有机物综合利用中的传热传质分析与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着有机物产品的大规模生产和利用,废弃有机物也随之增多,例如农作物废弃物、有机食品加工的残留物,城市生活垃圾等等,这类污染源所造成的生态破坏和环境污染已经日益严重,如何有效的处理和利用废弃有机物成为摆在人们面前的一个重要的问题。有机物因为其本身的生物性质,在热科学领域表现出与无机物质不同的特性,对于有机物质的传热传质过程和热物性的分析与研究,能够为有机物质的综合利用打下基础。
     本文对柑桔榨汁加工后的皮渣残留物和葡萄酒胶的发酵过程以及发酵产物的获取过程(主要为干燥过程)中的传热传质规律进行分析与研究,以探寻其如何有效的处理和利用,本文主要研究内容为:
     ①有生物内热源存在下的传热过程分析与研究
     对微生物发酵反应过程中的热源进行了分析,探讨了温度对微生物发酵过程的影响,分别对葡萄酒胶和柑桔皮渣发酵过程中的微生物菌体活性与温度的关系进行了研究,获得了细胞生长速率与温度之间的关联式,证明在微生物适宜生长温度范围内,温度的提高能够加快生长速率,但过高的温度也会促使微生物细胞的衰老和死亡。随着发酵物料比热值增大,单位质量发酵物料的温升将减小,从而对微生物的生长速率的变化产生影响,据此本文在阿列纽斯公式的基础上考虑到发酵物料的热物性——比热容值对微生物比生长速率变化趋势的影响,因而提出比热容的修正关联式。分析了柑桔皮渣和葡萄酒胶发酵过程中发酵反应的自身反应热,进行无控温的自然发酵实验,确定单位时间内释放的生物热,同时对生物介质的热物性进行测定和分析。
     将发酵过程作为含有生物内热源下的非稳态传热过程,对固态发酵多孔固体基质中的传热传质过程进行了分析,对微生物发酵传热特性及其温度场的分布特性进行了研究。进行了温控下的发酵过程实验,在发酵箱内的控温水管内通入冷热水,作为温控冷热源。确定单根控温水管周围的温度影响范围和影响方式,进行含有生物内热源条件下的热传导分析,得出不同发酵介质下计算水管周围空间温度分布的数学模型,进行数值计算以确定周围空间的温度分布,并与实验结果进行比较,得到了较好的吻合。
     ②发酵产物流态化干燥过程的传热传质分析
     进行了柑桔皮渣发酵产物的获取和应用研究,通过实验研究柑桔皮渣发酵产物在流化干燥床中的干燥特性以及干燥过程传热传质的机理。
     实验结果表明,对于经过预处理的发酵柑桔皮渣介质,采用流态化干燥方式可以获得较好的干燥效果。采用单因素分析方法分析干燥参数如介质温度(T)、介质风速(v)、床层高度(H)和初始含湿率(W0)对干燥速率和单位能耗的影响,实验结果表明:随着介质风温的增大,干燥速率加快;风速越大干燥速率越快;床层高度越高干燥速率越慢;皮渣初含越大,干燥速率也越大。实验结果也表明这些干燥参数对干燥速率的影响在干燥后期会减弱。对正交实验的结果进行了极差分析,得出了干燥因素对干燥速率和单位能耗的影响程度,其结果表明,干燥参数对干燥速率的影响次序为,W0>T>v>H。干燥参数对单位能耗的影响次序为,v>T>W0>H。
     对发酵柑桔皮渣流态化干燥过程进行传热传质分析,根据能量守恒定律,导出流化床内的局部换热系数计算式,分析了各个流化干燥因素对换热系数的影响,利用最小二乘法原理采用origin7.5回归分析软件对实验结果进行拟合,得到了发酵柑桔皮渣流态化干燥过程中传热传质的经验表达式。并对发酵柑桔皮渣流化干燥过程的气固两相流场进行数值模拟,从颗粒运动行为特性方面揭示流化床中气、固两相高效率传热传质的本质。
     ③发酵柑桔皮渣工业化成套设备的研制与应用
     介绍了发酵柑桔皮渣中试过程,并进行发酵饲料小批生产与饲喂实验,证明柑桔皮渣发酵饲料完全可以作为一种饲料原料用于生产奶牛精料补充料。
Effective disposal and utilization of biologic products refuse has become one of the most important global issues recently as waste biologic substances such as crop waste, residues of biologic food procession, and municipal refuse caused by large-scale production of biological product are severely destroying environmental balance and polluting ecosystem. And in the study of thermal, biologic substance shows different thermal characteristics based on its own biological quality, therefore, the research and analysis on the mass and thermal transition process of biological substances would be helpful as preparation of the industry application.
     This dissertation is based on the research and analysis of mass and thermal transition rules during fermentation process of oranges peels waste after juice extraction and acquisition process of fermentation outcome; it also explores further usage of those rules. It contains 3 parts of research:
     ①The research of the thermal transfer process of microorganism with biology inner heat source
     The heat release in the fermentation course is analyzed, and the influence of the temperature on the growth of microorganism is also discussed. The growth velocities of microorganism in wine fermentation and fermentation of the orange peels are researched, the relations between growth velocities of microorganism and temperature are obtained, and the conclusion shows that temperature increase accelerates the growth velocities of microorganism within appropriate temperature range; however overheat also accelerates the aging and death of microorganism cells. With the consideration of the specific heat capacity, the modification of the specific growth velocities is put forward. And the wild fermentation without temperature control was observed, the heat release of fermentation is investigated, also the thermal characteristics are measured.
     With considered of the microbial fermentation course as an unsteady thermal transfer process with a biology inner heat source, the heat and mass transfer in the porous Substrate are analyzed, and the thermal transfer characteristics and temperature distribution in the course are researched. The experiments with temperature control are made. The influence method and range of the single temperature control pipe are defined. With the consideration of the inner heat source investigated formerly, the unsteady heat transfer is analyzed, and the expressions of temperature distributions are obtained. The results from calculation agree with the experimental results well.
     ②The research of the law of thermal and mass transfer in fluidized drying process about the zymotic orange peels.
     The disposal and application of the zymotic orange peels are discussed, the drying mechanism of the orange peels and the law of thermal and mass transfer in drying process are researched.
     According to the experiment result, the fluidized drying method is suited for the drying of zymotic orange peels. The method of single factor analysis is adopted to analyze the influence to the drying characteristic of drying parameters such as the air temperature(T), the air velocity(v), the height of bed layer(H)and the initial moisture content(W0)etc. The result shows that the dry velocity will be faster with the rise of the air temperature or velocity; Besides, the dry velocity will slower when the height of bed layer or the initial moisture content get higher. However, the influences of these dry parameters on the dry velocity become slowly after some minutes. The method of orthogonal experiment is used to analyze the importance of these dry parameters on the drying characteristics. The result shows that the importance of dry parameters influence on the dry velocity is following: W0> T>V >H, while the importance of dry parameters influence on the consumption of unit energy is obtained: V >T > W0>H.
     The thermal and mass transfers for the gas-solid fluid bed of zymotic orange peels drying are researched. Base on the energy conservation, the expression for local heat transfer coefficient is educed; the influences on the heat transfer of fluid parameters are analyzed. And the regression expression of thermal and mass transfer is obtained based on the experimental data. Then the mathematical simulations for the gas-solid fluid behavior are made.
     ③The industry design and application for the zymotic orange peels The industry experiments of zymotic orange peels are introduced, the experiments of cow feeding are made to prove the zymotic orange peels can use for a complementarity for milk cow feed.
引文
[1]修志龙,邵惠鹤.微生物发酵过程的温度控制[J].控制工程,2005,12:30-33.
    [2]徐武军,龚德根.浅谈沼气中温发酵的热平衡问题[J].能源工程,1994,3:35-36.
    [3]饶本强,陈坤.现代生物技术在食品开发中的应用[J].生物学教学,2005,30(6):5-6.
    [4]史先振.现代发酵工程技术在食品领域的应用研究进展[J].中国酿造,2005,12:1-4
    [5]姬德衡、钱方、牟光庆.生物技术在保健食品开发中的应用综述[J].大连轻工业学院学报,23(3):186-189
    [6]周斌. 21世纪生物医药的发展[J].中国药业,2004,13(6):3-4.
    [7]曾庆文.中药发酵的研究进展[J].齐齐哈尔医学院学报,2005,26(5):545-547
    [8]孙桂琴等.环境生物技术在环境治理中的应用与趋势[J].江西化工, 2005,4:75-77
    [9]叶新嗥等.生物质燃料[J].生物学杂志,2004,21(2):14-18.
    [10]孙天松.发酵过程中微生物代谢的限制因素[J].中国调味品,1994,10:2-6.
    [11] A L Andzik, E L Samberg. Computerized temperature control system in a beer fermentation process cellar[J]. Advances in Instrumentation, Proceedings, 1992, 47(1):231-237.
    [12]陈敏,王静馨.发酵工艺条件的多目标化[J].生物技术,1995,5(4):37-39].
    [13]戚以政.影响固态发酵速率的因素及其动力学[J]. 1995,11(1):18-24.
    [14]徐群,袁越等.微机在发酵池温度过程控制中的应用[J].河海大学学报,1997,25(1):13-17.
    [15]崔志富等.温度传感器在农业生产中的应用[J].现代化农业,2002,8:36.
    [16] Mitchell David A, Tongta A, Stuart D M. The potential for establishment of axial temperature profiles during solid-state fermentation in rotating drum bioreactors[J]. Biotechnology and Bioengineering, 2002, 80(1):114-122.
    [17] Sangsurasak P, Mitchell D A. Investigation of transient multidimensional heat transfer in solid state fermentation[J]. Chemical Engineering Journal and Biochemical Engineering Journal, 1995, 60(1-3):199-204.
    [18] Lian Guoping, Parry Andrew, Moore Steve, Thiru A. CFD simulation of heat transfer and polyphenol oxidation during tea fermentation[J]. Computers and Electronics in Agriculture, 2002, 34(1-3):145-158.
    [19] Luong J H T, Volesky B. DETERMINATION OF THE HEAT OF SOME AEROBIC FERMENTATIONS[J]. Canadian Journal of Chemical Engineering, 1980, 58(4):497-504.
    [20] Turker Mustafa. Measurement of metabolic heat in a production-scale bioreactor by continuous and dynamic calorimetry[J]. Chemical Engineering Communications, 2003, 190(5-8):573-598.
    [21] Wang Yu, Xu Ke, Li Bing-Feng, Zhang Gan-Dao. Research on temperature field in heat pipebioreactors[J]. Xiandai Huagong/Modern Chemical Industry, 2003, 23(1):24-28.
    [22]黄晓齐.非均匀内热源导热微分方程中的热流分流与叠加[J].贵州工学院学报,1996,25(2):62-66.
    [23]刘希云.二维有内热源稳态导热边界积分解[J].弹道学报,1994,2:71-74.
    [24]李栋,王煤等.非均匀内热源对多孔介质中传热传质的影响[J].四川化工,2006,9(1):2-5.
    [25]连晋生,牛维芝.食用酒精发酵温度模糊控制[J].电力学报,2000,15(4):248-251.
    [26] Kobayashi Masahide, Ishida Kohji, Shimizu Kazuyuki. Efficient production of ethanol by a fermentation system employing temperature profiling and recycle[J]. Journal of Chemical Technology and Biotechnology, 1995, 63(2): 141-146.
    [27]杜锋,雷鸣.啤酒发酵过程温度控制策略[J].酿酒,2002,29(6):50-52.
    [28]连晋生,牛维芝.食用酒精发酵温度模糊控制[J].电力学报,2000,15(4):248-251.
    [29]祁云嵩等.生物发酵过程温度PID控制器设计[J].华东船舶工业学院学报,2005,19(5):57-60.
    [30] Gee, Douglas A,Ramirez, W. Fred. Optimal temperature control of jacket-cooled fermentation reactors[J]. Optimal Control Applications & Methods, v 12, n 1, Jan-Mar, 1991, p 49-62.
    [31]于微波等.烟叶发酵温度的模糊控制[J].吉林工学院学报,1998,19(1):34-38.
    [32]熊瑞昌,周泽魁.基于AD590的发酵罐多点温度测量系统[J].酿酒,2004,31(5):52-55.
    [33]潘永康主编.现代干燥技术[M].北京:化学工业出版社,1998.
    [34] Somchart Soponronnarit, Anan pongtornkulpanich, Somkiat prachayawarakorn. Drying characteristics of corn in fluidized bed dryer[J]. Drying technology,1997,15(5):1603-1615.
    [35]郭宜,王喜忠.流化床基本原理及其工业应用[M].北京:化学工业出版社,1980.
    [36]管国锋,赵汝著.化工原理[M].北京:化学工业出版社,2003.
    [37]杨世铭,陶文铨著.传热学[M].北京:高等教育出版社,1998.
    [38]伍沅.干燥技术的进展和应用[J].化学工程,1995,23(3):14-18.
    [39] S G Walde , V Velu. Effects of pretreatments and drying methods on dehydration of mushroom[J]. Journal of Food Engineering 2006,74:108–115.
    [40] S M Tasirin,S K Kamarudin, K Jaafar, K F Lee.The drying kinetics of bird’s chillies in a fluidized bed dryer[J]. Journal of Food Engineering 2007,79:695–705.
    [41] Bulent Kozanoglu,Adan Cabrera Vazquez,Jorge Welti Chanes. Drying of seeds in a superheated steam vacuum fluidized bed[J]. Journal of Food Engineering , 2006,75:383–387.
    [42]王成军,张宝诚,牛玲,富丽新.流化床干燥过程数学模拟的研究[J].沈阳航空工业学院学报,2001,18,(3-1)15-18.
    [43]淮秀兰,王立,倪学梓.粒状物料干燥过程中的传热传质分析[J].北京科技大学学报,1998,20(5):28-30.
    [44]王朝晖,涂颉.干燥过程热质传递的简化模型[J].化工学报,1995,16(5):35-39.
    [45]李艳.发酵工程原理与技术[M].北京:高等教育出版社,2007.
    [46]叶勤.发酵过程原理[M].北京:化学工业出版社, 2005.
    [47] Liu Jin(刘静),Wang Cuncheng(王存诚). Biology Heat Transfer[M].Beijing:Science Press,1997:243-244.
    [48] Seher Kumcuoglu, Sebnem Tavman, Paul Nesvadba, Ismail Hakki Tavman.Thermal conductivity measurements of a traditional fermented dough in the frozen state[J]. Journal of Food Engineering, 2007, 78(3):1079-1082.
    [49] D N Njie, T R Rumsey, R P Singh. Thermal properties of cassava, yam and plantain[J]. Journal of Food Engineering, 1998, 37(1):63-76.
    [50] Zhang Jianhua(张建华). The discuss of the factors influence the wine fermentation[J]. JIANGSU SHIPIN YU FAJIAO(江苏食品与发酵),2002,4:31-32.
    [51]戚以政,夏杰.生物反应工程[M].北京:化学工业出版社,2004.
    [52]张坤,吴祯,梅广.纤维素发酵生产燃料酒精研究[J].广西园艺,2007,2:10-12.
    [53] Victoria M Ashley,David A Mitchell,Tony Howes. Evaluating strategies for overcoming overheating problems during solid-state fermentation in packed bed bioreactors[J]. Biochemical Engineering jounal,1999,3:141-149.
    [54] Gao Haisheng(高海生),Zhang Jiancai(张建材). The fermentation technology of temperature control in wine-making[J]. Science and Tchnology of Food Industry(食品工业科技),2005,2:194-195.
    [55] Sophie Colombié, Sophie Malherbe. Modeling of heat transfer in tanks during wine-making fermentation[J]. Food Control, 2006(20):1-8.
    [56]陈洪章,徐建.现代固态发酵原理及应用[M].北京:化学工业出版社,2004.
    [57]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995.
    [58] Yuji Tatemotoa,ShujiYanoa, Yoshihide Mawatarib, Katsuji Nodaa,Nobuyuki Komatsuc. Drying characteristics of porous material immersed in a bed of glass beads fluidized by superheated steam under reduced pressure[J]. Chemical Engineering Science, 2007, 62:471– 480.
    [59] Somkiat Prachayawarakorna , Paveena Prachayawasina , Somchart Soponronnaritb. Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers[J]. LWT,2006,39:770–778.
    [60] Sarah Weber,Cedric Briens, Franco Berruti,Edward Chan ,Murray Gray. Agglomerate stability in fluidized beds of glass beads and silica sand[J]. Powder Technology,2006,165:115–127.
    [61]苏华.散体颗粒流动的实验研究及理论分析.北京科技大学硕士学位论文.2003年2月.
    [62]房鼎业,乐清华,李福清主编.化学工程与工艺专业实验[M].北京:化学工业出版社,2000.
    [63]刘巍,汤文成.气体分布板开孔结构对流化床干燥性能的影响[J].中国工程科学,2006,8(2):32-34.
    [64]郭宜祻,王喜忠.流化床基本原理及其工业应用[M].北京:化学工业出版社, 1980.
    [65]于才渊,王宝和,王喜忠.干燥装置设计手册[M].北京:化学工业出版社,2005.
    [66] M S Hatamipour,D Mowla. Shrinkage of carrots during drying in an inert medium fluidized bed[J]. Journal of Food Engineering 2002,55:247–252.
    [67]田胜元,萧日嵘著.实验设计与数据处理[M].建筑工业出版社,1988.
    [68] C Strumillo, W Kaminski. Some aspects of the drying of protein products[J]. The Chemical Engineering Journal ,1995,58:197-204.
    [69]向飞,扬晶.小麦流态化干燥实验关联式及在热泵流化床谷物干燥的应用[J].北京科技大学学报. 2005,27(1):51-53.
    [70] M H Shi, H Wang, Y L Hao. Experiment investigation of the heat and mass transfer in a centrifugal fluidized bed dryer[J]. chemical engineering journal. 2000,78:107-113.
    [71] Guohua Chena,Wei Wanga, Arun S Mujumdarb. Theoretical study of microwave heating patterns on batch fluidized bed drying of porous material[J]. Chemical Engineering Science. 2001,56:6823–6835
    [72]杨虎,刘琼荪,钟波著.数理统计[M].重庆:重庆大学数理学院,2003.
    [73] Wathanyoo Rordprapat,Adisak Nathakaranakule. Comparative study of fluidized bed paddy drying using hot air and superheated steam[J]. Journal of Food Engineering, 71 2005,71:28–36
    [74]卢涛,沈胜强,刘晓华.多孔介质对流干燥过程数值模拟[J].大连理工大学学报,2005,45(7):49-51.
    [75]陆丰,郑守忠,张永康等.粗湿颗粒循环床传热的研究[J].东南大学学报,1995,25(4A):118-222.
    [76]吴大伟,张成林.恒速干燥阶段对流传热系数的研究[J].农产品加工,2006,(4):40-42.
    [77]陆丰,施明恒,马武忠.循环创中气固两相传热传质规律的研究[J].工程热物理学报,1994,15(4):420-424.
    [78]杜益庆,栗志,许国良.气固流化床流体与颗粒的传热研究[J].锅炉技术,1996,(6):20-26.
    [79]蔡安明,岑可法.粗颗粒流化床内颗粒传热的实验研究[J].浙江大学学报,1985,19(4):82-91.
    [80]艾元方,高胜斌,戴天红等.流化床气固传热模型[J].锅炉技术,1998,(4):12-16.
    [81]艾元方,戴天红,陈长栋等.流化床气固传热特性的实验研究[J].热能动力工程,1998,13(76):267-270.
    [82] B U Kozanoglua,J A Vilchezb,J Casalb,J Arnaldosb. Mass transfer coefficient in vacuum fluidized bed drying[J]. Chemical Engineering Science, 2001, 56:3899-3901.
    [83] Marcello Nitz a,Osvaldir Pereira Taranto. Drying of beans in a pulsed fluid bed dryer_ Drying kinetics, fluid-dynamic study and comparisons with conventional fluidization[J]. Journal of Food Engineering ,2007 , 80:249–256.
    [84] S G Walde a,V Velu b,T Jyothirmayi b,R G Math b. Effects of pretreatments and drying methods on dehydration of mushroom[J]. Journal of Food Engineering, 2006, 74:108–115.
    [85]诸凯,褚治德,杨光等.种子干燥过程中水分迁移的传热传质机理[J].天津大学学报,2000,33(5):634-637.
    [86]董金玲,王国恒.干燥过程中的高温快速工艺[J].工业炉,2006,28(2):40-41.
    [87] S M Tasirin,S K Kamarudin, J A Ghani, K F Lee.Optimization of drying parameters of bird’s eye chilli in a fluidized bed dryer[J]. Journal of Food Engineering 2007,80:695–700.
    [88] Chalida Niamnuy,Sakamon Devahastin. Drying kinetics and quality of coconut dried in a fluidized bed dryer[J]. Journal of Food Engineering 2005,66:267-271.
    [89]金涌,祝京旭,汪展文等著.流态化工程原理[M].北京:清华大学出版社,2001.
    [90] S Syahrul a,F Hamdullahpur b,I Dincer. Thermal analysis in fluidized bed drying of moist particles[J]. Applied Thermal Engineering,2002,22:1763–1775.
    [91] S Syahrul a,I Dincer b,F Hamdullahpur. Thermodynamic modeling of fluidized bed drying of moist particles. International Journal of Thermal Sciences,2003,42 :691–701.
    [92]方安平,叶卫平著. Origin7.5科技绘图及数据分析[M].北京:机械工业出版社,2006.
    [93]洪若瑜,李洪钟等.基于双流体模型的流化床模拟[J].化工学报,1995,46(3):349-356.
    [94]万晓涛,郑雨,魏飞,金涌.循环流化床提升管气固湍流的计算流体力学模拟[J].化工学报,2002,53(5):461-468.
    [95]曾卓雄,亢力强,姜培正等.用双流体模型模拟湍流两相流场[J].空气动力学学报,2003,21(1):98-103.
    [96]郑雨,万晓涛,魏飞,金涌.提升管内气固双流体模型的计算模拟[J].过程工程学报,2001,1(3):249-256.
    [97]范维澄.湍流的双流体模型及其改进[J].中国科学A辑,1987,(7):704-710.
    [98]袁竹林,徐益谦.用拉格朗日法对气固两相流动的数值模拟[J].发电设备,1997,(6):27-30.
    [99] V Jiradilok,D Gidaspow,R W Breault. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds[J]. Chemical Engineering Science,2007,62:3397-3409.
    [100] Zhao Hui Wang, Guohua Chen. Heat and mass transfer in batch fluidized-bed drying of porousparticles[J]. Chemical Engineering Science,2000,55:1857-1869.
    [101]何玉荣,陆慧林,刘文铁等.喷动床内气固两相流体动力行为的数值模拟[J].化工学报,1994,55(2):290-296.
    [102]范正国,章湘云.柑橘果皮综合利用的研究[J].湖南化工,2000,30(4):36-37.
    [103]邓秀新.国内外柑橘产业发展趋势与柑橘优势区域规划[J].广西园艺,2004,15(4): 6-10.