酒精沼气双发酵耦联工艺技术中高浓度酒精发酵及抑制因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酒精沼气双发酵耦联工艺既能解决蒸馏废液污染问题又能节约大量的水资源。通过前期的实验发现消化液中有抑制酒精发酵的抑制因子存在,而且酒精发酵前期硫酸的添加会抑制厌氧沼气发酵。故本文针对可能会影响双发酵循环的物质进行了研究,并寻找到解决方法,为此工艺的进一步工业化打下基础。
     通过研究发现,丙酸对酒精发酵的抑制受浓度和发酵液初始pH的影响。当丙酸浓度在合适条件下能使酒精产量提高7.6%,酵母数量减少76%,甘油产量降低39.6%。但是丙酸浓度过高时酒精发酵会被完全抑制。在丙酸浓度相同时,初始pH的降低增强了丙酸对酒精发酵的抑制作用。
     通过无预糖化工序的“同步糖化发酵”技术研究,将酒精发酵的初始pH提高到6.0,硫酸的消耗降低了50%,使SO42-的浓度在3g/L的沼气发酵安全范围内。高浓度酒精发酵条件为:料水(中温厌氧出水)比1:2.2(w/w),糖化酶的添加量为140 U/g木薯,发酵54 h,最终酒精浓度达14.7%(v/v)。糖化酶添加量较常规酒精发酵用量增加了17%。
     在进行高浓度酒精发酵时,双发酵耦联工艺进行的没有低浓度酒精发酵时稳定,尤其在第四批到第八批时淀粉利用率仅有80%。在对厌氧发酵进行调整后循环继续到15批,发酵时间54 h,酒精度维持在14.5%左右,淀粉利用率在87%以上,比较稳定。对酒精发酵配料水进行检测发现在循环前期COD、碱度、氨氮和无机离子含量都有很大幅度的提高,后期基本稳定。
     通过对钙、钠、镁、钾四种离子对酒精发酵的影响进行研究发现,钙离子的抑制浓度为10 g/L,钠离子的抑制浓度为5 g/L,镁离子浓度在5g/L以下时会提高最终酒精产量,而钾离子对酒精发酵的影响并不明显。
The practiced of ethanol-methane coupled process, could save plenty of water resources, and prevent wastewater discharging to the environment. We detected that there were inhibitors, which have negatively effect on the ethanol fermentation, in the anaerobic digestion effluent. The SO42-, which joined in the system to ensure that the mash adjusted to pH 4.0-4.2, would be harmed to the methane fermentation. As a result, we studied the inhibitors which would be have negatively effect on the ethanol-methane coupled process, and found solutions to the problems. This paper provides fundamental base for the further industry production of the ethanol-methane coupled process.
     The effect of propionic acid on the ethanol fermentation depend on the concentration of propionic acid and the initial medium pH. Under the moderate concentration of propionic acid, the final ethanol concentration increased 7.6%compared to the control. Conversely, the biomass production decreased 76%, the glycerol production decreased 39.6%compared to the control as well as. However, when the propionic acid was high, the ethanol fermentation was inhibited totally. At the same concentration of propionic acid, the inhibition of propionic acid to the ethanol fermentation would be enhanced with the pH of the mashing depressed.
     The dosage of sulfate reduced by 50%through elevating the initial medium pH to 6.0 in the simultaneous saccharification and fermentation (SSF) without pre-saccharification, resulted in the concentration of sulfate under 3 g/L, which was safe to the methane fermentation. The very high gravity ethanol fermentation conditions:cassava mixed water at 1:2.2 (w/w) ratio, the dosage of glucoamylase was 140 U/g cassava, fermentation time 54 h, and the final ethanol concentration was 14.7%(v/v). In the optimized process, the glucoamylase dosage increased 20 U/g cassava compared to that in the traditional process.
     The VHG ethanol fermentation not gone as well as the regulation when the ethanol-methane coupled process working, especially, at the fourth to eighth batch, the starch utilization rate was only 80%. However, the cycle went more stable after the methane fermentation rearranged. This cycle has been operated 15 batches, the fermentation time was 54 h, the final ethanol concentration was above 14.5%(v/v), and the starch utilization rate was above 87%. The performance of the water for mashing had been rapidly accumulated at the prophase of the cycle, however, which had been stabled after the methane fermentation rearranged, such as the concentration of COD, NH4+-N, alkalinity and the concentration of inorganic ions.
     The effect of inorganic ions, such as Ca2+, Na+, Mg2+, K+, on the ethanol fermentation were determined. It was shown that the inhibit concentration of Ca2+was 10 g/L, and the inhibit concentration of Na+was 5 g/L. The final ethanol concentration had been increased when the concentration of Mg2+below 5 g/L, and the effect of K+ on the ethanol fermentation was not obvious.
引文
1.Gibson BR, Lawrence SJ, Leclaire JPR et al. Yeast responses to stresses associated with industrial brewery handling[J]. Ferns Microbiology Reviews, 2007,31(5):535-569.
    2.Dombek K,Ingram L. Magnesium limitation and its role in apparent toxicity of ethanol during yeast fermentation[J]. Applied and environmental microbiology, 1986,52(5):975.
    3.Jones A, Ingledew WM. Fuel alcohol production:appraisal of nitrogenous yeast foods for very high gravity wheat mash fermentation [J]. Process Biochemistry, 1994,29(6):483-488.
    4.Thomas KC, Ingledew WM. Fuel alcohol production:effects of free amino nitrogen on fermentation of very-high-gravity wheat mashes[J]. Applied and environmental microbiology,1990,56(7):2046-2050.
    5.Thomas KC,Ingledew WM. Production of 21%v/v ethanol by fermentation of very high gravity VHG wheat mashes[J]. Journal of Industrial Microbiology and Biotechnology,1992,10(1):61-68.
    6.Laopaiboon L, Nuanpeng S, Srinophakun P,et al. Ethanol production from sweet sorghum juice using very high gravity technology:Effects of carbon and nitrogen supplementations[J]. Bioresource Technology,2009,100(18):4176-4182.
    7.吕欣,段作营,毛忠贵.氮源与无机盐对高浓度酒精发酵的影响[J].西北农林科技大学学报(自然科学版),2003,31(4):159-162.
    8.沈楠,肖冬光,吴帅.大豆脂肪酸对酿酒酵母酒精耐性的影响[J].酿酒科技,2006,11:17-20.
    9.黄宇彤.酒精浓醪发酵菌种选育及发酵条件的优化[D].天津:天津科技大学2002.
    10.Kotarska K,Czuprynski B,Klosowski G. Effect of various activators on the course of alcoholic fermentation [J]. Journal of Food Engineering,2006,77(4):965-971.
    11.Wang FQ, Gao CJ, Yang CY,et al. Optimization of an ethanol production medium in very high gravity fermentation[J]. Biotechnology Letters,2007,29(2):233-236.
    12.Alfenore S, Molina-Jouve C, Guillouet S,et al. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process[J], Applied microbiology and biotechnology,2002,60(1):67-72.
    13.胡纯铿,白凤武,安利佳.外源脂肪酸对酒精诱导自絮凝颗粒酵母细胞膜磷脂脂肪酸组成变化的影响[J].生物工程学报,2004,20(6):922-926.
    14.Mishra P, Kaur S. Lipids as modulators of ethanol tolerance in yeast[J]. Applied microbiology and biotechnology,1991,34(6):697-702.
    15.Hounsa C, Brandt E, Thevelein J, et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress[J]. Microbiology,1998,1443:671-680.
    16.Thatipamala R, Rohani S, Hill G. Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation[J]. Biotechnology and bioengineering,1992,40(2):289-297.
    17.Srichuwong S, Fujiwara M, Wang X, et al. Simultaneous saccharification and fermentation SSF of very high gravity VHG potato mash for the production of ethanol[J]. Biomass and Bioenergy,2009,33(5):890-898.
    18.刘振,王金鹏,张立峰.木薯干原料同步糖化发酵生产乙醇[J].过程工程学报,2005,5(3):353-256.
    19.刘建军,姜香燕,赵祥顺.高产酒精酵母菌种的选育[J].酿酒,2003,30(1):57-59.
    20.Bertolini M, Ernandes J, Laluce C. New yeast strains for alcoholic fermentation at higher sugar concentration[J]. Biotechnology Letters,1991,13(3):197-202.
    21.GuInur B, Pemra D. Mathematieal deseription of ethanol fermentation by immol/Lobilized Saeharomyee seerevisiae[J]. ProeessBioehemistry 1998,33(7):763-771.
    22.Antonio R, Maria C. Produetion of ethanol by yeasts immol/Lobilized in Pectin[J]. APPlied Mierobiology and Bioteehnology,1983,17:148-151.
    23.李东侠,白凤武.自絮凝颗粒酵母酒精连续发酵过程精馏废液循环回用工艺的研究[J].应用与环境生物学报,1999,55:533-536.
    24.贾树彪.势能自流式酒精连续发酵罐组的设计与分析[J].酿酒,2002,29(1):78-79.
    25.谭天伟,王芳,邓利,等.生物能源的研究现状及展望[J].现代化工2003,23(9):8-12.
    26.Hsiao T, Glatz C, Glatz B. Broth recycle in a yeast fermentation[J]. Biotechnology and bioengineering,1994,44(10):1228-1234.
    27.Kim JS;Kim BG,Lee CH, et al. Development of clean technology in alcohol fermentation industry[J]. Journal of Cleaner Production,1997,54:263-267.
    28.毛忠贵,张建华.燃料乙醇制造的“零能耗零污染”趋势[J].生物工程学报,2008,24(6):946-949.
    29.Castro GA, Caicedo LA, Almeciga-Diaz CJ, et al. Solvent extraction of organic acids from stillage for its re-use in ethanol production process[J]. Waste Management & Research,2010,28(6):533-538.
    30.Zhang QH, Lu X, Tang L, et al. A novel full recycling process through two-stage anaerobic treatment of distillery wastewater for bioethanol production from cassava[J]. Journal of Hazardous Materials,2010,179:635-641.
    31.Zhang CM, Mao ZG, Wang X, et al. Effective ethanol production by reutilizing waste distillage anaerobic digestion effluent in an integrated fermentation process coupled with both ethanol and methane fermentations [J]. Bioprocess and Biosystems Engineering, DOI 10.1007/s00449-010-0432-8.
    32.翟芳芳,张静,张建华,等.酒精沼气双发酵偶联工艺中沼液有机酸对酒精发酵的影响[J].食品与生物技术学报,2010,29(3):432-436.
    33.张静,翟芳芳,张建华,等.酒精沼气双发酵偶联中厌氧沼气的发酵行为[J].食品与生物技术学报,2010,29(2):276-281.
    34.张成明,翟芳芳,张建华,等.木薯酒精生产中厌氧消化液的回用工艺研究[J].安徽农业科学,2008,36(17):7417-7420.
    35.Hanaki K, Hirunmasuwan S, Matsuo T. Protection of methanogenic bacteria from low pH and toxic materials by immol/Lobilization using poly vinyl alcohol [J]. Water research,1994,28(4):877-885.
    36.王志强,张建民,张继,等COD/SO42-对SRB处理含硫酸盐废水效果的影响[J].西安工程大学学报,2010,24(2):185-188.
    37.刘海成,康健雄COD/SO42-值影响硫酸盐去除率的试验研究[J].兰州工业高等 专科学校学报2006,13(2):41-45.
    38.Mollapour M, Shepherd A, Piper PW. Novel stress responses facilitate Saccharomyces cerevisiae growth in the presence of the monocarboxylate preservatives[J]. Yeast,2008,25(3):169-177.
    39.Piper P, Calderon CO, Hatzixanthis K, et al. Weak acid adaptation:the stress response that confers yeasts with resistance to organic acid food preservatives[J]. Microbiology,2001,147(10):2635-2642.
    40.Moon NJ. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures[J]. Journal of Applied Bacteriology,1983, 55:453-460.
    41.Maiorella B, Blanch HW, Wilke C. By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae[J]. Biotechnology and bioengineering, 1983,25(1):103-121.
    42.Pampulha ME, Loureiro V. Interaction of the effects of acetic acid and ethanol on inhibition of fermentation inSaccharomyces cerevisiae [J]. Biotechnology Letters, 1989,11(4):269-274.
    43.Phowchinda O, Délia-Dupuy ML, Strehaiano P. Effects of acetic acid on growth and fermentative activity of Saccharomyces cerevisiae[J]. Biotechnology Letters, 1995,17(2):237-242.
    44.Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium[J]. Journal of Industrial Microbiology and Biotechnology,2001,26(3):171-177.
    45.Pampulha ME, Loureiro-Dias M. Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid[J]. Applied microbiology and biotechnology,1990,34(3):375-380.
    46.Abbott DA, Ingledew WM. Buffering capacity of whole corn mash alters concentrations of organic acids required to inhibit growth of Saccharomyces cerevisiae and ethanol production[J]. Biotechnology Letters,2004,26(16):1313-1316.
    47.Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae by different mechanisms[J]. J Am Soc Brew Chem,2001,59:187-194.
    48.Thomas KC, Hynes S, Ingledew WM. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acidsfJ]. Applied and environmental microbiology,2002,68(4):1616-1623.
    49.Pampulha ME, Loureiro-Dias M. Combined effect of acetic acid, pH and ethanol. on intracellular pH of fermenting yeast[J]. Applied microbiology and biotechnology, 1989,31(5):547-550.
    50.章克昌.酒精与蒸馏酒工艺学[M].北京:中国轻工业出版社,1995.
    51.任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社,2009.
    52.Colleran E, Finnegan S, Lens P. Anaerobic treatment of sulphate-containing waste streams[J]. Antonie van Leeuwenhoek,1995,67(1):29-46.
    53.Colleran E. Effect of influent COD/SO42- ratios on mesophilic anaerobic reactor biomass populations:physico-chemical and microbiological properties[J]. FEMS Microbiology Ecology,2006,56(1).
    54.李清雪,李龙和,王欣,等COD/SO42-值对厌氧处理高浓度硫酸盐废水的影响[J].中国给水排水,2007,(23)13:73-75.
    55.王福荣.酿酒分析与检测[M].北京:化学工业出版社,2005.
    56.诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1994.
    57.天津工业学院编.工业发酵分析[M].北京:中国轻工业出版社,2005.
    58.韩金土,余荣珍.火焰原子吸收光谱法测定枸杞子中的金属元素[J].信阳师范学院学报(自然科学版),2003,16(2):169-171.
    59.贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    60.Pronk J, Linden-Beuman A, Verduyn C, et al. Propionate metabolism in Saccharomyces cerevisiae:implications for the metabolon hypothesis[J]. Microbiology,1994,140(4):717-722.
    61.Taherzadeh MJ, Niklasson C, Lien G. Acetic acid-friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae?[J]. Chemical Engineering Science,1997,52(15):2653-2659.
    62. Oura E. Reaction products of yeast fermentation[J]. Proc.Biochem, 1977,12(19):21-35.
    63.Zhao R, Bean S, Crozier-Dodson B, et al. Application of Acetate Buffer in pH Adjustment of Mash and its Influence on Fuel Ethanol Fermentation[J]. Journal of Industrial Microbiology and Biotechnology,2009,36:75-85.
    64.Devantier R, Pedersen S, Olsson L. Characterization of very high gravity ethanol fermentation of corn mash. Effect of glucoamylase dosage, pre-saccharification and yeast strain[J]. Applied microbiology and biotechnology,2005,68(5):622-629.
    65.董春娟,吕炳南,贾名准.降低废水厌氧处理所需碱度的有效途径[J].环境污染治理技术与设备,2003,44:88-91.
    66.郑福生,郑淑文.碱度对厌氧体系的影响分析[J].中国高新技术企业技术论坛,2008,65-67
    67.Maiorella B, Blanch H, Wilke C. Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae[J]. Biotechnology and bioengineering, 1984,26(10):1155-1166.
    68.王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社.2002.
    69.孙延宏.几种无机离子对啤酒酵母生理代谢的影响及发酵过程的产酸机制[J].大连轻工业学院学报,2002,2(11):29-32.
    70.王进.糖蜜酒精废液回用与发酵酵母菌种选育的研究[D].硕士学位论文:广西大学,2004.
    71.Nevoigt E, Stahl U. Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae[J]. Ferns Microbiology Reviews,1997,2(13):231-241.