耐旱杂草稻对干旱胁迫的生理响应与表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱胁迫是影响水稻生产的重要非生物胁迫因子之一。杂草稻具有较强的抗非生物胁迫的能力,是栽培稻遗传改良的重要种质资源。本文以收集于中国北方杂草稻为试材,进行芽期耐早性研究及苗期耐旱性鉴定,并以鉴定出的耐旱性1级的杂草稻HEB07-2及杂草稻WR04-6、巴西陆稻、旱敏感品种越富为试材。研究了不同程度干旱胁迫下(20%PEG胁迫0h、5h、24h、72h)不同杂草稻和栽培稻幼苗叶片和根系抗氧化防御系统、渗透调节系统的变化规律。并分析幼苗叶片光合系统在干旱胁迫下的变化,利用Affymetrix水稻表达谱芯片(GeneChip Rice Genome Array)比较不同杂草稻和栽培稻幼苗干旱胁迫下根系基因表达差异状况。主要研究结果如下:
     利用15%PEG-6000(聚乙二醇6000)模拟干旱胁迫,对供试杂草稻和栽培稻最终发芽率无显著影响,杂草稻和栽培稻的发芽指数显著降低,即延迟了杂草稻和栽培稻的发芽时间。供试杂草稻和栽培稻的生长速度显著降低,对杂草稻的影响小于栽培稻,表现为正常条件下杂草稻和栽培稻地上和地下部生长量相当,在胁迫条件下杂草稻各生长指标有大于栽培稻的趋势。杂草稻的根长胁迫指数、茎长胁迫指数、根数胁迫指数、根干重胁迫指数、茎干重胁迫指数变异范围较大,而栽培稻变异范围较小。干旱胁迫下杂草稻根冠比呈增大趋势,而栽培稻根冠比降低,说明干旱胁迫对杂草稻根系抑制程度较栽培稻小。
     利用苗期反复干旱胁迫法对杂草稻和栽培稻苗期耐早性进行了鉴定,结果表明第一次干旱胁迫对杂草稻和栽培稻的存活率影响较小,而第二次干旱胁迫后杂草稻和栽培稻存活率下降幅度较大,杂草稻变异范围大于栽培稻,苗期反复干旱存活率最大的杂草稻为LYG07-10。干旱胁迫期间,杂草稻叶片抗衰度变异范围大于栽培稻,抗衰度最大的杂草稻为HEB07-2。按苗期抗旱性综合系数划分抗旱级别,杂草稻抗旱性达到1级、3级、5级、7级的数量分别为8、25、15、6份,分别占供试杂草稻材料的12.7%、39.7%、23.8%、9.5%,属于正态分布。即耐旱性极强和极弱的杂草稻较少。
     干旱胁迫期间,供试杂草稻和栽培稻叶片和根系丙二醛含量和超氧阴离子自由基产生速率显著上升,HEB07-2叶片和根系丙二醛上升幅度显著小于其他试材,超氧阴离子自由基产生速率最小,显著小于其他供试材料,说明HEB07-2在干旱胁迫下积累活性氧较少,膜质过氧化程度较低,细胞膜较为完整,受伤害程度较小。
     各试材在正常条件下抗氧化酶活性相当,巴西陆稻略低,干旱胁迫使杂草稻HEB07-2叶片和根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、脱氢抗坏血酸还原酶(DHAR)活性显著上升,非酶抗氧化剂谷胱甘肽和抗坏血酸含量显著增加,而旱敏感品种越富胁迫72h后抗氧化酶活性和抗氧化剂含量均下降,巴西陆稻和WR04-6上升幅度小于HEB07-2,说明干旱胁迫下HEB07-2能够有效清除过量产生的活性氧(ROS),缓解干旱胁迫对生物膜的损伤。
     干旱胁迫下,杂草稻HEB07-2叶片和根系渗透调节含量显著增加,而旱敏感品种越富叶片和根系可溶性糖、可溶性蛋白含量先升后降。WR04-6和巴西陆稻渗透调节物质上升幅度均小于HEB07-2。说明HEB07-2在干旱胁迫下通过积累更多渗透调节物质维持细胞水势,从而达到耐旱的目的。本研究通过对干旱胁迫下叶片和根系的ROS积累和抗氧化系统及渗透调节物质变化规律比较发现,叶片对PEG模拟的干旱胁迫更加敏感。
     PEG模拟干旱胁迫72h后,旱敏感品种越富总叶绿素含量显著降低,而杂草稻HEB07-2叶绿素含量上升,WR04-6和巴西陆稻总叶绿素含量无显著变化。干旱胁迫期间,供试材料初始荧光(Fo)上升,最大荧光(Fm)下降。旱敏感品种越富上升幅度最大,而HEB07-2的Fo和Fm上升和下降时间较其他试材晚,说明其受伤害时间延后。干旱胁迫使净光合速率、气孔导度下降,旱敏感品种越富下降幅度最大,HEB07-2最小。利用红外热像仪测定群体温度变化发现,越富和WR04-6在干旱胁迫下叶温显著上升,而HEB07-2和巴西陆稻叶温无显著变化。
     利用Affymetrix水稻表达谱芯片(GeneChip Rice Genome Array)将极抗旱的杂草稻样本HEB07-2与巴西陆稻样本进行表达谱差异分析,结果表明,杂草稻HEB07-2转录组对于干旱信号的响应程度与方向均与巴西陆稻存在很大差异,HEB07-2以正向调控为主,而巴西陆稻以负调控为主,在差异基因表达的倍数上也体现出了HEB07-2高于巴西陆稻的趋势。通过进一步的GO分析发现,杂草稻与巴西陆稻的三类差异表达基因,即生物过程相关基因、细胞组成相关基因、以及分子功能相关基因,均可以与两者间生理与生活指标的差异相互印证。
Drought stress is an important type of abiotic stress.15%PEG-6000(polyethylene glycol6000) was applied in this study. Results showed that it had no significant effect on the final germination rate of the test weedy rice and cultivated rice, but germination indexex of the weedy rice and cultivated rice were significantly reduced, while germination time of weedy rice and cultivated rice germination time were prolonged. Drought stress significantly reduced the growth rates of weedy rice and cultivated rice, but the reduction of the growth rates of weedy rice was comparatively less than cultivated rice. This suggested that under control treatments, weedy rice and cultivated rice had almost the same growth amounts in terms of ground and underground parts. However, this experiment showed of a trend that under drought stress, growth indexes of weedy rice was greater than that of the cultivated rice. Meanwhile, the weedy rice exhibited an much larger variation range in root length stress index, stem length stress index, the number of stress index, root dry weight stress index, stem heavy stress index than the cultivated rice. Under drought stress, weedy rice root to shoot ratio tends to increase while the cultivated rice root to shoot ratio tends were decrdasing, indicating drought stress had more significantly effect on the root inhibition of weedy rice than on that of the cultivated rice.
     Repeated drought stress was adopted during seedling stage and drought tolerance was determined. Results showed that the survival rates of weedy rice and of cultivated rice were influenced slightly by the first drought stress, while they were influenced significantly by the second drought stress. In the second drought stress, weedy rice had much larger variation range than the cultivated rice survival rates. During the repeated drought stress experiment, weedy rice LYG07-10had the highest survival rate and weedy rice. HEB07-2had the highest anti-degree range. Drought level was divided according to drought resistance coefficient. The amounts of weedy rice drought resistance of1,3,5,7were8,25,15,6, respectively, making up of the test weedy rice materials12.7%,39.7%,23.8%,9.5%, respectively, which belonged to the normal distribution. That was the weedy rice with the strongest and the weakest drought tolerance was relatively less.
     During drought stress, leaves and roots mda content and superoxide anion radical production rate of test weedy rice and cultivated rice increased significantly. Among them, the increased of mda content in leaves and roots of HEB07-2was significantly smaller than that of the other tested materials, and the superoxide anion radical production rate of it was the slowest, significantly smaller than the other tested materials, which indicated that the cell membrane HEB07-2was more complete and was injured less. Thus, under drought stress, HEB07-2had less accumulation of reactive oxygen species and lower degree of lipid peroxidation; Under normal conditions, each test material had similar activity of antioxidant enzymes, which was slightly lower in upland rice IRPARG Under tihe influence of drought stress, leaves and roots of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), dehydroascorbate reductase (DHAR) activity increased significantly and the non-enzymatic antioxidants glutathione and ascorbic acid content also increased significantly. However,72hours later, the antioxidant enzyme activity and antioxidant content of drought-sensitive varieties decreased, while the increase rates of the upland rice IRPARG and WR04-6less than that of HEB07-2, which indicated that HEB07-2can effectively scavenge the excessive production of reactive oxygen species (ROS) to ease drought stress damage to the biological membrane. Leaf and root osmotic adjustment of HEB07-2was significantly increased by the impact of drought stress, and leaves and roots soluble sugar showed an earlier increase and later decrease. The increase of osmotic adjustment substances in WR04-6and IRPARG was smaller than that in HEB07-2, which indicated that under drought stress, HEB07-2can maintain cell water potential by accumulating more osmotic adjustment substances, so as to achieve the purpose of the drought resistance.
     72h after the PEG simulated drought stress, total chlorophyll conten tin drought-sensitive varieties significantly reduced, while the chlorophyll content of HEB07-2increased. Total chlorophyll contentin WR04-6and Brazilian Upland did not change significantly. During drought stress, initial fluorescence (Fo) increased, while the maximum fluorescence (Fm) decreased. Drought-sensitive variety Yuefu had the highest increase. While the beginning time of Fo increased and decreased of Fm was later than others', which indicated that HEB07-2was injured later than others. The net photosynthetic rate and stomatal conductance were decreased due to drought stress. Among them, drought-sensitive variety Yuefu had the highest decrease of net photosynthetic rate and stomatal conductance, while HEB07-2had the lowest decrease. Groups temperature changes was determined by infrared camera measurement, leaf temperature in Yuefu and WR04-6increased significantly under drought stress, while leaf temperature in HEB07-2and upland rice IRPARG had no significant change.
     Comparative analysis of terminal drought tolerance weedy rice HEB07-2between drought tolerance upland rice IRPARG by using expression profiles showed that the response to drought of transcriptome of weedy rice HEB07-2between upland rice IRPARG had significant difference in the respects of response directions and degrees. The majority of genes expressed in HEB07-2were most up-regulated, while in IRPARG were down-regulated, and the fold change of HEB07-2genes were larger. Gene ontology(GO) analysis suggested that weedy rice HEB07-2and upland rice IRPARG three categories of differently expressed genes related to biological process, cell component, molecular function, can be verified with physiological indexes.
引文
[1]安红卫,凌祖铭.1993.水陆稻根粗与抗早性关系的研究.西北农业学报,2(3):58-60.
    [2]B.B.布坎南等主编(瞿礼嘉等译).2004.植物生物化学与分子生物学.北京:科学出版社:955-966.
    [3]陈少裕.1989.膜脂过氧化与植物逆境胁迫.植物学报,6(4):211"-'217.
    [4]戴新宾,翟虎渠,张红生,等.2000.土壤干早对水稻叶片光合速率和碳酸配酶活性的影响.植物生理学报,26(2):113-136.
    [5]高吉寅,胡荣海,路漳,等.1984.水稻等品种苗期抗旱生理指标的探讨.中国农业科学,17(4):41-46.
    [6]郭连旺,沈允钢.1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32(1):1-8.
    [7]韩建民.1990.抗旱性不同的水稻品种对渗透胁迫的反应及其与渗透调节的关系.河北农业大学报,13(1):17-21.
    [8]韩龙植,魏兴华,等.2006.水稻种质资源描述规范和数据标准.北京:中国农业出版社,100-101.
    [9]郝建军,刘延吉.2001.植物生理学实验技术.沈阳:辽宁科学技术出版社:180-181.
    [10]胡标林,李名迪,万勇,等.2005.我国水稻抗早性鉴定方法与指标研究进展.江西农业学报,17(2):56-60.
    [11]黄文江,王纪华,赵春江,等.2002.水稻旱作条件下渗透调节物质和激素含量的关系.干旱地区农业研究,20(1):61-64.
    [12]蒋明义,郭绍川.1996.渗透胁迫下稻苗中铁催化的膜过氧化作用.植物生理学报,22(1):6-12.
    [131兰巨生,胡福顺,张景瑞.1990.作物抗旱指数的概念和统计方法.华北农学报,5(2):20-25.
    [14]朗有忠,胡健,杨建昌,等.2003.抗早型稻根系形态与机能的研究.扬州大学学报:农业与生命科学版,24(4):58-61.
    [15]黎裕.1993.作物抗旱性鉴定方法与指标.干旱地区农业研究,11(1):91-99.
    [16]李德全,邹琦,程炳高.1992.土壤干旱下不同抗早性小麦品种的渗透调节和渗透调节物质.植物生理学报,18(1):37-44.
    [17]李合生.植物生理生化实验原理和技术.2000.北京:高等教育出版社:260-261.
    [18]李永春,孟凡荣,王潇,等.2008.干旱胁迫条件下“洛旱2号”小麦根系的基因表达谱.作物学报,34(12):2126-2133.
    [19]李自超,刘文欣,赵笃乐.2001.PEG胁迫下水、陆稻幼苗生长势比较研究.中国农业大学学报,6(3): 16-20.
    [20]利容千,王建波.2002.植物逆境细胞及生理学.武汉:武汉大学出版社:53-84.
    [21]廖显辉.2002.话说“节水农业”.农业考古,(1):44-47.
    [22]凌祖铭,李自超,余荣,等.2002.水、陆稻根部性状的研究.中国农业大学学报,7(3):7-11.
    [23]刘翰朝.2006.我国21世纪水资源挑战与节水型社会经济模式的探讨.水利与建筑工程学报,4(2):73-77.
    [24]罗利军,张启发.2000.栽培稻抗旱性研究的现状与策略.中国水稻科学,15(3):209-214.
    [25]马殿荣,李茂柏,王楠,等.2008.中国辽宁省杂草稻遗传多样性及群体分化研究.作物学报,34(3):403-411.
    [26]马殿荣,孙健,赵明辉,等.2011.杂草稻分类及起源研究进展.沈阳农业大学学报,42(5):515-520.
    [27]马殿荣,王楠,王莹,等.2008.中国北方杂草稻深覆土条件下出苗动力源分析.中国水稻科学,22(2):215-218.
    [28]马延臣.2009.全基因组表达分析不同耐旱性水稻根系对不同强度干旱胁迫反应研究.华中农业大学.
    [29]孟雷,李磊鑫,陈温福,等.1999.水分胁迫对水稻叶片气孔密度、大小及净光合速率的影响沈阳农业大学学报,30(5):477-480.
    [30]苗微,王国娇,马殿荣,等.2011.辽宁杂草稻幼苗对低温胁迫的生理响应.中国水稻科学,25(6):639-644.
    [31]邱福林,张伟平.2000.水分胁迫对水稻生长影响的研究进展.垦殖与稻作,(2):7-13.
    [32]商奇.2009.PEG6000模拟干旱胁迫对水稻蛋白质组的影响及差异蛋白功能分析.扬州:扬州大学生物科学与技术学院.
    [33]石玉林.2011.中国农业需求与高校农业建设.北京,中国水利水电出版社:11-23.
    [34]田长思,梁承邺.1999.多胺对水稻CMS系及其保持系幼称蛋白质、核酸和活性氧代谢的影响.植物生理学报,25(3):222-228.
    [35]王贺正,李艳,马钧,等.2007.水稻苗期抗旱性指标筛选.作物学报,33(9):1523-1529.
    [36]王贺正.2005.水稻开花期抗旱性鉴定指标的筛选.作物学报,36(11):1485-1489.
    [37]王楠,马殿荣,陈温福,等.2007.北方杂草稻出苗特性的研究.华中农业大学学报,26(6):755-758.
    [38]王志琴,扬建昌,朱庆森.1996.土壤水分对水稻光合速率与物质运转的影响.中国水稻科学,10(4):235-240.
    [39]王志琴,杨建昌,朱庆森,等.1998.水分胁迫下外源多胺对水稻叶片光合速率与籽粒充实的影响.中国水稻科学,12(3):185-188.
    [40]卫云宗,刘新月,张久刚.2008.小麦苗期抗旱类型研究.中国生态农业学报,16(6):1409-1412.
    [41]徐吉臣,李晶昭,郑先武,等.2001.苗期水稻根部性状的QTL定位.遗传学报,28(5):433-438.
    [42]许聪,吴万春.1996.海南岛杂草稻的生态考察和鉴定.中国水稻科学,10(4):247-249.
    [43]许大全,张玉忠,张荣铣.1992.植物生理学通讯,28(4):237-243.
    [44]扬建昌,朱庆森,王志琴.1995.土壤水分对水稻产量与生理特性的影响.作物学报,21(1):110-112.
    [45]叶燕萍,李阳瑞,李永健,等.2003.反复干旱法在甘蔗抗旱性研究中的应用.中国糖料,3:3-15.
    [46]余柳青,]Mortimer A M,玄松南,等.2005.杂草稻落粒粳的抗逆境特性研究.应用生态学报,16(4):717-720.
    [47]喻方圆,徐锡增.2003.植物逆境生理研究进展.世界林业研究,16(5):6-11.
    [48]张丽丽,马殿荣,林志强,等.2010.耐盐杂草稻幼苗对NaC1胁迫响应及其生理基础.华北农学报,25(4):123-129.
    [49]张林生,赵文明,LEA蛋白与植物的抗旱性.植物生理学通讯,2003,39(1):61-66.
    [50]张燕之,周毓珩,邹吉承,等.1996.水稻抗旱性鉴定方法与指标研究Ⅲ.早作水稻的主要农艺性状与其抗旱性指标.辽宁农业科学,(2):6-8.
    [51]张正斌,山仑.1997.作物抗逆性共同机理研究进展.作物杂志,(4):10-12.
    [52]张正斌,山仑.1998.作物抗旱生理性状遗传研究进展.科学通报,43(15):1812-1817.
    [53]张正斌.2000.植物对环境胁迫的整体抗逆性的若干问题探讨.西北农业学报,(3):112-116.
    [54]张忠林,谭学林,邓安凤.2002.杂草稻种质资源的综合评价.植物遗传资源科学,3(4):47-50.
    [55]赵宝存,赵芊,葛荣朝,沈银柱,黄占景.2007.利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱.中国农业科学,40(10):2355-2360.
    [56]赵娜,马殿荣,陈温福.2007.北方杂草稻芽期耐盐性的初步评价.中国稻米,(2):20-24.
    [57]赵培培,马殿荣,陈温福.2008.北方杂草稻种子抗冻性的初步研究.北方水稻,38(3):28-31.
    [58]赵言文,丁艳锋,陈留根,等.2001.水稻旱育秧苗抗旱生理特性研究.中国农业科学,34(3):283-291.
    [59]周广生,崔克辉,靳德明,等.2005.发根力作为栽培稻品种苗期抗旱性鉴定指标的研究.中国农业科学,35(12):2571-2576.
    [60]朱杭申,黄王生.1994.土壤水分胁迫与水稻活性氧代谢.南京农业大学学报,17(2):7-11.
    [61]A LMANSO URI, M., J.M. K INET, et al.2001. Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum D esf). Plant and Soil,231:243-245.
    [62]A. Shalata, M. Tal.1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant, 104:169~174.
    [63]A.H. Sekmen, I. Turkan, S. Takio.2007. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol. Plant,131:399~411.
    [64]A.Rahimi.2013. Seed priming improves the germination performance of cumin (Cuminum syminum L.) under temperature and water stress. Industrial Crops and Products,42:454~460.
    [65]Abd Ellatif M. Nour, D.E. Weibel, et al.1978. Effect of repeated drought periods on the survival of sorghum seeding. Agronomy Journal,70(3):509~510.
    [66]Agnieszka, R., Holubowicz, R.2008. Effect of pansy (Viola X wittrockiana gams) seeds color and size on their germination. Not. Bot. Horti. Agrobo. Cluj,36:47~50.
    [67]Agrawal GK, Rakwal R, Iwahashi H.2002. Isolation of novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene, OsMSRMK2, whose mRNA accumulates rapidly in response to environmental cues. Biochem Biophys Res Commun,294:1009~1016.
    [68]Agrawal GK, Tamogami S, Iwahashi H, et al.2003. Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMKl) by diverse biotic and abiotic stresses. Plant Physiol Biochem, 41:355~361.
    [69]Ali M, Jensen C R, Mogensen.1999. Root signaling and osmotic adjustment during intermittent soil drying sustaining grain yield of field grown wheat. Field Crops Res,62(1):35~52.
    [70]Ali Moumeni, Kouji Satoh, Hiroaki Kondoh et al.2011. Comparative analysis of root transcriptome profiles of two pairs of drought-tolerance and susceptible rice near-isogenic lines under different drought stress. BMC Plant Biology,11:174~191.
    [71]Amani I, Fischer R A, Reynolds M P.1996. Canopy temperature depression association with yield of irrigated wheat cultivars in a hot climate. Journal of Agronomy and Crop Science,176:119~129.
    [72]Anthony E H, Ndiaga C, Samba T.2003. Development of cowpea cultivars and germplasm by the bean/cowpea CRSP. Field Crops Res,82(2-3):103~134.
    [73]Araus J L, Hogan K P.1994. Comparative leaf structure and patterns of photoinhibition of the neotropical palms. Scheelea zonensis and Socratea durissima growing in clearing and forest understory during the dry season in Panama. American Journal of Botany,81:726~738.
    [74]Asada K.1999. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol,50:601~639.
    [75]B.Jongdee, S. Fukai, M. Cooper.2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res, (76):153~163.
    [76]Baker N R, Rosenqvist E.2004. Applications of chlorophyll fluorescence can improve crop production strategies:an examination of future possibilities. Journal of Experimental Botany, 55:1607~1621.
    [77]Bartels D, Sunkar R.2005. Drought and salt tolerance in plants. Crit Rev Plant Sci,24:23-58.
    [78]Baverstock P R.1975. Effect of variations in rate of growth on Physiological Parameters In the lizard AmPhibolurus ornatus. Comparative Bioehemistry and Physiology Part A:Physiology, 51(3):619~631.
    [79]Beerling DJ, Chaloner WG 1993. The impact of atmospheric CO2 and temperature change on stomatal density:observations from Quercus robur Lammad leaves. Annals of Botany,71:231~235.
    [80]Bernier, J., Atlin, G.N., Serraj, R., Kumar, A. and Spaner, D.2008. Breeding upland rice for drought resistance. J. Sci. Food Agric,88:927~939.
    [81]Bernier. J., Kumar. A., Venuprasad. R., et al.2007. A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci,47:507~516.
    [82]Bhattachrjee S.2005. Reactive oxygen species and oxidative burst:roles in stress, senescence and signal transduction in plant. Curr. Sci,89:1113~1121.
    [83]Blokhina O., E.Virolainem, K. V. Fagerstedt.2003. Antioxidants, oxidative damage and oxygen deprivation Stress:A review. Annals of Botany,91:179~194.
    [84]Bota, J., Medrano, H., Flexas, J.2004. Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytologist,162:671~681.
    [85]Bray E A.1993. Molecula responses to water deficit. Plant Physiol,103:1035~1040.
    [86]Britto DT, Kronzucker HJ.2008. Cellular mechanisms of potassium transport in plants. Physiol Plant, 133:637~650.
    [87]Briviba K., L. O. Klotz, H. Sies.1997. Toxic and signaling effects of photochemically or chemically generated singlet oxugen in biological systems. J. Biol. Chem,378:1259-1265.
    [88]Brownlee C.2001. The long and the short of stomatal density signals. Trends in Plant Science, 6:441-442.
    [89]Burton RA, Jobling SA, Shirley NJ, et al.2008. The genetics and transcriptional profiles of the cellulose synthase-like HvCsIF gene family in barley. Plant Physiol,146:1821-1833.
    [90]C. Faraloni, I. Cutino, R. Petruccelli.2011. Chlorophyll fluorescence technique as a rapid tool for in vitro screening of olive cultivars (Olea europaea L.) tolerant to drought stress. Environmental and Experimental Botany,73:49-56.
    [91]C.H. Foyer, G. Noctor.2005. Oxidant and antioxidant signalling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ,28:1056-1071.
    [92]Chakir, S. and M. Jensen.1999. How does Lobaria pulmoria regulate Photosystem II during progressive desiccation and osmotic water stress? Physiologia Plantarum,105(2):256-264.
    [93]Chaves MM, Maroco JP, Pereira JS.2003. Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol,30:239-264.
    [94]Chaves, M.M.1991. Effects of water deficits on carbon assimilation. J. Exp. Bot,42:1-16.
    [95]Chaves. M.M., Maroco. J.P., Pereira. J.S.2003. Understanding plant responses to drought from genes to the whole plant. Funct.Plant Biol,30:239-264.
    [96]Chaves, M.M., Oliveira, et al.2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture.J. Exp. Bot,55:2365-2384.
    [97]Chen, Y. H. and B. D. Hsu.1995. Effect of dehydration on the electron transport of Chlorella. An in vivo fluorescence study. Photosynth. Res,46:295-299.
    [98]Clark A J, Landolt W, Bucher J B, et al.2000. Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll fluorescence performance index. Environmental Pollution, 109(3):501-507.
    [99]Cocuron JC, Lerouxel O, Drakakaki G, et al.2007. A gene from the cellulose synthase like C family encodes a beta-1,4 glucan synthase. Proc Natl Acad Sci,104:8550-8555.
    [100]Comic, G.1994. Drought stress and high light effects on leaf photosynthesis. In:Baker, N.R., Bowyer, J.R. (ed.):Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp:297-313. BIOS Scientific Publ., Oxford.
    [101]Comic, G. 2000. Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci,5:187~188.
    [102]Correia, M.J., Rodrigues, et al.1999. Effects of growth temperature on the response of lupin stomata to drought and abscisic acid. Aust. J. Plant Physiol,26:549~559.
    [103]Couper A, Eley D.1984. Surface tension of polyethylene glycolsolutions. J Polym Sci,3:345-349.
    [104]Courtois G M, Shinha P K, Prasad k, et al.2000. Mapping QTLs associated with drought avoidance in up lands rice. Molecular Breeding,6:55~66.
    [105]Courtois. B., Shen. L., Petalcorin. W., et al.2003. Locating QTLs controlling constitutive root traits in the rice population IAC 165 × Co39. Euphytica,134:335~345.
    [106]Cowan IR, Troughton JH.1971. The relative role of stomatal in transpiration and assimilation. Planta, 97:325~336.
    [107]Crismani W, Baumann U, Sutton T, et al.2006. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat. BMC Genomics,7:267.
    [108]Csonka, L.N. Micorbiol.1989. Physioligical and genetic responses of bacteria to osmotic stress. Microbiol. Mol. Biol. Rev,53:121~147.
    [109]Cutler JM, Rains DW, Loomis RS.1977. The importance of cell size in the water relations of plants. Physiologia Plantarum,40:225~260.
    [110]Degenkolbe T, Do PT, Zuther E, et al.2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Bio,169:133~153.
    [111]Degenkolbe T, Do PT, Zuther E, et al.2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol,69:133~153.
    [112]Degenkolbe T, Do PT, Zuther E, et al.2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol,69:133~153.
    [113]Delachiave MEA, De Pinho SZ.2003. Germination of Senna occidentalis link:seed at different osmotic potential levels. Braz. Arch. Tech,46:163~166.
    [114]Demir.I., Mavi.K.2008. Effect of salt and osmotic stresses on the germination of pepper seeds of different maturation stages. Braz. Arch. Biol. Technol,51:897~902.
    [115]Dias.M.C., Bruggemann.W.2007. Differential inhibition of photosynthesis under drought stress in Flaveria species with different degrees of development of the C4 syndrome. Photosynthetica, 45:75-84.
    [116]Dieter Groden, Erwin Beck.1979. H2O2 destruction by ascorbate-dependent systems from chloroplasts. BBA,546:426~435.
    [117]Dolan L, Davies J.2004.Cell expansion in roots. Curr Opin Plant Biol,7:33-39.
    [118]Doulis, A.G., Debian, N., Kingston-Smith, et al.1997. Differential localization of antioxidants in maize leaves. Plant Physiol,114:1031~1037.
    [119]Dwivedi.S., Kar.M., Mishra.D.1979. Biochemical changes in excised leaves of Oryza sativa subjected to water stress. Physiol. Plant,45:35~40.
    [120]Elstner, E.F.1982. Oxygen activation and oxygen toxicity. Annu. Rev. Plant Physiol,33:73-96.
    [121]Ennahli.S., Earl, H.J.2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci,45:2374~2382.
    [122]Fan T L, Balta M, Rudd J, et al.2005. Canopy temperature depression as a potential selection criterion for drought resistance in wheat. Agricultural Sciences in China,4(10):793~800.
    [123]Farsiani A, Ghobadi ME.2009. Effects of PEG and NaCl stress on two cultivars of corn (Zea mays L.) at germination and early seedling stages. World Acad. Sci. Eng. Tech,57:382-385.
    [124]FEDERICI M T, VAUGHAN D, TOMOOKA N, et al.2001. Analysis of Uruguayan weedy rice genetic diversity using AFLP molecular makers.Electron J Biotechnol,4(3):130~145.
    [125]Fischer K S, Ufitte R, Fukai S, et al.2003. Breeding Rice for Drought-Prone Environments.Los Banos (Philippines):International Rice Research Institute., P.98.
    [126]Fiseher. K. S., Edmeades.G. O., Johnson. E. C., et al.1989. Selection for improvement in maize yield under moisture defieit. Field crop Res,22:227~243.
    [127]Flexas. J., Bota, et al.2006. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress. Physiol. Plant,127:343~352.
    [128]Flexas. J., Medrano. H.2002. Drought-inhibition of photosynthesis in C3 plants:stomatal and non-stomatal limitation revisited. Ann. Bot,89:183~189.
    [129]Foyer CH, Mullineaux PM.1998. The presence of dehydroascorbate and dehydroascorbate. FEBS Letters,425(3):528~529.
    [130]Foyer CH, Noctor G.2005. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ,28:1056~1071.
    [131]Foyer CH, Theodoulou FL, Delrot S.2001. The functions of inter and intracellular glutathione transport systems in plants. Trends Plant Sci,6:486~492.
    [132]Franks P, Farqhuar GD.2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology,143:78~87.
    [133]Fukai S, Cooper M.1995. Develoment of drought-resistant cultivars using physio-morphological traits in rice. Field crop Res,40:67~85.
    [134]Fukuoka M, Iwama K, Jitsuyama Y.2006. Difference between canopy temperature and air temperature as a criterion for drought avoidance in upland rice varieties under field conditions in Japan. Japanese Journal of Crop Science,75(1):57~67.
    [135]Galme's J, Flexas J, Save'R, et al.2007. Water relations and stomatal characteristics of Mediterranean plants with different growth forms and leaf habits:responses to water stress and recovery. Plant and Soil,290:139~155.
    [136]Dung Tien Le, Rie Nishiyama, Yasuko Watanabe, et al.2011. Genome-Wide Expression Profiling of Soybean Two-Component System Genes in Soybean Root and Shoot Tissues under Dehydration Stress. DNA RESEARCH,18:17~29.
    [137]Gill S. S, N. Tuteja.2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry,48:909~930.
    [138]Gong P, Zhang J, Li H, et al.2010. Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways into tomato. J Exp Bot,61:3563~3575.
    [139]Gorantla M, Babu PR, Lachagari VBR, et al.2007. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot, 58:253~265.
    [140]Gorantla M, Babu PR, Lachagari VBR, et al.2007. Identification of stress-responsive genes in an indica rice(Oryza sativa L.) using ESTs generated from drought-stressed seedlings. J Exp Bot, 58:253~265.
    [141]Grassi. G., Magnani. F.2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ, 28:834~849.
    [142]Greaves J A, Wilson J M.1987. Chlorophyll fluorescence analysis-an aid to plant breeders. Biologist, 34:209-214.
    [143]Gunasekera. D., Berkowitz, G.A.1993. Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water-stress. Plant Physiol,103:629~635.
    [144]Haiguang Wang, Hongliang Zhang, Zichao Li.2007. Analysis of Gene Expression Profile Induced by Water Stress in Upland Rice(Oryza sativa L.var.ERAT109)Seedings using Subtractive Expressed Sequence Tags Library.Journal of Integrative Plant Biology,49(10):1455~1463.
    [145]Hakam N, Khanizadeh S, DeEll J R, et al.2000. Assessing chilling tolerance in roses using chlorophyll fluorescence. HortScience,35:184~186.
    [146]He H, Serraj R, Yang Q.2009. Changes in OsXTH gene expression, ABA content, and peduncle elongation in rice subjected to drought at the reproductive stage. Acta Physiol Plant,31:749-756.
    [147]He. J. X., J. Wang, H. G. Liang.1995. Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol. Plant,93:771~777.
    [148]Horemans N, Foyer CH, Asard H.2000. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci,5:263-267.
    [149]HR. Lafitte, B.2002. Interpreting cultivar X environment interactions for yield in upland rice assigning value to drought-adaptive traits. Crop Science,42(5):1409~1419.
    [150]Huang D, Wu W, Abrams SR, et al.2008. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot,59:2991-3007.
    [151]IPCC:2001. Intergovernmental panel on climate change. In:Watson, R.T., Core Writing Team (ed.): Climate Change, Pp.398, Cambridge Univ. Press, Cambridge.
    [152]Ito Y, Katsura K, Maruyama K, et al.2006. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol,47:141-153.
    [153]Jia W, Zhang J.2008. Stomatal movement and long-distance signaling in plants. Plant Signaling & Behaviour,10:772~777.
    [154]Johnson, D.A.1980. Improvement of perennial herbaceous plants for drought-stressed western rangelands. p.419~433. In N.C. Turner and P.J. Kramer (ed.) Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York.
    [155]Jones HG.1992. Plants and microclimate:a quantitative approach to environmental plant physiology. Cambridge, UK:Cambridge University Press.
    [156]Jongdee B, Fukai S, Cooper M.1998. Genotypic variation for grain yield of rice under water-deficit conditions. In:Michalk D, Pratley J (eds) Proceedings of 9th Australian Agronomy Conference, Wagga Wagga, pp 403~406.
    [157]Jorge. M.H.A., Ray. D.T.,2005. Germination characterization of guayule seed by morphology, mass and, X-ray analysis. Ind. Crop Prod.22:59~63.
    [158]Jung C, Lyou S H, Yeu S Y, et al.2007. Microarray-based screening of jasmonateresponsive genes in Arabidopsis thaliana. Plant Cell Reports,26:1053~1063.
    [159]Kader, J.-C.1996. Lipid-transfer proteins in plants. Ann. Rev. Plant Physiol. Plant Molec. Biol 47: 627-654.
    [160]Karamanos. A., Drossopoulos. J. B., Niavis, C. A.1983. Free proline accumulation during development of two wheat cultivars with water stress. J. Agric. Sci,100:429~439.
    [161]Kawaguchi. R., Girke. T., Bray. E.A., et al.2004. Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. Plant J, 38:223~239.
    [162]Kawasaki S, Borehert C, Deyholos M, et al.2001. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell,13:889~905.
    [163]Kaya, M.D., Okcu, et al.2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annus L). Eur. J. Agron,24:291~295.
    [164]Khayatnezhad M, Gholamin R, Jamaatie-Somarin SH, et al.2010. Effects of peg stress on corn cultivars (Zea mays L.) at germination stage. World Appl. Sci. J, 11(5):504~506.
    [165]KPOGHOMOU, B K, V T SAPRA, et al.1990. Screening for drought tolerance:soybean germination and its relationship to seedling responses. J. Agron. Crop Sci,164:153~159.
    [166]Krause G H, Weiss E.1991. Chlorophyll fluorescence and photosynthesis:the basics. Annual Review of Plant Physiology and Plant Molecular Biology,42:313~349.
    [167]Kumar, R., Venuprasad, R., et al.2007. Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India:heritability and QTL effects. Field Crops Res, 103:42~52.
    [168]Lafitte HR, Li ZK, Vijayakumar CHM.2006. Improvement of rice drought tolerance through backcross breeding:evaluation of donors and selection in drought nurseries. Field Crops Res, 97:77~86.
    [169]Lafitte, H.R., Price, et al.2004. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor. Appl. Genet,109:1237~1246.
    [170]Lake JA, Quick WP, Beerling DJ, et al.2001. Signals from mature to new leaves. Nature, 411:154~155.
    [171]Larson R.A.1998. The antioxidants of higher plants. Phytochemistry,27:969~978.
    [172]LAWLOR, D W.1970. Absorption of polyethylene glycols by plant and their effects on plant growth. New Phytol,69:501~513.
    [l73]Lawlor, D.W.1995. The effects of water deficit on photosynthesis. In:Smirnoff, N. (ed.): Environment and Plant Metabolism. Flexibility and Acclimation. Pp.129-160. BIOS Scientific Publ., Oxford.
    [174]Lawlor, D.W., Comic, G.2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ,25:275~294.
    [175]Lecoeur J, Wery J, Turc O, et al.1995. Expansion of pea leaves subjected to short water-deficit:cell number and cell-size are sensitive to stress at different periods of leaf development. Journal of Experimental Botany,46:1093~1101.
    [176]Levy, D.1983. Water deficit enhancement of proline and amino nitrogen accumulation in potato plants and its association with susceptibility to drought. Physiol Plant,57:169~173.
    [177]Liepman AH, Nairn CJ, Willats WG, et al.2007. Functional genomic analysis supports conservation of function among cellulose synthase-like a gene family members and suggests diverse roles of mannans in plants. Plant Physiol,143:1881~1893.
    [178]Lilley J M, Ludow TJ, Mclouch S R, et al.1996. Locating QTL for osmotic adjustment and dehydration tolerance in rice. EXP. Bot,47(302):1427~1436.
    [179]Liu WY, Wang MM, Huang J, et al.2009. The OsDHODH1 gene is involved in salt and drought tolerance in rice. J Integr Plant Biol,51:825~833.
    [180]LIU, S H, B Y FU, et al.2007. Cell death in response to osmotic and salt stresses in two rice (Oryza sativa L.) ecotypes. Plant Sci,172:897~902.
    [181]Lu, C, J. Zhang.1999. Effects of waters stress on Photosystem Ⅱ photochemistry and its thermostability in wheat plants. J. Exp. Bot,50:1199-1206.
    [182]M. Cooper, G.Pantuwan, B. Jongdee, et al.1999. Screening for drought resistance in rained lowland rice. Field Crops Res,6461~74.
    [183]M. Egert, M. Tevini.2002. Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ. Exp. Bot,48:43-49.
    [184]Maathuis FJM, Sanders D.1993. Energization of potassium uptake in Arabidopsis thaliana. Planta, 191:302~307.
    [185]Mahouachi J, Socorro AR, Talon M.2006. Responses of papaya seedlings (Carica papaya L.) to water stress and rehydration:growth, photosynthesis and mineral nutrient imbalance. Plant Soil, 281:137~146.
    [186]Mallick N., Mohn F.H.2000. Reactive oxygen species:response of algal cells. Journal of Plant Physiol,157:183~193.
    [187]Manavalan LP, Guttikonda SK, Tran L-SP, et al.2009. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol,50:1260~1276.
    [188]Manivannan P, Abdul Jaleel C, Sankar B, et al.2007. Growth, biochemical modifications and praline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces,59:141~149.
    [189]MANO Y, H NAKAZUMI, K TAKEDA.1996. Varietal variation in and effects of some major genes on salt tolerance at the germination stage in barley. Breeding Sci,46:227~233.
    [190]Martinez JP, Silva H, Ledent JF, Pinto M.2007. Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgarisL). European Journal of Agronomy,26:30~38.
    [191]McCree KJ, Davis SD.1974. Effect of water stress and temperature on leaf size and number of epidermal cells in grain sorghum. Crop Science,14:751~755.
    [192]McCue, K.F., Hanson. A.D.1990. Trends Biotechnol,8:358~362.
    [193]Mehlhorn H, Lelandais M, Korth HG, et al.1996. Ascorbate is the natural substrate for plant peroxidases. FEBS Lett,378:203~206.
    [194]Menconi M, Sgherri CLM, Pinzino C, et al.1995. Activated oxygen production and detoxification in wheat plants subjected to a water deficit programme. J Exp Bot,46:1123~1130.
    [195]Mittler R, Poulos TL.2005. Ascorbate peroxidase. In:Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing, Oxford, UK, pp 87~100.
    [196]Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci,7:405~410.
    [197]Molna'r, I, L. Ga'spa'r, et al.2004. Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to droughtFunct. Plant Biol,31:1149~1159.
    [198]Mostafavi KH.2011. An evaluation of safflower genotypes (Carthamus tinctorius L.), seed germination and seedling characters in salt stress conditions. Afr. J. Agric. Res,6(7):1667-1672.
    [199]Nguyen TTT, Klueva N, Chamareck V, et al.2004. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Genet Genomics, 272:35~46.
    [200]Niyogi K. K., C. Shih, W. S. Chow, et al.2001. Photoprotection in a zeaxanthin-and lutein-deficient double mutant of Arabidopsis. Photosynthetic Res,67:139~145.
    [201]Noctor G, Foyer CH.1998. Ascorbate and glutathione:keeping active oxygen under control. Plant Biology,49:249~279.
    [202]Noctor G, C. H. Foyer.1998. A re-evaluation of the ATP:NADPH budget during C3 photosynthesis. A contribution from mitrate assimilation and its associated respiratory activity? J.Exp.Bot, 49:1895~1908.
    [203]Nuruzzaman M, Manimekalai R, Sharoni AM, et al.2010. Genome-wide analysis of NAC transcription factor family in rice. Gene,465:30~44.
    [204]Ommen OE, Donnelly A, Vanhoutvin S, et al.1999. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ESPACE-wheat project. Eur. J. Agron,10:197~203.
    [205]P. S. Longenberger, C.W.Smith, P.S.Thaxton.2006. Development of a screening method for drought tolerance in cotton seedings. Crop Science,46(5):2104~2110.
    [206]Pallavi Sharma, Rama Shanker Dubey.2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedings. Plant Growth Regulation,46:209~221.
    [207]Pallavi Sharma, Rama Shanker Dubey.2005. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedings. Plant Growth Regulation,46:209~221.
    [208]Percival G C, Sheriffs C N.2002. Identification of drought-tolerance woody perennials using chlorophyll fluorescence. Journal of Arboriculture,28:215~223.
    [209]Prado. F.E., Boero. C, Gallardo. M., et al.2000. Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa wild seeds. Bot. Bull. Acad. Sin,41:27~34.
    [210]Price. A.H., Cairns. J.E., Horton. P., et al.2002. Linking drought-resistance mechanisms in upland rice using a QTL approach:progress and new opportunities to integrate stomatal and mesophyll responses. J.Exp. Bot,53:989~1004.
    [211]PRITCHARD H, W C B WOOD, S HODGES, et al.2004.100-seed test for desiccation tolerance and germination:a case study on eight tropical palm species. Seed Sci. Technol,32:393~403.
    [212]Quarrie SA, Jones HG. 1977. Effects of abscistic acid and water stress on development and morphology of wheat. Journal of Experimental Botany,28:192~203.
    [213]R. SERRAJ, T. R. SINCLAIR.2002. Osmolyte accumulation:can it really help increase crop yield under drought conditions? Plant, Cell and Environment,25:333~341.
    [214]Rabbani MA, Maruyama K, Abe H et al.2003. Monitoring expression profiles of rice genes under cold, drought, high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol,133:1755~1767.
    [215]Rabello AR, Guimaraes C, Rangel PHN et al.2008. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC Genomics,9:485~498.
    [216]Ramamoorthy R, Jiang S-Y, Kumar N, et al.2008. A comprehensive transcriptional profiling of the WRKY gene family in rice under various abiotic and phytohormone treat-ments. Plant Cell Physiol, 49:865~879.
    [217]Reddy AR, Chaitanya KV, Vivekanandan M.2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol,161:1189~1202.
    [218]Riazi. A., Matsuda, K. & Arslan. A.1985. Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. Exp. Bot,36:1716~1725.
    [219]Rizhsky L, Liang H, Shuman J, et al.2004. When defense pathways collide:The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol,134:1683~1696.
    [220]Roberts D M, Harmon A C.1992. Caleium-modulated Proteins:targets of intracellular Caleium signals in higher Plants. Annu Rev Plant Physiol Plant Mol Biol,43:375~414.
    [221]Rohila JS, Yang Y.2007. Rice mitogen-activated protein kinase gene family and its role in biotic and abiotic stress response. J Integr Plant Biol,49:751~759.
    [222]RoyChoudhury A, Roy C, Sengupta DN.2007. Transgenic tobacco plants over expressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep,26:183~1859.
    [223]Samantha Pyngrope, Kumari Bhoomika, R.S.Dubey.2013. Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sative L.) seedings subjected to progressing levels of water deficit.Protoplasma,250:585~600.
    [224]Schreiber U, Bilger W, Neubauer C.1994. Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. In:Schulze E D, Caldwell M M, eds, Ecophysiology of Photosynthesis. Ecological Studies. Vol100. Springer, Berlin Heidelberg, New York. pp.49~70.
    [225]Seki. M., Ishida. J., Narusaka. M., et al.2002a. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Int. Gen,2: 282~291.
    [226]Seki. M., Narusaka, M. Ishida, et al.2002b. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J,31: 279~292.
    [227]Sharp R E, LeNoble M E.2002. ABA, Ethylene and the control of shoot and root growth under water stress. Journal of experimental botany,53(366):33~37.
    [228]Shinozaki K, Yamaguehi-Shinozaki K, Seki M.2003. Regulatory net work of gene expression in the drought and cold stress responses. Curr Opin Plant Biol,6:410-417.
    [229]SkotnicaJ., M.Matouskova, J. Naus. D. Lazar, et al.2000. Thermoluminescence and fluorescence study of changes in Photosystem Ⅱ photochemistry in desiccating barley leaves. Photosynth. Res, 65:29~40.
    [230]Smirnoff N.1993. The role of active oxygen in the response to water deficit and desiccation. New Phytol,125:27~58.
    [231]Smirnoff N.1998. Plant resistance to environmental stress. Curr Opin Biotech,9:214~219.
    [232]Spence RD, Wu H, Sharpe PJH, et al.1986. Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant, Cell and Environment,9:197~202.
    [233]Srivalli B, Sharma G, Khanna-Chopra R.2003. Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant,119:503-512.
    [234]Suh. H S, Sato Y I, Morishima H.1997. Genetic characterization of weedy rice (Oryza sativa L.) based Oil morphysiology, isozymes and RAPD markers. Theor Appl Genet,94:316-321.
    [235]Supratim Basu, Aryadeep Roychoudhury, Progya Paromita Saha, et al.2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul,60:51-59.
    [236]T. Demiral, I. Turkan.2005. Comparative lipid peroxidation, antioxidant systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot,53:247-257.
    [237]TANG L, Ma D R, XU Z J, et al.2011. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L).Plant Sci,80(5):733-740.
    [238]Thomas Degenkolbe Phuc, Thi Do Ellen, Zuther Dirk, et al.2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol,69:133-153.
    [239]Ticha 1.1982. Photosynthetic characteristics during ontogenesis of leaves.7. Stomatal density and sizes. Photosynthetica,16:75-471.
    [240]Tijen Demiral, Ismail Turkan.2005. Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance. Enviromental and Experimental Botany,53:247-257.
    [241]Tomer J B, Prasad S C.1996. Relationship between inheritance and linkage for drought tolerance in upland rice (Oryza sativa) varieties. Indian J Agri Sci,66(8):459-465.
    [242]Tran L-SP, Mochida K.2010. Functional genomics of soybean for improvement of productivity in adverse conditions. Funct Integr Genomics,10:447-462.
    [243]Valladares F, Dobarro I, Sanchez-Gomez D, et al.2005. Photoinhibition and drought in Mediterranean woody saplings:scaling effects and interactions in sun and shade phenotypes. Journal of Experimental Botany,56:483-494.
    [244]Van Breusegem F, Vranova E, Dat JF, et al.2001. The role of active oxygen species in plant signal transduction. Plant Sci,161:405-414.
    [245]Vinod K S, Nilda R B, Marites A S, et al.2010. Polymorphisms inthe ALS gene of weedy rice (Oryza sativa I.) accessions with differential tolerance to imazethapyr. Crop Prot,29:336-341.
    [246]Walker DJ, Leigh RA, Miller AJ.1996. Potassium homeostasis in vacuolate plant cells. Proc Natl Acad Sci USA,93:10510~10514.
    [247]Wen JQ, Oono K, Imai R.2002. Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol,129:1880~1891.
    [248]Woodward FI.1987. Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature,327:617~618.
    [249]Xiao B, Huang Y, Tang N, et al.2007. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet,115:35-46.
    [250]Xin Hou, Kabin Xie, Jialing Yao, et al.2009. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. PNAs,15:6410~6415.
    [251]Xiong L, Yang Y.2003. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell,15:745~759.
    [252]Yancey P H, Clark M E.1982. Living with water stress:Evolution of os-molyte system. Sci,217: 1214~1222.
    [253]Yancey, P.H., Clark, et al.1982. Science,217:1214~1217.
    [254]Yang HM, Wang GX.2001. Leaf stomatal densities and distribution in Triticum aestivum under drought and CO2 enrichment. Acta Phytoecologica Sinica,25:312~316.
    [255]Yang S, Vanderbeld B, Wan J, et al.2010. Narrowing down the targets:towards successful genetic engineering of drought-tolerant crops. Mol Plant,3:469~490.
    [256]Yang Z, Wu Y, Li Y, et al.2009. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol,70:219~229.
    [257]Yordanov, I., V. Velikova et al.2003. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. Special issue:187~206.
    [258]Yordanov, I., Velikova, et al.2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica,38:171~186.
    [259]Yue G D, Zhuang Y L, Li Z X, et al.2008. Differential gene expression analysis of maize leaf at heading stage in response to water-deficit stress. Bioscience Reports,28(3):125~134.
    [260]Z. Wang, B. Huang.2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress, Crop Sci,44:1729~1736.
    [261]Zhang YP, Wang ZM, Wu YC, et al.2006. Stomatal characteristics of different green organs in wheat under different irrigation regimes. Acta Agronomica Sinica,32:70~75.
    [262]Zhao RX, Zhang QB, Wu XY, et al.2001. The effects of drought on epidermal cells and stomatal density of wheat leaves. Inner Mongolia Agricultural Science and Technology,6:6~7.
    [263]Zhao S, Chen W, Ma D, et al.2006. Influence of different salt level on stomatal character in rice leaves. Reclaiming and Rice Cultivation,6:26~29.
    [264]Zheng X, Chen B, Lu G, et al.2009. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun,379:985~989.
    [265]Zhou J, Wang X, Jiao Y, et al.2007.Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf and panicle. Plant Mol Biol,63:591~608.
    [266]Zhou J, Wang X, Jiao Y, et al.2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf and panicle. Plant Mol Biol,63:591~608.