玉米抗丝黑穗病的分子机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米丝黑穗病是由玉米丝轴黑粉菌(Sporisorium reilianum f. sp. zeae)引起的严重威胁玉米产量的真菌病害。玉米丝轴黑粉菌在玉米苗期通过胚根的侵染进入到寄主体内,随后在玉米生长的几乎整个生育期内,长期潜伏于植株体内与寄主共存,直到抽雄期,典型的黑粉病症才会在玉米雄穗和雌穗上呈现出来。本研究以抗、感差异明显的玉米自交系Mo17和黄早四为实验试材,从转录水平上探究玉米在抵御玉米丝轴黑粉菌的苗期侵染和后期扩展过程中的基因表达差异和动态,旨在从转录组学的层面上较为系统地了解玉米全生育期抵御丝轴黑粉菌的分子机理。研究工作取得如下初步结果:
     (1)采用基于双酶切的数字基因表达谱技术(DGE)分析了高感材料黄早四和高抗材料Mo17的主胚根在接种病原菌后的不同侵染状态下,相关基因在转录水平上的表达变化。研究结果表明:在胚根受到的病原菌不同入侵状态下,玉米的病程相关基因在抗、感材料之间的表达模式呈现显著的表达差异;在抗、感材料分别被接种前、后的胚根中,谷胱甘肽S-转移酶的酶活变化和活性氧的积累水平也表现出显著的差异;在抗、感材料分别被接种六天后的胚根中,木质素总含量和沉积模式也表现出了显著不同的动态变化。
     (2)采用46K的70mer玉米寡聚核苷酸芯片平台,对接种后被病原菌入侵、潜伏并与共存的高抗材料Mo17,在四个典型的发育时期的基因转录水平的动态变化进行了表达研究。结果表明:在Mo17的发育进入到第八叶期之前,寄主和病原菌之间一直维系一种共生共存的“和谐”关系,直到进入到玉米从营养生长向生殖生长转换的过渡时期,高感材料黄早四中潜伏的菌丝会大量的分支扩增从而产生病症,而高抗材料Mo17则可以通过诱发相关基因的表达,提高黄酮类物质的积累,对生长素运输和菌丝的分支扩增进行抑制,从而表现出对体内菌丝的扩增和病症的爆发产生抗性。
The head smut fungus in maize, Sporisorium reilianum f. sp. zeae, which is an important biotrophic pathogen responsible for extensive crop losses, infects maize by invading the root during the early seedling stage. Head smut is not obvious until the tassels and ears emerge. S. reilianum has a very long life cycle that spans almost the entire developmental program of maize after the pathogen successfully invades the root.
     In order to investigate disease-resistance mechanisms at this early seedling stage, digital gene expression (DGE) analysis, which applies a dual-enzyme approach, was used to identify the transcriptional changes in the roots of Huangzao4(susceptible) and Mo17(resistant) after root inoculation with S. reilianum. During the infection in the roots, the expression pattern of pathogenesis-related (PR) genes in Huangzao4and Mo17were significantly differentially regulated at different infection stages. The glutathione S-transferase (GST) enzyme activity and reactive oxygen species (ROS) levels also showed changes before and after inoculation. The total lignin contents and the pattern of lignin depositions in the roots differed during root colonization of Huangzao4and Mo17.
     In order to understand how this pathogen interacts with the host during its long life cycle at the molecular level, and how this interaction differs between susceptible and resistant varieties of maize after hyphal invasion, the maize70mer-oligonucleotide microarrays were used to investigated transcriptional changes in the resistant maize line Mo17at four developmental stages. We found that there was a lengthy compatible relationship between the pathogen and host until the early8th-leaf stage. The resistance in Mo17relied on the assignment of auxin and regulation of flavonoids in the early floral primordium during the early floral transition stage. We propose a model describing the putative mechanism of head smut resistance in Mo17during floral transition. In the model, the synergistic regulations among auxin, flavonoids, and hyphal growth play a key role in maintaining compatibility with S. reilianum in the resistant maize line.
引文
1.王振华,姜艳喜,金益,李新海,石宏良.玉米丝黑穗病的研究进展.玉米科学,2002,10(4):61-64
    2. 白金凯,宋佐衡,陈捷.玉米病害的病菌变异与抗病品种选育.玉米科学,1994,2(1):67-72
    3.董玲,金益,王振华.玉米资源抗丝黑穗病快速鉴定方法的初步研究.西南农业学报,2005,18(5):653-657
    4.姜兴印,仪美芹,王开运,田文学.不同杀菌剂对玉米丝黑穗病原菌室内抑菌作用.农药,2004,43(8):375-376
    5. 晋齐鸣,李建平,张秀文.松辽平原玉米主要病虫害综合治理体系的研究.玉米科学,2000,8(2):84-88
    6.晋齐鸣,王晓鸣,王作英,等.东北春玉米丝黑穗病大发生原因及对策.玉米科学,2003,11(1):86-87
    7.蓝海燕,田颖川,王长海,等.表达p-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌研究.遗传学报,2000,27(1):70-77
    8. 李淑兰,高丽辉,王东.玉米丝黑穗病的发生与综合防治措施.内蒙古农业科技,2004,(6):53-54
    9. 李兴红,康绍兰,曹志敏,张国保,马跃辉,韩福才,陈柏柱.玉米苗期对丝黑穗病抗性机制初探.河北农业大学学报,1995,18(4):39-44
    10.李兴红,康绍兰,李金云,张国保,马跃辉,韩福才,陈柏柱.玉米丝黑穗病菌(Sphacelotheca reiliana)冬孢子生物学特性的研究Ⅱ.河北农业大学学报,1995,18(1):57-61
    11.刘聪莉.鉴定玉米对丝黑穗病抗性的简易方法.莱阳农学院学报,1997,14(4):259-2601
    12.刘洪亮,王险峰,刘辉,沈国生,谢丽华.玉米丝黑穗病原菌冬孢子萌发条件研究.中国植保导刊,2007,27(12):5-8
    13.刘锡若,薛国典.玉米品种对丝黑穗病的抗病性和幼苗诊断的研究.植物保护学报,1983,10(4):274-275
    14.马秉元,李亚玲.玉米丝黑穗病早期特异症状.植物保护,1982,(3):11
    15.袁邦前.玉米丝黑穗病的发生及防治.云南农业,2002,2:16
    16.华致莆,白宝球,赵晓军.玉米丝黑穗病生理分化的研究.吉林农业大学学报,1995,17(2):32-37
    17.贾菊生,张前.玉米丝黑穗病冬孢子萌发条件的研究.植物保护学报,1990,17(2):109-112
    18.康绍兰,李兴红,乔秀娟,张国保,马跃辉.玉米丝黑穗病菌的冬孢子生物学特性的研究Ⅰ.河北农业大学学报,1994,17(3):78-84
    19.任金平,庞志超,吴新兰,张秀文,刘煜才.多功能种衣剂防治玉米、高粱病害研究初报.吉林农业科学,1994,(2):37-41
    20.石红良,姜艳喜,王振华,李新海,李明顺,张世煌.玉米抗丝黑穗病QTL分析.作物学报,2005,31(11):1449-1454
    21.王晓鸣,戴法超.玉米病虫害田间手册-病虫害鉴别与抗性鉴定.北京:中国农业科技出版社,2002,102.
    22.王晓鸣,晋齐鸣,王作英,徐秀德,周朝文,陈学军,姚峰,李亚军.2002年东北玉米丝黑穗病爆发原因与防治建议.植保技术与推广,2003,23(3):12-14
    23.袁文龙,康占海,陶晡,赵春辉,霍建飞,耿硕.基因芯片技术及其在植物中的应用.安徽农业科学,2010,38(26):14279-14280
    24.赵羹梅,王淑芳,刘聪莉.玉米丝黑穗病原菌侵染的一些细胞学研究.植物病理学报,1991,21(4):267-270
    25.朱有缸.玉米不同抗性品种对丝黑穗菌在感病年龄上的差异.植物病理学报,1984,14(8):135-139
    26.王金华.玉米丁布对玉米丝黑穗病抗性关系的研究.植物保护学报,1988,8(16):187-190
    27.杨捷频.常规石蜡切片方法的改良.生物学杂志,2006,23(1):45-46
    28. Aloni R, Aloni E, Langhans M and Ullrich CI.Role of auxin in regulating Arabidopsis flower development. Planta.2006,223(2):315-328
    29. Anders, S. Analysing RNA-Seq data with the "DESeq" package. Mol Biol.2010,1-17
    30. Anterola AM, Lewis NG. Trends in lignin modification:a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry.2002,61:221-294
    31. Apel K and Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annual Review of plant biology.2004,55:373-399
    32. Asselbergh B, Vleesschauwer DD and Hofte M. Global switches and fine-tuning-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact.2008,21:709-719
    33. Benkova E, Friml J, Jurgens G, Michniewicz M, Sauer M, Seifertova D, and Teichmann T. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell,2003,115:591-602
    34. Brown D, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol.2001,126:524-535
    35. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell,1997,88:695-705
    36. Carole M, Christophe R., Alain J, Dargent R. The biological cycle of Sporisorium reilianum f.. sp. Zeae:An overview using microscopy. Mycologia.2002,94 (3):505-514
    37. Chen Y, Chao Q, Tan G, Zhao J, Ji Q, Xu M. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet. 2008,117(8):1241-1252
    38. Cheng, YF and Zhao YD. A role for auxin in flower development. J Integr Plant Biol. 2007,49:99-104
    39. Chuck G, Meeley R, Hake S. Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development,2008,135(18):3013-3019
    40. Cohen MF, Sakihama Y, Yamasaki H. Roles of plant flavonoids in interactions with microbes:from protection against pathogens to the mediation of mutualism. Recent Res. Devel. Plant Physiol,2001,2:157-173
    41. Creelman RA, Tierney ML, Mullet JE. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA.1992,89(11):4938-4941
    42. Delledonne M, Xia Y, Dixon RA, Lamb C. Nitric oxide functions as a signal in plant disease resistance. Nature.1998,394(6693):585-588
    43. Dixon DP, Lapthorn A, Edwards R. Plant glutathione transferases. Genome Biol. 2002,3(3):reviews3004.1-3004.10
    44. Durner J, Shah J, Klessig D F. Salicylic acid and disease resistance in plants. Trends in plant science.1997,2(7):266-274
    45. Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D. Digital gene expression signatures for maize development. Plant Physiol.2010,154:1024-1039
    46. Everton B, Imad Z, Yongsheng C, Jeppe A, Gerhard W, Milena O, Birte D, Uschi F, Yves B, Thomas L. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.). BMC Plant Biol. 2010,10:27
    47. Feldbrugge M, Kamper J, Steinberg G, Kahmann R. Regulation of mating-and pathogenic development in Ustilago maydis. Curr Opin Microbiol.2004,7(6):666-672
    48. Flor HH. Current status of the gene-for-gene concept. Ann Rev Phytopathol.1971,9: 275-296
    49. Frederiksen, R. Head smuts of corn and sorghum. In HD Loden, D Wilkinson,eds, Proceedings of the 32nd Annual Corn Sorghum Conference. American Seed Association, Washington,1977, pp 89-104
    50. Gardiner JM, Buell CR, Elumalai R, Galbraith DW, Henderson DA, Iniguez AL, Kaeppler SM, Kim JJ, Smith A, Zheng L, Chandler VL:Design, production, and utilization of long oligonucleotide microarrays for expression analysis in maize. Maydica.2005,50:425-436
    51. Ghareeb H, Becker A, Iven T, Feussner I and Schirawski J. Sporisorium reilianum Infection Changes Inflorescence and Branching Architectures of Maize, Plant physiol. 2011,156(4):2037-2052
    52. Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol.2004,7:465-471
    53. Halisky P M. Physiological specialization and genetics of the smut fungi Ⅲ. Bot Rev, 1965,31:114-1501
    54. Hammerschmidt R, Lamport DTA, Muldoon EP. Cell wall hydroxyproline enhancement and lignin deposition as an early event in the resistance of cucumber to Cladosporium cucumerinum. Physiol Plant Pathol,1984,24:43-47
    55. Hammond-Kosack KE, Jones JDG. Resistance gene-dependant plant defense responses. Plant Cell,1996,8:1773-1791
    56. Hancock JT, Desikan R, Neill SJ. Role of reactive oxygen species in cell signalling pathways. Biochem Soc Trans,2001,29(2):345-350
    57. Harris SD. Branching of fungal hyphae:regulation, mechanisms and comparison with other branching systems. Mycologia,2008,100(6):828-832
    58. Hejgaard J, Jacobsen S, Svendsen IB. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett,1991,291(1):127-131
    59. Hao G, Du X, Zhao F, Ji HW. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol Lett, 2010,32(2):305-314
    60. Jabs T, Dietrich RA, Dangl JL. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science.1996,273(5283):1853-1856
    61. Jia Y, McAdams SA, Bryan GT, Hershey HP. Valent B Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal.2000,19:4004-4014
    62. Joannou YM. Degradation of diazinon by 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H) one in maize. Phytochem.1980,10:1607-1611
    63. Jofuku KD, den Boer BG, Van MontaguM, Okamuro JK. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell.1994, 6:1211-1225
    64. Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science.1992,258:985-987
    65. Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM and Mjolsness E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl.Acad.Sci. USA,2006, 103:1633-1638
    66. Kachroo A, Kachroo P. Fatty Acid-Derived Signals in Plant Defense. Annu Rev Phytopathol.2009,47:153-176
    67. Kachroo P, Shanklin J, Shah J, Whittle J, Klessig DF. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA.2001,98:9448-9453
    68. Kang SL, Li XH, Qiao XJ, Zhang GB, Ma YH, Han FC, Chen BZ. Study on the biological characteristics of teliospores of Sphacelotheca reiliana (I). J HB Agric Univ,1994,17(3):78-84
    69. Karam BS, Rhonda CF and Luis OS. Transcription factors in plant defense and stress response. Curr Opin Plant Biol.2002,5:430-436
    70. Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions. Trends Plant Sci,2009,14:373-382
    71. Kitajima S, Sato F. Plant pathogenesis-related proteins:molecular mechanisms of gene expression and protein function. J Biochem,1999,125(1):1-8
    72. Kriechbaumer V, Glawischnig, E. Auxin biosynthesis within the network of tryptophan metabolism. Journal of Nano & Bio Tech.2005,2:55-58
    73. Kriechbaumer V, Weigang L, Fiesselmann A, Letzel T, Frey M, Gierl A, Glawischnig E. Characterisation of the tryptophan synthase alpha subunit in maize. BMC Plant Biol.2008,8:44
    74. Knogge W. Fungal infection of plants. Plant Cell,1996,8:1711-1722
    75. Kurosaki F, Nishi A. Stimulation of calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys.1993,302:144-151
    76. Lagopodi AL, Ram AF, Lamers GE, Punt PJ, Van den Hondel CA, Lugtenberg BJ and Bloemberg GV. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker. Mol. Plant Microbe Interact,2002,15:172-179
    77. Liechti R, Gfeller A, Farmer EE. Jasmonate Signaling Pathway. Sci STKE, 2006(322):cm2, DOI:10.1126/stke.3222006cm2.
    78. Li XH, Kang SL, Li JY, Zhang GB, Ma YH, Han FC, Chen BZ. Study on the biological characteristics of teliospores of Sphacelotheca reiliana (II). J HB Agric Univ,1995,18(1):57-61
    79. Lu XW, Brewbaker JL. Molecular mapping of QTLs conferring resistance to Sphacelotheca reiliana (Kuhn) Clint. Maize Genetics Cooperation Newsletter.1999, 73:361
    80. Ludwig-Muller J, Bendel U, Thermann P, Ruppel M, Epstein E, Hilgenberg W. Concentrations of indole-3-acetic acid in plants of tolerant and susceptible varieties of Chinese cabbage infected with Plasmodiophora brassicae Woron. New Phytol, 1993,125:763-769
    81. Ludwig-Muller J and Guther M. Auxins as Signals in Arbuscular Mycorrhiza Formation. Plant Signal Behav.2007,2(3):194-196
    82. Lubberstedt T, Tan G, Liu X, Melchinger A E, Xia X C. QTL mapping of resistance to Sporisorium reiliana in maize. Theor Appl Genet.1999,99 (34):5973-5981
    83. Maere S, Heymans K, Kuiper M. BiNGO:a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics.2005,21:3448
    84. Marrs KA. The functions and regulation of Glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol.1996,47:127-158
    85. Martinez C, Jauneau A, Roux C, Savy C, Dargent R. Early infection of maize roots by Sporisorium reilianum f. sp. zeae. Protoplasma.2000,213:83-92
    86. Martinez C, Roux C, Jauneau A, Dargent R. The biological cycle of Sporisorium reilianum f.sp. zeae:an overview using microscopy. Mycologia.2002,94:505-514
    87. Matyac, C.A., and Kommedahl, T. Factors affecting the development of head smut caused by Sphacelotheca reiliana on corn. Phytopahtol.1985,75:577-581
    88. Matyac CA and Kommedahl T. Occurrence of chlorotic spots on corn seedlings infected with Sphacelotheca reiliana and their use in evaluation of head smut resistance. Plant Dis.1985,69:251-254
    89. Mazzola M and White FF. A mutation in the indole-3-acetic acid biosynthesis pathway of Psedudomonas syringae pv.syringae affects growth in Phaseolus vulgaris and syringomycin production. J Bacteriol.1994,176:1374-1382
    90. McDowell JM, Dangl JL Signal transduction in the plant immune response. Trends Biochem Sci,2000,25:79-82
    91. Noctor G and Foyer CH. Ascorbate and glutathione:keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol.1998,49:249-279
    92. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell.1995,7:173-182
    93. Osbourn A E. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell,1996,8:1821-1831
    94. Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J.Virol,2005,79:2549-2558
    95. Passardi F, Penel C, Dunand C. Performing the paradoxical:how plantperoxidases modify the cell wall. Trends Plant Sci,2004,9(11):534-540
    96. Peer WA, Murphy AS. Flavonoids and auxin transport modulators or regulators. Trends Plant Sci.2007,12:556-563
    97. Perfect SE, Hughes HB, O'Connell RJ and Green JR. Colletotrichum—a model genus for studies on pathology and fungal-plant interactions. Fungal Genet Biol, 1999,27(2-3):186-198
    98. Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. Vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. Plant cell,2011,23 (2):550-566
    99. Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol,2007,7:21
    100.Pomar F, Novo M, Bernal MA, Merino F, Barcelo AR. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New phytol,2004,163:111-123
    101.Prusty R, Grisafi P, Fink GR. The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl.Acad.Sci. USA,2004,101:4153-4157
    102.Quattrocchio F, Baudry A, Lepiniec L and Grotewold E. The regulation of flavonoid biosynthesis. The Science of Flavonoids (Grotewold, E., ed.),2006,97-122, DOI: 10.1007/978-0-387-28822-2_4
    103.Rastogi S, Dwivedi UN. Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci,2008,174:264-277
    104.Redman RS, Dunigan DD, and Rodriguez RJ. Fungal symbiosis from mutualism to parasitism:who controls the outcome, host or invader? New Phytol,2001,151:705-716
    105.Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R and Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and host tumour formation. Mol Plant Pathol.2008,9(3):339-355
    106.Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J and Kuhlemeier C. Regulation of phyllotaxis by polar auxin transport. Nature. 2003,426:256-260
    107.Reuber TL, Ausubel FM. Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Plant Cell,1996,8:241-249
    108.Ritchie SW, Hanway JJ, Benson GO. How a Corn Plant Develops. Iowa State Univ. 1993, Sp. Rpt. No.48. Available at http://www.extension.iastate.edu/hancock/info/ corn.htm
    109.Robinson MD, McCarthy DJ, Smyth GK. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics.2010, 26(1):139-140
    110.Ryals JA, Neuenschwander VH, Willzts MG, Molina A, Steiner HY, Hunt DMD. Systemic acquired resistance. Plant Cell,1996,8:1809-1819
    111.Saghai-Maroof MA, Saliman KM. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA,1984,81(24):8014-8018
    112.Schijlen EG, Ric de Vos CH, van Tunen AJ, Bovy AG. Modification of flavonoid biosynthesis in crop plants. Phytochemistry,2004,65:2631-2648
    113.Schirawski J, Heinze B, Wagenknecht M, Kahmann R. Mating type loci of Sporisorium reilianum:novel pattern with three a and multiple b specificities. Eukaryot Cell.2005,4:1317-1327
    114.Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al. The B73 maize genome:complexity, diversity, and dynamics. Science.2009,326:1112
    115.Schraudner M, Moeder W, Wiese C, Camp WV, Inze D, Langebartels C, Sandermann HJr. Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J.1998,16(2):235-245
    116.Sels J, Mathys J, De Coninck BM, Cammue BP, De Bolle MF. Planf pathogenesis-related (PR) proteins:a focus on PR peptides. Plant Physiol Biochem,2008,46(11): 941-950s
    117.Shah J, Tsui F, Klessig DF. Characterization of a salicylic acid-insensitive mutant (sail) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene. Mol Plant Microbe Interact,1997,10(1):69-78
    118.Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG, Jones JD. Molecular genetics of plant disease resistance. Science,1995,268:661-667
    119.Sukno SA, Garcia VM, Shaw BD, Thon MR. Root infection and systemic colonization of maize by Colletotrichum graminicola. Appl Environ Microbiol,2008, 74:823-83
    120.Tanabe S, Nishizawa Y, Minami E. Effects of catalase on the accumulation of H2O2 in rice cells inoculated with rice blast fungus, Magnaporthe oryzae. Physiol Plant, 2009,137(2):148-154
    121.Tang X, Frederick R D, Zhou J, Halterman D A, Jia Y, Martin G B. Initiation of plant disease resistance by physical interaction of Avrpto and Pto Kinase. Science,1996, 274:2060-2063
    122.Tatebe K, Zeytun A, Ribeiro RM, Hoffmann R, Harrod KS, Forst CV. Response network analysis of differential gene expression in human epithelial lung cells during avian influenza infections. BMC Bioinformatics,2010,11(1):170
    123.Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci.2009,14(6) 310-317
    124.Torres MA, Jones JD, Dangl JL. Reactive oxygen species signaling in response to pathogens. Plant Physiol,2006,141(2):373-378
    125.Tronchet M, Balague C, Kroj T, Jouanin L, Roby D. cinnamyl alcohol dehydrogenases-c and d key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol,2010,11(1):83-92
    126.Upchurch RG. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett.2008,30(6):967-977
    127.Van der Biezen EA, Jones JDG. Plant disease-resistance proteins and the gene- for-gene concept. Trends in Biochemical Sciences,1998,23:454-456
    128.Van Loon LC. Induced resistance in plants and the role of pathogenesis-related proteins. Eur.J.Plant Pathol,1997,103:753-765
    129.Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Ann Rev Phytopathol,1998,36:453-483
    130.Van Loon LC, Van Strien EA. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol, 1999,55:85-97
    131.Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. Serial analysis of gene expression. Science.1995,270(5235):484-487
    132.Vernoux T, Besnard F, and Traas J. Auxin at the Shoot Apcial Meristem. Cold Spring Harb. Perspect. Biol.2010,2:a001487
    133.Wagner D. Flower Morphogenesis:Timing Is Key. Dev Cell,2009,16:621-622
    134. Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y. Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci,2012,196: 125-131
    135.Woodward AW and Bartel B. Auxin:Regulation, Action, and Interaction. Ann Bot, 2005,95(5):707-735
    136.Wu X, McSteen P. The role of auxin transport during inflorescence development in maize (Zea mays, Poaceae). Am J Bot,2007,94:1745-1755
    137.Yao JQ, Yu F. DEB:A web interface for RNA-seq digital gene expression analysis. Bioinformation.2011,7(1):44-45
    138.Zhang LF, Chia JM, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D. A genome-wide characterization of microRNA genes in maize. PLoS Genet.2009,5:e1000716, DOI:10.1371/journal.pgen.1000716
    139.Zhou R, Jackson L, Shadle G, Nakashima J, Temple S, Chen F, Dixon RA. Distinct cinnamoyl CoA reductases involved in parallel routes to lignin in Medicago truncatula. Proc. Natl. Acad. Sci. USA.2010,107:17803-17808
    140.Zipfel C. Early molecular events in PAMP-triggered immunity. Current Opin Plant Biol,2009,12:414-420
    141.Zou J, Abrams GD, Barton DL et al. Induction of lipid and oleoisin biosynthesis by (+)-abscisic and its metabolites in microspore-derived embryos of Brassica napus L.cv Reston. Plant physiol.1995,108:563-571