结构定性建模理论及其在机械产品类比设计中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对概念设计中产品结构的定性特性,提出了面向概念设计的产品结构定性建模理论。
    通过对实体零件的联结面、功能面和零件结构构形的抽象并将其符号化,建立了零件符号模
    型:通过将实体零件上功能表面的类型、相对位置、朝向以及面与面之间拓扑关系抽象成定
    性符号集合,建立了符号零件的定性模型;利用零件的符号模型进行装配建模,建立了符号
    装配模型;通过对符号装配模型中零部件之间空间位置关系的定性描述,建立了面向概念设
    计的产品装配结构定性模型。并进一步运用功能—行为—结构—形状模型,提出了一种基于
    结构相似的机械产品类比设计方法。
     论文的主要工作包括:
     第一章综述了定性空间推理的研究现状和产品结构模型的相关研究,讨论了概念设计中
    的产品结构,阐述了面向概念设计的产品结构定性建模理论的主要思想和基于结构相似的机
    械产品类比设计方法的基本原理。
     第二章提出以形体符号来表示零件的结构,讨论了形体符号的定义、分类、性质、操作、
    描述、定量和定性拼合运算,提出了基于形体符号的零件符号造型过程和零件符号化的方法。
    并给出典型结构零件的符号表示实例。
     第三章提出了支持概念设计并能指导和控制零件形状设计的符号零件结构定性模型,讨
    论了定性空间推理代数方法的基本原理,定性几何约束的定义、标注和局部相容性推理方法,
    并给出实例。
     第四章提出以零件的符号模型来进行装配建模,讨论了符号装配关系、定性几何约束、
    定性几何约束图、约束相容性维护,并结合实例介绍了概念设计中产品装配结构定性模型的
    建立过程和约束推理方法。
     第五章提出以符号零件的结构模型来划分零件设计资源,讨论了符号零件结构相似度的
    定义和计算方法,提出了结构图匹配和结构图相似的相似结构符号零件查找机理,并运用功
    能—行为—结构—形状模型,提出了基于结构相似的零件类比设计方法。
     第六章运用功能—行为—结构—形状模型,提出了一种基于结构相似的组件类比设计方
    法,讨论了组件装配结构相似度的定义和计算方法,并在分析相似结构符号零件查找机理的
    基础上,提出了相似结构组件的查找机理,并进一步讨论了组件类比设计的模型和基本模式。
     第七章以面向概念设计的产品结构定性建模理论为核心,应用基于结构相似的机械产品
    类比设计方法构造了产品结构设计分层建模原型系统,介绍了原型系统的结构和主要功能模
    块。
     第八章总结了本文的主要研究内容和成果,并给出了今后的研究方向。
Aiming at the qualitative features of concept design product structure, this dissertation presents a theory of qualitative modeling of product structure in concept design. By abstracting and symbolizing of bond surfaces, functional surfaces and configurations of solid parts, the part symbol models have been presented. By abstracting of the type, relative position, orientation and topology relation of solid part functional surfaces as a qualitative symbol set, the symbol part qualitative models have been presented. Part symbol models are used to assembly modeling to set up symbol assembly models. By qualitative describing of space position relations among the parts in symbol assembly models, the concept design product qualitive assembly models have been presented. Furthermore, by using function-behavior-structure-shape models, a method of mechanical product analogy design based on structure similarity has been presented.The main work of the dissertation is as follows:Chapter 1 gives a review and history of the development situation of qualitative spatial reasoning and the correlative researches on product structure models. The product structure in concept design is discussed. The contents of qualitative modeling theory of concept design product structure and the principle of mechanical product analogy design method based on structure similarity are presented.Chapter 2 puts forward to express the structure of parts by shape symbols. The definition, classification, property, edit, description, quantitative and qualitative merge operation of shape symbols are discussed. The part symbol modeling procedure and symbolizing method based on shape symbols are presented, the symbol expression examples of typical structure parts are given.Chapter 3 puts forward the qualitative model of symbol parts which support concept design and can be used to guide and control part shape design. The basic principle of algebra method of qualitative space reasoning and definition, label and consistency locally reasoning methods of qualitative geometry constraint are discussed and examples are presented.Chapter 4 puts forward assembly modeling by using part symbol models. Symbol assembly relation, qualitative geometry constraint, qualitative geometry constraint graph, constraint consistency maintenance are discussed. The examples of product assembly qualitative modeling and constraint reasoning in concept design are presented.Chapter 5 puts forward to compartmentalize part design resources by using symbol part structure models. The definition and calculation methods of symbol part structure similar degree are discussed. The similar structure part retrieval mechanisms of structure graphs matching and structure graphs similarity are discussed. A part analogy design method based on structure
    similarity is presented by using function-behavior-structure-shape model.Chapter 6 puts forward an assembly analogy design method based on structure similarity by using function-behavior-structure-shape model. The definition and calculation methods of assembly structure similar degree are discussed. On the basis of analyzing retrieval mechanisms of similar structure symbol parts, the retrieval mechanisms of similar structure assemblies are presented, the model and basic mode of assembly analogy design are discussed.In the 7th chapter, on the basis of the theory of qualitative modeling of concept design product structure and the method of mechanical product analogy design based on structure similarity, the prototype system of hierarchical modeling method of structure design is developed. The systems' architecture and main functions are introduced.Finally, conclusions are given along with recommendations for future research in chapter 8.
引文
[1] Abdelmoty A. Modelling and reasoning in spatial databases: a deductive object-oriented approach. PH. D Thesis. Edinburgh: Heriot-Watt University, 1995
    [2] Adamson G W, Bush J A. A comparison of the performance of some similarity and dissimilarity measures in the automatic classification of chemical structures. Journal of Chemical Information and Computer Sciences. 1975, 15(1): 55-58
    [3] Aldefeld B, Richter H. Semi-automatic three dimension interpretation of line drawings, Computer & Graphics, 1984, 8(4): 45-51
    [4] Allen J F. Maintaining knowledge about temporal intervals. Communications of the ACM, 1984, 26(11): 832-843
    [5] Ambler A P, Popplestone R J. Inferring the positions of bodies from specified spatial relationships. Artificial Intelligence, 1975, 6: 157-174
    [6] Anderl A, Mendgen R. Modeling with constraints: theoretical foundation and application. Computer-Aided Design. 1996,28(3): 155-168
    [7] Asher N, Vieu L. Towards a geometry of common sense: A semantics and a complete axiomatization of mereotopology. In: Proceedings of IJCAI' 95, 1995, 846-852
    [8] Bhansali S, Kramer G A. Planning from first principles for geometric constraint satisfaction. In: Proceedings of AAAI' 94. 1994, 319-324
    [9] Bhatta S, Goel A K. From design experiences to generic mechanisms: mode-based learning in analogical design. Artificial Intelligence in Engineering Design, Analysis and Manufacturing, 1996(10):131-136
    [10] Biederman I, Recognitionby-components: a theory of human image understanding. Psychological Review, 1987, 94: 115-147
    [11] Borut Ialik, Nikola Guid. Constraint-based object modeling. Journal of Engineering Design, 1996, 7(2): 209-232
    [12] Carlson C. Grammatical programming: an algebraic approach to the description of design spaces. Carnegie Mellon University, Pittsburgh, 1993
    [13] Clementini E, di Felice P, Hernandez D. Qualitative representation of positional information. Artificial Intelligence, 1997, 95(2): 317-356
    [14] Cohn A G. The challenge of qualitative spatial reasoning. ACM Computing Surveys, 1995, 27(3): 323-325
    [15] Corner D F, Amber A P, Popplestone R J, Reasoning about the spatial relationships derived from a PART program for describing assembly by robot. Proc. Int. Joint. Conf. Artificial Intelligence, 1983, 842-844
    [16] Daniel A, McAdams, Kristin L, Wood. A quantitative similarity metric for design-by-analogy. Journal of Mechanical Design, 2002,124(2): 173~182
    [17] David Neville Rocheleau, Kunwoo Lee. System for interactive assembly modeling. Computer Aided Design. 1987, 19: 65-72
    [18] Davis E. Representations of commonsense knowledge. San Mateo: Morgan Kaufmann Publishers. 1990
    [19] de Kleer J, Brown J S. A qualitative physics based on confluences. Artificial Intelligence, 1984, 24(1-3): 7-83
    [20] Deng Y M, Tor S B, Britton G A. Abstracting and exploring functional design information for conceptual mechanical product design. Engineering with Computers, 2000, 16(1): 36-52
    [21] Dixon J R, Cunningham J J, Simmons M K. Research in designing with features. Intelligent CAD, I, eds. Yoshikawa H, Gossard D, Proc. IFIP TC 5/ WG 5.2 Workshop on Intelligent CAD, Elsevier, 1987: 137-148
    [22] du Verdier F. Solving geometric constraint satifaction problem for spatial planning. In: Proceedings of IJCAI' 93. 1993, 1564-1569
    [23] Edwards G. The Voronoi model and cultural space: applications to the social sciences and humanities. In: Frank A U, Campari I, eds. Spatial Information Theory, a Theoretical Basis for GIS. European Conference, COSIT'93. LNCS 716. Berlin: Springer-Verlag. 1993. 202-214
    [24] Egenhofer M J, Franzosa R D. On the equivalence of topological relations. International Journal of Geographical Information Systems, 1995, 9(2): 133-152
    [25] Eric Sardet, Guy Pieera. Formal specification, modeling and exchange of classes of components according to PLIB. In: Proceedings of the International Symposium on Global Engineering Networking GEN'97, Antwerp, Beigium, 1997, 23-24
    [26] Fish J, Scrivener S A R. Amplifying the mind's eye: sketching and visual cognition. Leonardo 1990,23(1): 117-126
    [27] Forbus K D. Qualitative process theory. Artificial Intelligence, 1984, 24(1-3): 85-168
    [28] Frank Harary, Geert Prins. The number of homeomorphically irreducible treea and other species. Acta Math. 1959, 101: 141-162
    [29] Freksa C. Qualitative spatial reasoning. In: Mark D M, Frank A V, eds. Cognitive and Linguistic Aspects of Geographic Space. Dordrecht: Kluwer Academic Publisher. 1991. 361-372
    [30] Freksa C. Temporal reasoning based on semi-internals. Artifical Intelligence, 1992, 54(1-2): 199-227
    [31] Freksa C. Using orientation information for qualitative spatial reasoning. In: Frank A U, Campari I, Formetini U,eds. Theories and Methods of Spatial-temporal Reasoning in Geographic Space. Berlin: Springer-Verlag. LNCS 639. 1992, 162-178
    [32] Galton A. Towards an integrated logic of space, time, and motion. In: Proceedings of IJCAI' 93. 1993, 1558-1563
    [33] Gero J S, Kazakov V. Using analogy to extend the behavior state space in design. In the Fourth International Conference on Computational Models of Creative Design, Sydney: University of Sydney, 1999, 113-143
    [34] Goel A. Design, Analogy and Creativity. IEEE Expert, 1997,12(2): 62-70
    [35] Goel V. Sketches of thought. Cambridge: MIT Press, 1995
    [36] Goldschmidt G. The dialectics of sketching creativity. Research Journal 1991, 4(2): 123-143
    [37] Goyal R K. Similarity assessment for cardinal directions between extended soatial objects. PH. D Thesis. the University of Maine, 2000
    [38] Gorti S R, Gupta A, Kim G J, Sriram R D and Wong A. An Object-oriented Representation for Product and Design Processes. Computer-Aided Design, 1998, 30(7): 489-501
    [39] Harmer Q J, Weaver P M, Wallace K M. Design-led Component Selection. Computer-Aided Design, 1998, 30(t): 391-405
    [40] Hayes P J. The na(?)ve physics nanifesto. In: Michie D, ed. Expert Systems in the Micro Electronic Age. Edinburgh: Edinburgh Press. 1979
    [41] Heisserman J. Generative geometric design and boundary solid grammars. Ph.D. thesis, Carnegie Mellon University. Pittsburgh, 1991
    [42] Hernandez D. Qualitative representation of spatial knowledge. LNAI 804. Berlin: Springer-Verlag. 1994
    [43] Homem de Mello L S, Sanderson A C. A correct and complete algorithm for the generation of mechanical assembly sequences. Proc. IEEE Int. Conf. Robotics & Automation, 1989, 1(14-19): 56-61
    [44] Hubka V. Principles of Engineering Design. London: Butterworth Scientific, 1982
    [45] Hubka V and Ernst E W. Theory of Technical Systems. New York: Springer-Verlag, 1988
    [46] ISO 13584-42-1996, Industrial automation systems and integration — Parts library: Methodology for structuring part families
    [47] Iwasaki Y. Qualitative physics in the handbook of artificial intelligence. 1989, 4: 324-413
    [48] Jungert E. Symbolic spatial reasoning on object shapes for qualitative matching. In: Frank A U, Campari I, eds. Spatial information theory. A theoretical basis for GIS. European Conference, COSIT'93 Proceedings. Berlin: Springer-Verlag. LNCS 716. 1993, 444-462
    [49] Karen, K. Case-based reasoning an introduction. Expert Systems with Applications, 1993 (6): 3-8
    [50] Kavakli M, Scrivener SAR, Ball L J. Structure in idea sketching behaviour. Design Studies 1998, 19(4): 485-518
    [51] Kim S H, Lee K. An assembly modeling system for dynamic and kinematic analysis. CAD, 1989, 21(1): 2-12
    [52] Kiriyama T, Kurumatani K, Tomiyama T, Yoshikawa H. Metamodel: An Integrated Framework for Intelligent CAD. In: Artificial Intelligence in Design, Springer, London, 1989: 429-449
    [53] Kosslyn S M. Image and brain: the resolution of the imagery debate. Cambridge: MIT Press, 1994
    [54] Kosslyn S M. Image and mind. Cambridge: Harvard University Press, 1980
    [55] Kramer G A. A geometric constraint engine. Artificial Intelligence, 1992, 58(1-3): 327-360
    [56] Kramer G A. Solving geometric constraint systems. In: Proceedings of AAAI' 90. 1990, 708-714
    [57] Kuipers B. Commonsense reasoning about causality: Deriving behavior from structure. Artificial Intelligence, 1984, 24(1-3): 85-168
    [58] Kuipers B. The spatial semantic hierarchy. Artificial Intelligence, 2000, 119: 191-233
    [59] Kumara V, Burnsb D, Duttaa D, Hoffmannc C. A framework for object modeling. Computer-Aided Design, 1999, 31: 541-556
    [60] Kunwoo Lee, David C, Gossard, A hierarchical data structure for representating assemblies: part 1, Computer-Aided Design, 1985, 17(1): 15-19
    [61] Kunwoo Lee, Guy Andrews. Inference of the positions of components in an assembly: part2, Computer-Aided Design, 1985, 17(1): 20-24
    [62] Lawson B. Design in mind butterworth architecture. Oxford, 1994
    [63] Lieberman L I, Wesley M A. AUTOPASS: an automatic programming system for computer controlled mechanical assembly. IBM J. RES. DEVELOP, 1977, 321-333
    [64] Light R A, Gossard D C. Modification of geometric models through variational geometry. CAD, 1982, 14(4): 209-214
    [65] LingWeiqing, YanJunwei, WangJian, XieYoubai. Case-based conceptual design. Chinese Journal of Mechanical Engineering, 2004, 17(1): 73-77
    [66] Liu Jihong, Shu Huilin. Deficient Information Modeling of Mechanical Products for Conceptual Shape Design. Chinese Journal of Mechanical Engineering, 2002, 15(1): 1-5
    [67] Lozano-Perez T. Spatial planning: a configuration space approach. IEEE Transactions on Computer, 1983, C32(2): 108-120
    [68] Maccallum K J, Duffy A, Green S. An intelligent concept assistant. In: Yoshikawa H, Warman E A eds. Design Theory for CAD, Amsterdam: Northboland, 1993
    [69] Mayya N, Rajan V T. An efficient shape representation scheme using Voronoi skeletons. Pattern Recognition Letters, 1995, 16(2): 147-160
    [70] Miles L D. Techniques of value analysis and engineering. McGrawHill, New York. 1972
    [71] Novick L R, Tversky B. Cognitive constraints on ordering operations: the case of geometric analogies. Journal of Experimental Psychology: General, 1987, 116: 50-67
    [72] Ogniewicz R L. Skeleton-shace: A multiscale shape description combining region and boundary information. In: Proceedings of Conference on Computer Vision and Pattern Recognition. 1994,746-751
    [73] Ogniewicz R L, Ilg M. Voronoi skeletons: Theory and applications. In: Proceedings of Conference on Computer Vision and Pattern Recognition. 1992, 63-69
    [74] Ogniewicz R L, Kubler O. Hierarchic Voronoi skeletons. Pattern Recognition. 1995, 28(3): 343-359
    [75] Okabe A, Boots B, Sugihara K. Spatial tessellations: concepts and applications of Voronoi diagrams. Chichester: John Wiley&Sons. 1992
    [76] Okino N. A Prototyping of Bionic Manufacturing System. Proc. of Object Oriented Manufacturing System, 1992: 297-302
    [77] Okino N. Bionic Manufacturing System. Janez Pelenic Edit, Flexible Manufacturing System Past-Present-Future, Paris: CIRP, 1993: 73-95
    [78] Pahl G, Beitz W. Engineering Design, London: Design Council, 1984
    [79] Parmee I C, Bonham C R. Towards the support of innovative conceptual design through interactive evolutionary computing strategies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing—AIEDAM, 2000, 14(1): 3-16
    [80] Perrett D I, Smith P A J, Potter D D, Mistlin A S, Head A S, Milner A D, Jeeves M A. Visual cells in the temporal cortex sensitive to face view and gaze direction. Proceedings of the Royal Society of London Series B: Biological Sciences, 1985, 223: 293-317
    [81] Peter O'Grady, Wen-Yau Liang. An Object Oriented Approach to Design with Modules. Computer Integrated Manufacturing Systems, 1998, 11(4): 267-283
    [82] Pipes, A drawing for 3-Dimensional design: concepts, illustration, presentation. Thames and Hudson, London, 1990
    [83] Prabhakar S, Goel A. Functional modeling for enabling adaptive design of devices for new environments. Artificial Intelligence in Engineering, 1998, 12(4): 417-444
    [84] Purcell A T, Gero J. Drawings and the design process. Design Studies, 1998, 19(4): 389-430
    [85] Qian L, Gero J S. Function-behavior-structure paths and their role in analogy-based design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1996, 10: 289-312
    [86] Rajineet Soldhi, Joshua U Turner. Towards modeling of assemblies for product design. CAD, 1994, 26(2): 85-97
    [87] Randell D A, Cohn A G. Modeling topological and metrical properties in physical processes. In: Brachman R J, Keresque H J, Reiter R, eds. Principles of Knowledge Representation and Reasoning Processing of the First International Conference, KR' 89. 1989, 357-368
    [88] Randell D A, Cohn A G, Cui Z. Naive topology: Modeling the force pump. In: Faltings B, Stress P, eds. Recent Advances in Qualitative Physics. London: The MIT Press, 1992
    [89] Reiter R, Mackworth A K. A logical framework for depiction and image interpretation. Artificial Intelligence, 1989,41(2): 125-155
    [90] Rodenacker W. Methodisches konstruieren. Springer-Verlag, Berlin, 1997
    [91] Rohrig R. A theory of qualitative spatial reasoning based on order relations. In: Proceedings of AAAI'94. 1994. 1418-1423
    [92] Rosen D W, Dixon J R, Dong X. A methodology for conversions of feature based representations. International Conference on Design Theory and Methodology DTM'91, ASME, ed. Stauffer, 1991, 31: 45-51
    [93] Roy U, Banerjee P, Liu C R. Design of an automated assembly environment. CAD, 1989, 21(9): 561-569
    [94] Roy U, Pramanik N, Sudarsan R, et at. Function-to-form mapping: model, representation and applications in design synthesis. Computer Aided Design, 2001, 33(10): 699-719
    [95] Schon D A. The reflective practitioner Temple Smith, London , 1983
    [96] Selfridge O G. Pandemonium: a paradigm for learning, In The mechanisms of thought processes: Proceedings of a Symposium Held at the National Physical LaboratoryHMSO,
     London, 1959
    [97] Shimomura Y, Yoshioka M, Takeda H, et at. Representation of design object based on the functional evolution process model. Journal of Mechanical Design, 1998, 120(7): 221-229
    [98] Smith T R, Park K K. Algebraic approach to spatial reasoning. International Journal of Geographical Information System, 1992, 6(3): 177-192
    [99] Sreenivasa R Gorti, Ram D Sriram. From Symbol to Form: a Framework for Conceptual Design. Computer-Aided Design, 1996, 28(11): 853-870
    [100] Stephen A R, Linden J B, Winger T. Uncertainty and sketching behaviour. Design Studies, 2000, 21(5): 465-81
    [101] Stiny, G. Introduction to shape and shape grammars. Environment and Planning, 1980, B7: 343-351
    [102] Tagare H D, Vos F M, Jaffe C C, Duncan J S. Arrangement: A spatial relation between parts for evaluating similarity of tomographic section. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(9): 880-893
    [103] Taylor H A, Tversky B. Descriptions and depictions of environments. Memory and Cognition. 1992, 20: 483-496
    [104] Taylor L E. Meta-phsycal Product Modeling. Doctoral Dissertation, Arizona State University, 1993
    [105] Tolman F. Integration Core Model for Product Modeling (Version 1.0). ICM Project CAM-I Product Modelling Program, TNO, 1991, 4
    [106] Umeda Y, Ishii M, Yoshioka M, et al. Supporting conceptual design based on the function-behavior-state modeler. Aritficial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM,1996,10(4): 275-288
    [107] Umeda Y, Takeda H, Tomiyama T, Yoshikawa H. Function, behaviour and structure. In Applications of Artificial Intelligence in Engineering, V. Computational Mechanics Publications and Springer-Verlag, Southhampton and Berlin. 1990
    [108] van Summers P. Drawing and cognition. Cambridge: Cambridge University Press, MA, 1994
    [109] Welch R V, Dixon J R. Representing function, behavior and structure during conceptual design. In Design Theory and Methodology-DTM'92, ASME, New York, 11-18
    [110] Wingard L. Introducing form features in product models, a Step Towards CAD/CAM with Engineering Terminology. Licenciate Thesis. Stockholm, 1991
    [111] Yoshikawa H, Holden T(eds). Intelligent CAD II: Proc. of the IFIP TC/WG 5.2 Workshop on Intelligent CAD, 1988. North-Holland, 1990
    [112] ZhangGuoquan, ZhongYifang, ZhangWeiguo. Mechanical product extensive intelligent conceptual design. Chinese Journal of Mechanical Engineering, 2004, 17(1): 1-5
    [113] Zhang W Y, Tor S B, Britton G A, et at. EFDEX: a knowledge-based expert system for functional design of engineering systems.Engineering with Computers,2001,17(4):339-353
    [114]蔡波,陆继翔,陆长德,杨海成.产品概念设计重用研究.机械科学与技术,2002,21(4):669-671
    [115]蔡逆水,邹慧君,王石刚,亢金月.类比推理在智能概念设计中的应用.上海交通大学学报,1997,31(3):70-73
    [116]蔡青,高光焘.CAD/CAM系统的可视化、集成化、智能化、网络化.西安:西北工业大学出版社,1996
    [117]操云甫,李峰,韩永生,戴国忠.基于PLIB标准的零件库信息模型及其表达.计算机辅助设计与图形学学报,2002,14(6):598-602
    [118]陈建国,潘云鹤.基于空间探索的创造性设计方法的研究.计算机辅助设计与图形学学报,2000,12(6):441-445
    [119]储备,杨海波,武俊峰,蔡青.基于图元对象的工程产品CAD信息集成模型.计算机辅助设计与图形学学报.2001,13(4):305-309
    [120]邓家禔,韩晓建,曾硝等.产品概念设计.北京:机械工业出版社,2002
    [121]邓敏,李成名,刘文宝.利用拓扑和度量相结合的方法描述面目标间的空间关系.测绘学报,2002,31(2):164-169
    [122]董玉德.面向离线参数化的图形理解与自组织理论、方法及关键问题研究.博士学位论文.杭州:浙江大学,2000
    [123]范文慧.面向产品信息建模的图形单元及其自组织理论、方法和应用研究.博士学位论文.杭州:浙江大学,1998
    [124]冯培恩,陈泳,张帅,潘双夏.基于产品基因的概念设计.机械工程学报,2002,38(10):1-6
    [125]高飞,叶尚辉.基于特征的设计过程模型.计算机辅助设计与图形学学报,1995,7(1):69-74
    [126]高飞,叶尚辉.基于特征语义的变量设计.计算机学报,1995,18(2):81-87
    [127]顾新建,潭建荣,祁国宁.机械产品信息基因模型.中国机械工程,1997,8(2):77-79
    [128]顾正朝,应道宁.机械产品信息模型建模.计算机辅助设计与制造,1995,3
    [129]Harry F.图论.北京:科学出版社,1997
    [130]何湘竹,刘继红.定性立体建模中的领域比例伸缩操.计算机辅助设计与制造,1999,2:48-51
    [131]黄荣瑛,杜晓荣等.基于图法的动态特征建模.机械工业自动化,1998,20(4):21-23
    [132]纪杨建.面向产品方案的形式化设计关键技术研究.博士学位论文.杭州:浙江大学,2004
    [133]蒋险峰,杨荣,张子公.CAD中的功构映射研究.计算机辅助设计与图形学学报,1997,9(5):443-449
    [134]金建国.关联参数化中的若干理论问题及关键技术研究.博士学位论文.杭州:浙江大学,2000
    [135]李波,类比推理系统BHARS.计算机学报,1995,18(6):462-469
    [136]李波,罗玉成,赵沁平.类比转换原理及其实现.软件学报,1995,6(3):164-172
    [137]李健,邓家禔.产品原理结构设计模型.计算机辅助设计与图形学学报,2002,14(7):637-640
    [138]李书田,郑联语,汪叔淳.集成环境中基于特征顺序的产品建模方法研究.计算机辅助设计与图形学学报,1999,11(5):420-425
    [139]李文武,秦光里.标准化零件库的结构研究.世界标准化与质量管理,2002,2:31-32
    [140]李岳梅,孙守迁,潘云鹤.基于广义特征的创新设计模型及方法的研究.中国机械工程,2002,13(4):311-314
    [141]廖士中,石纯一.定性空间推理的研究与进展.计算机科学,1998,25(4):11-13
    [142]廖士中,石纯一.平面形状和布置的一种统一的定性表示方法.计算机研究与发展,1998,35(9):781-786
    [143]廖士中,石纯一.拓扑关系的闭球模型及复合表的推导.软件学报,1997,8(12):894-900
    [144]廖士中,石纯一.一种分层递阶的定性拓扑推理方法.软件学报,1999,10(5):462-468
    [145]廖士中,王建民,王海山.空间推理研究的方法学.辽宁师范大学学报,2002,23(2):147-151
    [146]刘白,汪大鹏等.产品概念设计的层次化建模方法.组合机床与自动化加工技术.2001,(3):25-28
    [147]刘衍聪.产品信息建模中的生物型与自组织理论、方法及其应用研究.博士学位论文.杭州:浙江大学,1998
    [148]刘振宇.面向过程与历史的虚拟环境中产品装配建模理论、方法及应用研究.博士学位论文.杭州:浙江大学,2001
    [149]鲁泳,赵良才.类比推理机制的计算机辅助概念设计在齿轮减速器的应用.华东船舶
     工业学院学报,2000,14(5):32-35
    [150]马利庄,王荣良.计算机辅助几何造型技术及其应用.北京:科学技术出版社,1996
    [151]潘云鹤,耿卫东,童欣.面向智能CAD的分层构造自动型方法.软件学报,1996,7(5):280-285
    [152]乔进友,沈卫峰等.基于事物特性的可重用产品模型.上海交通大学学报,1998,32(5):96-99
    [153]秦光里.CAD零件库零件信息描述的新方法.世界标准化与质量管理,2001,8:31-33
    [154]石纯一,陈见,赵永,蔡勇,王锵.定性推理进展.模式识别与人工智能,1993,6(2):121-126
    [155]石纯一,廖士中.定性推理方法.北京:清华大学出版社,2002
    [156]舒慧林.面向概念形状设计机械产品残缺信息建模的研究.博士学位论文.武汉:华中科技大学,2001
    [157]舒慧林,刘继红,钟毅芳.计算机辅助机械产品概念设计研究综述.计算机辅助设计与图形学学报,2000,12(12):947-954
    [158]舒慧林,刘继红,钟毅芳.概念形状设计中的不确定关系建模.机械科学与技术,2002,21(1):169-172
    [159]舒启林,郝博.机械产品方案设计自动化研究.中国机械工程,2002,13(19):1676-1678
    [160]宋慧军,林志航.基于域结构模板的机械产品概念设计方案生成.机械工程学报,2001,37(9):24-29
    [161]孙守迁,包恩伟,陈蘅,潘云鹤.计算机辅助概念设计研究现状和发展趋势.中国机械工程,1999,10(6):697-701
    [162]孙守迁,包恩伟,潘云鹤.面向产品布局设计的组件特征模型.计算机辅助设计与图形学学报,1999,11(1):28-32
    [163]孙守迁,黄琦.计算机辅助概念设计.北京:清华大学出版社,2004
    [164]孙守迁,黄琦,潘云鹤.计算机辅助概念设计研究进展.计算机辅助设计与图形学学报,2003,15(6):643-650
    [165]孙正兴,徐晓刚,孙建勇,金翔宇.支持方案设计的手绘图形输入工具.计算机辅助设计与图形学学报,2003,15(9):1145-1152
    [166]孙正兴,张福炎.CAD中的逻辑结构造型方法研究.机械设计,1999,3:1-4
    [167]孙正兴,张福炎,蔡士杰.一种面向方案设计的装配建模表示方法.计算机辅助设计与图形学学报,2000,12(1):28-33
    [168]谭建荣.递归化产品信息集成建模技术.机电工程,1998,15(1):9-11
    [169]谭建荣,魏修亭,彭群生.图形迭代与置换的原理、方法及其应用研究.计算机学报:
     计算机图形学专辑,1996,19(10)(增刊):248-256
    [170]谭建荣,徐建明,范文慧.面向合理化工程的图形单元技术.工程图学学报,1997(4):81-89
    [171]谭建荣,张树有,陆国栋等.图学基础教程.北京:高等教育出版社,1999
    [172]谭建荣,张树有,魏修亭.产品装配信息概念模型及自组织映射方法.中国机械工程,1998,9(5):66-69
    [173]谭同德,郑志蕴.利用设计原型集成概念设计和结构设计.计算机工程与应用,2002,14:15-16
    [174]王丽萍,潘云鹤,邱飞岳.GIS中空间拓扑关系的形式化描述.浙江工业大学学报,1999,27(2):168-172
    [175]王万良,赵燕伟.探索机械智能CAD系统的可拓决策方法.系统工程理论与实践,1998,18(2):114-117
    [176]王玉,邢渊,阮雪榆.机械产品设计重用策略研究.机械工程学报,2002,38(5):145-148
    [177]王玉,邢渊,阮雪榆.设计过程信息建模及重组.计算机集成制造系统,2002,8(2):111-114
    [178]魏修亭.面向设计历史和过程的图形置换与迭代理论,方法及其应用研究.博士学位论文.杭州:浙江大学,1999
    [179]魏修亭,谭建荣.面向单元化产品建模的图形处理方法研究.软件学报,1999,10(增刊):171-175
    [180]魏修亭,谭建荣,江世成.面向产品结构设计的图形置换技术.机械科学与技术,1999,18(6):1013-1O15
    [181]吴斌,沈精虎.概念产品设计模型的研究与实现.机械工程学报,2002,38(2):50-53
    [182]徐冬溶,潘云鹤,张畅,王选.类比推理综述(上).计算机科学,1997,24(1):8-14-
    [183]徐冬溶,潘云鹤,张畅,王选.类比推理综述(下).计算机科学,1997,24(2):9-16
    [184]许禄,胡昌玉.应用化学图论.北京:科学出版社,2000
    [185]许香穗,蔡建国.成组技术.北京:机械工程出版社,2000
    [186]徐志刚.几何缺省推理研究.计算机辅助设计与图形学学报,2000,12(12):881-886
    [187]徐志刚,黄克正,艾兴,刘宇齐.组合夹具结构设计自动化系统研究.机械工程学报,2000,36(12):105-108
    [188]闫浩文,郭仁忠.基于Voronoi图的空间方向关系形式化描述研究(一).测绘科学,2002,27(1):24-27
    [189]闫浩文,郭仁忠.基于Voronoi图的空间方向关系形式化描述研究(二).测绘科学,2002,27(3):4-7
    [190]闫浩文,郭仁忠.空间方向关系分类研究.测绘工程,2001,10(4):13-15
    [191]闫浩文,郭仁忠.用Voronoi图描述空间方向关系的理论依据.武汉大学学报,2002,27(3):306-310
    [192]颜鸿森.颜氏创造性机构设计(一)设计方法.机械设计,1995,12(10):39-41
    [193]颜鸿森.颜氏创造性机构设计(二)机构的一般化.机械设计,1995,12(11):44-47
    [194]颜鸿森.颜氏创造性机构设计(三)运动链的数综合.机械设计,1995,12(12):30-33
    [195]颜鸿森.颜氏创造性机构设计(四)机构的特定化.机械设计,1996,13(4):37-40
    [196]颜鸿森.颜氏创造性机构设计(五)应用实例.机械设计,1996,13(5):31-41
    [197]杨东,王英林,张申生.零件库标准PIAB的研究及应用.中国机械工程,2001,12(10):1117-1121
    [198]杨文彬.机械结构设计准则及实例.北京:机械工业出版社,1997
    [199]姚珺,宁汝新,张旭,常向青.计算机辅助产品方案设计方法研究.中国机械工程,2002,13(18):1573-1576
    [200]伊波,徐家福.类比推理综述.计算机科学,1989,16(4):1-8
    [201]伊国栋.产品信息符号建模理论、方法及其应用研究.博士学位论文.杭州:浙江大学,2003
    [202]余军合,祁国宁,吴昭同.基于零件库标准的产品信息建模技术.计算机集成制造系统,2002,8(4):263-268
    [203]袁波,周昀,胡事民,孙家广.层次化单元装配模型.计算机辅助设计与图形学学报,2000,12(6):450-454
    [204]岳建鹏,尹文生,王启富.基于虚拟零件的自顶向下并行装配设计.华中理工大学学报,2000,28(5):13-15
    [205]张常有,郭增强,牛江川.工程智能CAD中的类比转换模型研究.石家庄铁道学院学报,2003,16(3):16-19
    [206]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统,2003,9(8):613-620
    [207]张玲,王新龙,肖田元,韩向利.面向虚拟制造的产品建模方法学研究.高技术通讯,1998(8):1-5
    [208]张向军,桂长林.智能设计中的基因模型.机械工程学报,2001,37(2):8-11
    [209]张燕.面向过程的产品装配信息自适应与自组织建模理论、方法及应用研究.博士学位论文.杭州:浙江大学,1999
    [21O]赵继云,钟廷修.基于产品动态模型的智能快速响应设计理论和方法研究.计算机辅助设计与图形学学报,200l,13(3):247-252
    [211]赵沁平,李波.类比推理的计算模型.软件学报,1996,7(3):156-162
    [212]赵沁平,李波,罗玉成.关于类比推理若干基本问题的研究.计算机科学,1993,20(2):39-45
    [213]祝国旺,高健,李培根,周济.基于特征的产品建模研究.华中理工大学学报,1994, 22(2):97-100
    [214]邹慧君等.机械产品概念设计及其方法综述.机械设计与研究,1998,2:4-8
    [215]邹慧君等.基于多层推理机制的机械产品概念设计.计算机辅助设计与图形学学报,1997,9(6):548-552
    [216]邹慧君,梁庆华等.功能-运动-行为-结构的概念设计模型及运动行为的多层表示.机械设计,2000,(8):1-4
    [217]Zwicker E.CAD中具有明确寻找机理的数据库支持的相似零件寻找.工程设计学报,1996(4):24-31