玉米抗丝黑穗病及重要相关性状的QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝黑穗病是一种世界性病害。近年来,随着感病品种的大量推广种植,该病又
    回升蔓延且逐年加重,再次成为我国春玉米区的主要病害之一。最经济有效的防病途径
    是采取以种植抗病品种为主的综合防治措施,而抗性遗传理论是抗病育种的前提。分子
    标记技术及数量性状(QTL)定位方法的发展为深入研究抗丝黑穗病的遗传规律提供了
    有效的手段。本文利用在我国玉米生产上起重要作用的自交系 Mo17(抗)和黄早四(感)
    组配作图群体和性状评价群体,在人工接种条件下进行抗病性评价;采用 SSR 标记技术
    构建遗传连锁图谱,利用复合区间定位方法确定玉米抗丝黑穗病 QTL 的数目、位置及效
    应,比较不同地点不同来源病原菌条件下 Mo17 抗病遗传的差异,同时研究了重要相关
    性状 QTL,为抗病材料分子标记辅助选择提供理论依据。研究结果如下:
     (1)以黄早四×Mo17 的 F2 分离群体(184 个单株)为作图群体,构建了含有 87
    个SSR标记位点的遗传连锁图谱,覆盖玉米基因组1655.4 cM,标记间平均图距19.03 cM。
     (2)采用复合区间作图法在哈尔滨人工接种条件下于第 1、2、3、4、7 染色体上
    分别检测到 1 个抗病 QTL,可解释的表型变异分别为 15.1%、13.21%、13.1%、11.4%和
    7.1%,除第 2、7 染色体上的 QTL 表现为超显性外,其余均表现为部分显性和加性效应。
    在吉林人工接种条件下于 1、2、3、6、8、9 染色体上共检测到 6 个 QTL。比较哈尔滨
    和吉林两个地点的定位结果,其中第 1、2 染色体上检测到的 QTL 位置和表型贡献率基
    本相同,第 3 染色体上的 QTL 位置相近,其余染色体上检测的 QTL 位置完全不同。在
    吉林,第 9 染色体上的 QTL 具有较高的表型贡献率,且表现为超显性。
     (3)通过对哈尔滨和吉林两点平均发病率的 QTL 分析,发现在第 1、2、3 染色体
    上均检测到了在两个试验点都能检测到的 4 个 QTL,而且位置相同,这说明控制玉米丝
    黑穗病的基因具有一致性和环境稳定性。第 4 染色体上重新检测到一个新的 QTL,但贡
    献率较低。
     (4)相关分析表明,玉米丝黑穗病的发病率与产量、株高存在极显著的负相关性,
    与百粒重的相关性亦达到了显著水平。
     (5)利用构建的 SSR 连锁图谱和复合区间作图法对接种条件下的产量、株高和百
    粒重分别进行 QTL 分析,在第 1、2、3 染色体上检测到 4 个控制产量的 QTL;在第 4、
    8、9、10 染色体上检测到 4 个控制株高的 QTL;在第 6、9 染色体上检测到 2 个控制百
    粒重的 QTL。
Head Smut is one of the most important diseases of maize in the world. It
    happens in the most maize zone at different levels. It has already become one of
    the most serious diseases, causing a significant yield and quality losses, especially
    in maize spring area of China. The advent of molecular markers and QTL mapping
    methods in the last decade provides an opportunity to deeply study the genetic
    principles of resistance to head smut. In this study, a F2 population with 191
    individuals, derived from a cross of Huangzao4×Mo17, is used to construct a
    genetic map and locate QTLs of head smut and correlative agronmic characters
    and analyse the genetic effect. The main results are summarized as follows:
     (1) From 330 SSR primer pairs, 87 amplify polymorphism clearly between
    two parents. These 87 polymorphic loci were used in analysing genotypes of the F2
    population. In the F2 population, the allele frequencies of Huangzao4 and Mo17 in
    all 191 informative loci are 48.13 % and 52.97%, respectively.The allele ratio
    approximated to the expected 1:1. Chi-square test indicated that 21 markers(24%
    of all) skew from the expected 1:1 gene segregation, and 17 markers (20% of all)
    skew from the expected 1:2:1 genotypic segregation. These skew loci most lie in 2
    and 6 chromosomes.
     (2) The genetic linkage maps were constructed with 87 SSR markers based on
    a maize population consisting of 191 F2 individuals from the cross Mo17×
    Huangzao4, covering 1655.4cM on total ten chromosomes with an average
    interval length of 19.03cM. With the method of composite interval mapping, five
    QTL conferring resistance to head smut were identified on chromosomes1, 2, 3, 4
    and 7 in F3 populations in Harbin; six QTLs conferring resistance to head smut
    were identified on chromosomes1, 2, 3, 6, 8 and 9 in F3 populations in Jilin,
    respectively. Combined analysis identifys four QTLs, which are identified in Harbin
    and Jilin on chromosomes 1, 2 and 3. The other QTL is identified on chromosome 4,
    contributing a low phenotypic variance.
     (3) The linear correlation between disease incidence of head smut and grain
    yield, plant height, 100-keneral weight, were all highly(p≤0.01) or sinificant(p≤
    0.05).
     (4) With the method of composite interval mapping, four QTLs conferring
    grain yield under inoculating were identified on chromosomes1, 2 and 3 in F3
    populations; four QTLs conferring plant height under inoculating were identified
    on chromosomes4, 8, 9 and10; two QTL conferring 100-keneral weight under
    inoculating were identified on chromosomes 6 and 9 in F3 populations,
    respectively.
引文
1. 白金凯, 高粱玉米丝黑穗菌交互接种试验. 植物保护学报, 1964, 3(3):216
    2. 白金凯, 玉米病害的病菌变异与抗病品种选育. 玉米科学, 1994,1:67~72
    3. 陈受宜, DNA 分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,
     1998, 5:15~22
    4. 段永钊, 李兴鑫, 艾方珍,杨金惠,李发民, 陕西省玉米丝黑穗病抗源筛选与鉴定. 西
     北农业学报, 1992, 1(4):83~86
    5. 方宣钧, 吴为人, 唐纪良, 作物 DNA 标记辅助育种. 科学出版社, 北京, 2001
    6. 龚继明, 郑先武, 杜保兴, 控制水稻重要农艺性状的 QTL 在盐胁迫与非胁迫条件下的
     对比研究. 中国科学, 2000, 30(6):561~569
    7. 华致莆, 白宝璋, 赵晓军, 玉米丝黑穗均生理分化的研究. 吉林农业大学学报, 1995,
     17(2): 32~37
    8. 贾菊生, 张前, 玉米丝黑穗病菌冬孢子萌发的条件的研究. 植物保护学报, 1990,
     17(2):109~112
    9. 晋齐鸣, 李建平, 张秀文等, 松辽平原玉米主要病虫害综合治理体系的研究. 玉米科学,
     2000, 8(2):84~88
    10. 李新海, 张世煌, 傅骏骅, 玉米抗病虫基因的染色体定位研究进展. 玉米科学, 2000,
     8(1):15~18
    11. 李兴红, 康绍兰, 曹志敏, 玉米苗期对丝黑穗病抗性机制初探. 河北农业大学学报,
     1995, 18(4):39~44
    12. 刘聪莉, 鉴定玉米对丝黑穗病抗性的简易方法. 莱阳农学院学报, 1997, 14(4): 259~260
    13. 刘纪麟主编, 玉米育种学.农业出版社, 1991, 471~474
    14. 刘锡若, 薛国典, 玉米品种对丝黑穗病的抗病性和幼苗诊断的研究. 植物保护学报,
     1983, 10(4):274~275
    15. 马秉元, 李亚玲, 段双科, 玉米对丝黑穗病的抗性与遗传初步研究. 中国农业科学.
     1983, 4:12~17
    16. 马秉元,李亚玲, 玉米丝黑穗病早期特异症状. 植物保护,1982,(3):11
    17. 马秉元, 李亚玲, 龙书生, 李多川, 陕西省玉米品种抗病性研究进展与分析. 玉米科学,
     1997, 5(4):67~71
    18. 马奇祥, 李正先编著, 玉米病虫草害防治.1999
    19. 梅振邦, 徐国英, 王河成, 侯光弟, 李谨谊, 玉米对丝黑穗病的抗性遗传规律. 山西农
     业科学, 1982, 11:10~13
    20. 任金平, 庞志超, 吴新兰, 张秀文, 刘煜才, 多功能种衣剂防治玉米、高粱病害研究初
     报. 吉林农业科学, 1994,237~41
    21. 宋树云, 孙秀华, 郭文广, 刘继荣, 玉米种质资源抗丝黑穗病鉴定. 吉林农业科学,
     - 45 -
    
    
    东北农业大学农学硕士学位论文
     2000, 25(3):32~33
    22. 王桂林, 张树娥, 崔良国, 王奎生, 王长明 ,山东省的优异玉米种质资源.作物品种资源,
     1992, 2:15~16
    23. 王金华, 王铨茂, 玉米丁布对玉米丝黑穗病菌抗性关系的研究. 植物保护学报, 1989,
     16(3):187~191
    24. 王振华, 李新海, 李明顺, 李文华, 张世煌, 玉米抗甘蔗花叶病毒的遗传分析. 作物学
     报,2004,30(2):95~100
    25. 吴为人, 唐定中, 李维明, 数量性状的遗传剖析. 作物学报, 2000, 26(4):501~507
    26. 吴新兰, 高粱丝黑穗菌的生理分化. 植物病理学报, 1982, 12(1):13~18
    27. 吴新兰, 玉米丝黑穗病菌侵染条件与栽培防病措施的研究. 植物保护学报, 1981,
     8(1):41
    28. 徐云碧, 朱立煌编, 分子数量遗传学. 北京: 中国农业出版社, 1994
    29. 玉米种质资源抗丝黑穗病鉴定协作组, 玉米种质资源抗丝黑穗病鉴定研究. 作物品种
     资源, 1992, 1:27~28
    30. 袁邦前, 玉米丝黑穗病的发生及防治. 云南农业, 2002,2:16
    31. Ahn S, Tanksley SD. Comparative linkage maps of the rice and maize genomes. Proc Natl
     Acad Sci. USA 1993, 90:7980~7984
    32. Alexander WL, Cross HZ, Lamey H. Early corn inbred reactions to head smut, common
     smut, and common rust. N Dak Farm Res, 1982, 40:29-31
    33. Ali A, Baggett JR. Inheritance of resistance to head smut disease in corn. J Amer Sco Hort
     Sci. 1990, 115(4): 668~672
    34. Al-Slhaily IA, Mankin, CJ, Semeniuk G. Physiologic specialitzation of to sorghum and corn.
     Phytopath. 963, 53:723~726
    35. Baggett JR and Tibbs J. Relationship between starchy versus sugary endosperm and head
     smut susceptibility of corn seedlings. Hortscience, 1992, 27:438-440
    36. Bekesi P and Perenyi AP. The susceptibility test to head smut of maize hybrids.
     Novenytermeles, 1989, 38:507-514
    37. Bernardo R, Bourrier M, Olivier JL. Generation means analysis of resistance to head smut
     in maize. Agronomie. 1992, 12:303~306
    38. Bueck DM, Goodman MM. Beavis WD. Grant Quantitative trait loci controlling resistance
     to gray leaf spot in maize. Crop Sci. 1993,33:838~847
    39. Chang RY, Peterson PA. Chromosome labeling with transposable elements in maize. Theor
     Appl Genet. 1994,87:650~656
    40. Coe EH, Neuffer MG. The Genetics of Corn. In : G F Sprague. Corn and Corn Improvement.
     Wisconsin.American Society of Agronomy. Inc. 1977, 111~210
    41. Diers BW, Mansur I, Imsande J. Mapping of Phytophthora resistance loci in soybean with
     restriction fragment length polymorphism markers. Crop Sci. 1992,32:377~383
     46
    
    
    参考文献
    42. Dllaporta SL, Moreno M. Gene tagging with Ac~Ds elements in maize. P. 219~233 in: The
     Maize Handbook. M. Freeling and V. Walbot, eds. Springer Verlag. New York.1994.
    43. Dutzmann S, Duben J. Maiskopbrand zuküenftig auch in Deutschland von Bedeutung Mais.
     1993, 21:140~142
    44. Freymark PJ, Lee M. Martinson CA. Molecular marker facilitated investigation of
     host~platn response to Exserohilum turcicum in maize: Components of resistance. Thoer
     Appl Genet. 1994, 88:305~313
    45. Garcia GM, Stalker HT, Shroeder E. Identification of RAPD, SCAR, and RFLP markers
     tightly linked to nematode resistance genes introgressed from Arachis cardenasii into
     Arachis hypogaea. Genome. 1996,39:836~845
    46. Halisky PM, Smeltzer DG. Disease of corn, sorghum and sudangrass head smut established
     in calif ornia. California Agriculture. 1961,1:10~12
    47. Halisky PM. Head smut of sorghum, sudangrass, and corn, caused by Sphacelotheca
     reiliana (Kühn) Clint. Hilgardia.1963, 34:287~304
    48. Halisky PM. Prevalence and Pathogenicity of Sphacelotheca reiliana causing head smut of
     corn in California. Phytopathology. 1962, 52:199~202
    49. Halisky PM. Physiologic specialization and genetics of the smut fungi III. Bot Rev. 1965,
     31:114~150
    50. Helentjaris T, Weber D, Wright S. Identification of the genomic location of duplicated
     nucleotide sequences in maize by analysis of restriction fragament length polymorphisms.
     Genetics. 1986, 118:353~363
    51. Hittalmani S, Foolad MR, Mew T, Rodriguez RL, Huang N. Development of a PCR~based
     marker to identify rice blast resistance gene, Pi~2(t), in a segregating population. Theor
     Appl Genet. 1995, 91:9~14
    52. Hulbert SH, Richter TE, Axtell JD. Genetic mapping and characterization of sorghum and
     related crops by means of maize DNA probes. Proc Natl Acad Sci. USA, 1990, 87:
     4251~4255
    53. Joannou YM. Degradation of diazinon by 2,4-dihydroxy-7-meghoxy-2H-1, 4-benzoxazin -3
     (4H)- one in maize. Phytochem. 1980,19:1607~1611
    54. Jung M, Weldekidan T, Schaff D. Generation~means analysis and quantitative trait locus
     mapping of anthracnose stalk rot genes in maize. Theor Appl Genet. 1994, 89: 413~418
    55. Kreike CM. Mapping of loci involved in quantitatively inherited resistance to the potato
     cyst-nematode Globodera rostochiensis pathotype Ro 1. Theor Appl Genet. 1993, 87:
     464~470
    56. Kruger W. Sphacelotheca reiliana on maize.I.Infection and control studies. South African
     J.Agr.Sci.1962, 5: 43~56
    57. Lacy GH, Hirano SS, Victoria JI, Kelman A, Upper CD.Inhibition of soft-rotting E winia
     spp strains by 2,4-dihydroxy-7-meghoxy-2H-1,4-benzoxazin-3(4H)-one in relation to their
     - 47 -
    
    
    东北农业大学农学硕士学位论文
     pathogencity on zea mays. Phytopathol.1979, 69(7): 757~763
    58. Lawson WR, Goulter KC, Henry RJ. Marker~assisted selection for two rust resistance
     genes in sunflower. Molecular Breeding. 1998,4:227~234
    59. Leonards-Schippers C. Quantitative resistance to Phytophthora infestans in potato: a case
     study for QTL mapping in an allogamous plant species. Genetics. 1994,137:67~77
    60. Long BJ, Dunn GM, Routley DG. Relationship of hydroxamate concentration in maize and
     field reaction to Helminthosporium turricum. Crop Sci.1978,18:573~575
    61. Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca
     reiliana (Kühn) Clint. Maize Genetics Cooperation Newsletter (MNL). 1999, 73:36
    62. Lübberstedt T, XC Xia, G Tan, X Liu, Melchinger AE. QTL mapping of resistance to
     Sporisorium reiliana in maize. Theor Appl Genet. 1999, 99: 593~598
    63. M GH. Head smut of maize, Sorosporium reilianum (Khn) McAlp. Rhodesia Agr J.1910, 8:
     277
    64. Maize Database.1998,In http://www.agron.missouri.edu/UMCCoreMarker s.html
    65. Martin GB, Brommonschenkel SH, Chunwongse J. Map~based cloning of a protein kinase
     gene conferring disease resistance in tomato. Science. 1993,262:1432~1436.
    66. Matyac CA and Kommedahl T, Occurrence of chlorotic spots on corn seedlings infected
     with Sphacelotheca reiliana and their use in evaluation of head smut resistance. Plant Dis,
     1985, 69:251-254
    67. Matyac CAT, Kommedahl. 由丝轴黑粉菌诱导的玉米苗腿绿斑及其在抗病鉴定中的应
     用, 烟台师范学院学报, 1985, 3(1): 70
    68. McMullen MD, Jones MW, Simcox KD, Louie R. Three genetic loci control resistance to
     wheat streak mosaic virus in the maize inbred Pa405. Molecular plant~microbe interactions.
     1994, 7:708~712
    69. McMullen MD, Simcox KD. Genomic organization of disease and insect resistance genes in
     maize. Molecular Plant~Microbe Interactions. 1995,8(6): 811~815
    70. Mehta BK, Frederiksen RA, Collier J, Futrell MC. Evaluation of Physiologic Specialization
     in Sphacelotheca reiliana.Phytopathology.1967, 57:925~928
    71. Melchinger AE, Kuntze L, Gumber RK. Genetic basis of resistance to sugarcane mosaic
     virus in European maize germplasm. Theor Appl Genet. 1998, 96:1151~1161
    72. Michelmore RWI, Paranand RV, Kessel. Identification of maikers linked to disease
     resistance gene bu bulked segregant analysis:a rapid method to detect makers in specific
     genomic regions using segregating populations. Proc Natl Acad Sci USA. 1991, 88:
     9826~9832
    73. Mindrinos MF, Katagiri GL, Yu. Thaliana Disease Resistance Gene RPS2 Encodes a Protein
     Containing a Nucleotide-binding Site and Leucine-rich Repeats. Cell. 1994, 78: 1089~1099
    74. Ming R, Brewbaker JL, Pratt RC. Molecular mapping of a major gene conferring resistance
     48
    
    
    参考文献
     to maize mosaic virus. Theor Appl Genet. 1997, 95: 271~275
    75. Ming R, McMullen MD, Brewbaker JL. RFLP mapping of genes conferring resistance to
     Erwinia stewartii. Maize Genet Coop Newsl. 1995a, 69:60
    76. Ming R, McMullen MD, Brewbaker JL. RFLP mapping of maize mosaic virus resistance
     gene. Maize Genet Coop Newsl. 1995b, 69:60~61
    77. Mohan M, Nair S, Bentur, JS. RFLP and RAPD mapping of the rice Gm2 gene that confers
     resistance to biotype 1 of gall midge (Orseolia oryzae). Theor Appl Genet.
     1994,87:782~788
    78. Naqvi NI and Chattoo BB. Development of a sequence characterized amplified region
     (SCAR) based indirect selection method for a dominant blast resistance gene in rice.
     Genome. 1996, 9:26~30
    79. Odiemah M and Kovacs I. Combining ability for resistance to stalk rot, ear rot, common
     smut and head smut diseases. MNL, 1990, 64:83-84
    80. Odiemah M and Manninger I, Studies on the inheritance of resistance to head smut in maize.
     Studies on the inheritance of resistance to head smut in maize, 1984
    81. Oh-BJ, Gowda-PSB, Xu-GW, Frederiksen-RA,Magill-CW,Tagging Acremonium wilt.
     downy mildew and head smut resistance genes in sorghum using RFLP and RAPD markers.
     Sorghum-Newsletter. 1993, 34
    82. Ohmori T, Murata M, Motoyoshi F. Molecular characterization of RAPD and SCAR
     markers linked to the Tm~1 locus in tomato. Theor Appl Genet. 1996,92:151~156
    83. Pachec AC, Dittrich RC. Resistance of commercial maize hybrids to head smut.
     Agropecuaria-Catarinense. 1999,12(2): 44~45
    84. Paltridge NG, Collons NC, Bendahmane A. Development of YLM, a codominant PCR
     marker closely linked to the Yd2 gene for resistance to barley yellow dwarf disease. Theor
     Appl Genet. 1998,96:1170~1177
    85. Panic M and Ivanovic M. Inheritance of resistance against head smut of maize in single
     cross hybrids. Poljopr Znan Smotra, 1976, 39:205-212
    86. Pe ME, Gianfranceschi L, Taramino G. Mapping quantitative trait loci (QTL) for resistance
     to Gibberella zeae infection in maize. Mol Gen Genet. 1993,241:11~16
    87. Potter AA. Head smut of sorghum and maize. J Agr Res,1914,2:339~372
    88. Sanz~Alferez S, Richter TE, Hulbert SH, Bennetzen JL. The Rp3 disease resistance gene of
     maize: mapping and characterization of introgressed alleles. Theor Appl Genet.
     1995.91:25~32
    89. Simcox KD. Co~segregation of the maize dwarf mosaic virus resistance gene, Mdm1, with
     the nucleolus organizer region in maize. Theor Appl Genet. 1995,90:341~346
    90. Simpson W and Fenwick H, Suppression of corn head smut with carboxin seed treatments.
     - 49 -
    
    
    东北农业大学农学硕士学位论文
     Plant Dis Rep, 1971,55:501-503
    91. Simpson WR.Head smut of corn in Idaho. Plant Dis Rep.1966, 50: 215~217
    92. Stromberg EL, Stienstra WC, Kommedahl T, Matyac CA, Windels CE, Geadelmann JL.
     Smut expression and resistance of corn to Sphacelotheca reiliana in Minnersota. Plant Dis.
     1984, 68:880~884
    93. Stromberg EL. Head smut of Maize, a new disease in Minnersota(Abstr). Phytopathology.
     1981, 71:906
    94. Stuber CW. Mapping and manipulating quantitative traits in maize. Trends Genet.
     1995,11:477~481
    95. Tanksley SD. Annu Rev. Mapping polygenes. Genet. 1993,27:205~233
    96. Touraud G, Bill L, Piollat MT. Phyllodied panicles caused by head smut of maize and
     vegetative multiplication of maize. Plant Cell Tissue Organ Cult, 1997, 50:19-26
    97. Welsh J, Mcclelland M. Fingerprinting genomes using PCR with arbitary primers. Nucleic
     Acid Res, 1990, 18:7213~7218
    98. Welz HG, Schechert A, Pernet A. A gene for resistance to the maize streak virus in the
     African CIMMYT maize inbred line CML202. Molecular Breeding. 1998,4:147~154
    99. Wenyuan Song. Guo~Liang Wang, Li~Li Chen. A Receptor kinase~like protein encoded by
     the rice disease resistance gene, Xa21. Science. 1995,270:1804~1806
    100. Yerkes WD, Niederhauser JS, Borlaug, NE, Martinez E, Galindo J. Some plant diseases
     observerd in Mexico. Plant Dis.Rep. 1959, 43:500~503
    101. Young RA, Molotto M, Nodari RO. Marker assisted dissection of the oligogenic
     anthracnose resistance in the common bean cultivar, ‘G2333’. Theor Appl Genet. 1998,
     96:87~94
    102. Zaitlin D, Demars S, Ma Y. Linkage of rhm, a recessive gene for resistance to southern corn
     leaf blight, to RFLP marker loci in maize(Zea mays) seedlings. Genome. 1993, 36:555~564
    103. Zamir DI, Ekstein~Michelson, Zakay N, Navot. Mapping and introgression of atomato
     yellow leaf curl virus tolerance gene, TY~1. Theor Appl Genet. 1994, 88:141~146
    104. Zwatz B, Head smut of corn. Pflanzensch tz, 1993:5-6
    105. Zhang SH, XH Li, ZH Wang, ML George, D Jeffers, FG Wang, XD Liu, MS Li, LX Yuan.
     QTL mapping for resistance to SCMV in Chinese maize germplasm. Maydica 48(2003):
     307-312.
    106. И.А.Федько,А.А.Морщацкйй,Б.А.Терещенко,Об у
     стойчивости кукуруза к гловневым заболе
     ваниям,сельскохозяйственная биология,
     1986,8:100~103