Appl Genet, 1994, 88:305~313
    52. Groh S, Gonzales-de-Leon D, Khairallah MM, Jiang C, Bergvinson D, Bohn M, Hoisington DA, Melchinger, A.E. QTL mapping in tropical maize: Ⅲ. Genomic regions for resistance to Diatraea spp and associated traits in two RIL populations. Crop Sci, 1998a, 38:1062~1072
    53. Halisky PM, Smeltzer DG. Disease of corn, sorghum and sudangrass head smut established in California. California Agriculture, 1961, 1:10~12
    54. Halisky PM. Prevalence and Pathogenicity of Sphacelotheca reiliana causing head smut of corn in California. Phytopathology, 1962, 52:199~202
    55. Halisky PM. Head smut of sorghum, sudangrass, and corn, caused by Sphacelotheca reiliana (Kühn) Clint. Hilgardia, 1963, 34:287~304
    56. Halisky PM. Physiologic specialization and genetics of the smut fungi Ⅲ. Bot Rev, 1965, 31: 114~150
    57. Holland JB, Uhr DV, Jeffers D, Goodman MM. Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theor Appl Genet, 1998, 96:232~241
    58. Joannou YM. Degradation of diazinon by 2,4-dihydroxy-7-meghoxy-2H-1, 4-benzoxazin-3 (4H) -one in maize. Phytochem, 1980, 19:1607~1611
    59. Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J. Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theor Appl Genet, 1994, 89:413~418
    60. Kerns MR, Dudley JW, Rufener GK. QTL for resistance to common ruat and smut in maize. Maydica, 1999, 44: 37~45
    61. Kruber W. Sphacelotheca reiliana on maize Ⅰ. Infection and control studies. South African J. Agr Sci, 1962, 5: 43~56
    62. Kyetere DT, Ming R, McMullen MD, Pratt RC, Brewbaker J, Musket T. Genetic analysis of tolerance to maize streak virus in maize. Genome, 1999, 42:20~26
    63. Lacy GH, Hirano SS, Victoria JI, Kelman A, Upper CD. Inhibition of soft-rotting E winia spp strains by 2,4-dihydroxy-7-meghoxy-2H-1, 4-benzoxazin-3(4H)-one in relation to their pathogencity on zea mays. Phytopathol, 1979, 69 (7): 757~763
    64. Li ZK. QTL mapping in rice: A few critical considerations. In: Khush GS, Brar DS, Hardy B, eds. Rice genetics. Ⅳ. Manila, The Philippines: International Rice Research Institute, 2001, 153~171
    65. Lincoln SE, Daly MJ, Lander ES. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. Cambridge: Lander ES, 1993, 1~97
    66. Lincoln SE, Daly MJ, Lander ES. Mapping Genes Controlling Quantitative Traits Using MAPMAKER/QTL. Cambridge: Lander ES, 1993, 1~73
    67. Long BJ, Dunn GM, Routley DG. Relationship of hydroxamate concentration in maize and field reaction to Helminthosporium turricum. Crop Sci, 1978, 18:573~575
    68. Lu H, Romero-Severson J, Bernardo R. Chromosomal regions associated with segregation distortion in maize. Theor Appl Genet, 2002, 105:622~628
    69. Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kühn) Clint. Maize Genetics Cooperation Newsletter (MNL), 1999, 73:36
    70. Lu XW, Brewbaker JL, Nourse SM, Moon HG, Kim SK, Klairallah M. Mapping quantitative trait loci conferring resistance to maize streak virus. Maydica, 1999, 44:313~318
    71. Lübberstedt T, Melchinger AE, Klein D. Comparative quantitative trait loci mapping of partial resistance to Puccinia sorghi across four populations of European flint maize. Phytopathology, 1998a, 88:1324~1329
    
    
    72. Lubberstedt T, Xia XC, Tan G, Liu X, Melchinger AE. QTL mapping of resistance to Sphacelotheca reiliana in maize. Theor Appl Genet, 1999, 99:593~598
    73. Marcon A, Kaeppler SW, Jensen SG. Resistance to systemic spread of high plains virus cosegregates in two F_2 maize populations inoculated with both pathogens. Crop Sci, 1997, 37: 1923~1927
    74. Marcon A, Kaeppler SM, Jensen SG, Senior L, Stuber C. Loci controlling resistance to high plains virus and wheat streak mosaic virus in a B73×Mo17 population of maize. Crp Sci, 1999, 39: 1171~1177
    75. Mcmullen MD, Jones MW, Simcox KD, Louie R. Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Mol Plant-Microbe Interact, 1994, 7:708~712
    76. Mcmullen MD, Louie R. The linkage of molecular marker to a gene controlling the symptom response in maize to maize dwarf mosaic virus. Mol Plant-Microbe Interact, 1989, 2:309~314
    77. Mcmullen MD, Louie R. Identification of a gene for resistance to wheat streak mosaic virus in maize. Phytopathology, 1991, 81:624~627
    78. Mcmullen MD, Sicox KD. Genomic organization of disease and insect resistance genes in maize. Mol Plant-Microbe Interact, 1995, 8:811~815
    79. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK. Gene actionsof QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations (More info). Theor Appl Genet, 2003, 107: 89~101
    80. Mehta BK, Frederiksen RA, Collier J, Futrell MC. Evaluation of Physiologic Specialization in Sphacelotheca reiliana. Phytopathology, 1967, 57:925~928
    81. Melchinger AE, Kuntze L, Gumver RK, Lübberstedt, Fuchs E. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theor Appl Genet, 1998, 96:1151~1161
    82. Ming R, Mcmullen MD, Brewbaker JL, Pratt RC, Moon HG, Musket T, Holley R. RFLP mapping of genes conferring resistance to Erwinia stewartii. Maize Genet Crop Newsl, 1995, 69:60
    83. Ming R, Brewbaker JL, Pratt RC, Musket TA, McMullen MD. Molecular mapping of a major gene conferring resistance to maize mosaic virus. Theor Appl Genet, 1997, 95:271~275
    84. Ming R, Brewbaker JL, Moon HG, Musket TA, Holley RN, Pataky JK, McMullen MD. Identification of RFLP markers linked to a major gene, swl, conferring resistance to Stewart's wilt in maize, Maydica, 1999, 44:319~323
    85. Pe ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P, Dani M, Binelli G. Mapping quantitative trait loci (QTL) for resistance to Gibberella zeae infection in maize. Mol Gen Genet, 1993, 241: 11~16
    86. Pemet A, Hoisington D, Franco J, Isnard M, Jewell D, Jiang C, Marchand JL, Reynaud B, Glaszmann JC, Gonzalez de Leon D. Genetic mapping of maize streak virus resistance from the Mascarene source Ⅰ. Resistance in line D211 and stability against different virus clones. Theor Appl Genet, 1999a, 99:524~539
    87. Pemet A, Hoisington DA, Dintinger J, Jewell DC, Jiang C, Khairalla MM, Letourmy P, Marchand JL, laszmann JC, González de León D. Genetic mapping of maize streak virus resistance from the Mascarene source Ⅱ. Resistance in line CIRAD 390 and stability across germplasm. Theor Appl Genet, 1999b, 99:540~553
    88. Potter AA. Head smut of sorghum and maize. J Agr Res, 1914, 2:339~368
    89. Saghai Maroof MA, Yue YG, Xiang ZX, Stromberg EL, Rufener GK. Identification of quantitative trait loci controlling resistance to gray leaf plot disease in maize. Theor Appl Genet, 1996, 93:539~546
    90. Sanz-Alferez S, Richter TE, Hulbert SH, Bennettzen JL. The rp3 disease resistance gene of maize: mapping and characterization of introgressed alleles. Theor Appl Genet, 1995, 91:25~32
    91. Schechert AW, Welt HG, Geiger HH. QTL for resistance to Setosphaeria turcica in tropical African maize. Crop Sci, 1999, 39:514~535
    
    
    92. Simcox KD, Bennetzen JL. The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology, 1993, 83:1326~1330
    93. Simcox KD, Mcmullen MD, Louie R. Co-segregation of the maize dwarf mosaic virus resistance gene, mdml, with the nucleolus organizer region in maize. Thero Appl Genet, 1995, 90:341~346
    94. Simpson WR. Head smut of corn in Idaho. Plant Dis Rep, 1966, 50:215~217
    95. Stromberg EL, Stienstra WC, Kommedahl T, Matyac CA, Windels CE, Geadelmann JL. Smut expression and resistance of corn to Sphacelotheca reiliana in Minnersota. Plant Dis,1984, 68: 880~884.
    96. Stromberg, EL. Head smut of Maize, a new disease in Minnersota (Abstr). Phytopathology, 1981,71:906
    97. Stuber CW. Mapping and manipulating quantitative traits in maize. Trends Genet, 1995, 11 : 477~481
    98. Ullstrup AJ. Identification and linkage of a gene determining resistance in maize to an American race of Puccinia polysora. Phytopathology, 1965, 55:425~428
    99. Vos P, Hogers R, Bleeker M, Reijans M, Lee T van de, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23 (21): 4407~4414
    100. Welt HG, Geiger HH. Genes for resistance to Northern corn leaf blight in diverse maize populations. Plant Breeding, 2000, 119:1~14
    101. Welz, HG, Schechert A, Pernet A, Pixley KV, Geiger HH. A gene for resistance to the maize streak virus in the African CIMMYT maize inbred line CML202. Mol Breed, 1998, 4: 147~154
    102. Welt HG, Schechert AW, Geiger HH. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theor Appl Genet, 1999a, 98: 1036~1045
    103. Welz G, Xia XC, Bassetti P, Melchinger AE, Lübberstedt T. QTLs for resistance to Setosphaeria turcica in an early maturing dent flint maize population. Theor Appl Genet, 1999b, 99:649~655
    104. Xia XC, Melchinger AE, Kuntze L, Lüberstedt T. Quantitative trait loci mapping of resistance to sugarcane mosaic virus in maize. Phytopathology, 1999, 89:660~667
    105. Xu ML, Melchinger AE, Xia XC, Lüberstedt T. High-resolution mapping of loci conferring resistance to sugarance mosaic virus in maize using FRLP, SSR, and AFLP markers. Mol Gen Genet, 1999, 26:574~581
    106. Xu ML, Melchinger AE, Lüberstedt T. Origin of Scm2-two loci conferring resistance to sugarcane mosaic virus (SCMV) in maize. Theor Appl Genet, 2000, 100:934~941
    107. Xu Y, Zhu L, Xiao J, Huang N, McCouch SR. Chromosomal regions associated with segregation distortion of molecular markers in F_2, bacrcross, doubled-haploid and recombinant inbred population in rice. Mol Gen Genet, 1997, 253:535-545
    108. Yerkes WD, Niederhauser JS, Borlaug NE, Martinez E, Galindo J. Some plant diseases observed in Mexico. Plant Dis Rep, 1959, 43:500~503
    109. Zaitlin D, Demars S, Gupta M. Linkage of a second gene for NCLB resistance to molecular in maize. Maize Genet. Coop.Newsl, 1992, 66:69~70
    110. Zaitlin D, Demars S, Ma Y. Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedings. Genome, 1993, 36:555~564
    111. Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL. Analysis of QTL×environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95:799~808
    112. Zhang SH, Li XH, Peng ZB, Yuan LX. Heterotic groups and explitation of heterosis-the methodology, strategy, and its use in hybrid maize breeding. The 8th Regional Maize Conference Bangkok, 2002
    113. Zhang SH, Li XH, Wang ZH, George ML, Jeffers D, Wang FG, Liu XD, Li MS, Yuan LX. QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica, 2003, 48:307~312