DXA技术测量股骨颈骨强度的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过双能x线吸收法(DXA)重复测量的短期精密度试验来获取股骨颈骨强度(HSA)参数与身体成分参数的精密度,并计算相应误差的最小显著变化(LSC)。
     方法73名健康成年志愿者进行了双侧股骨近端的DXA HSA精密度试验,分别计算单、双侧股骨近端骨密度(BMD)和HSA测量参数[截面面积(CSA)、截面转动惯量(CSMI)、截面模量(Z)、皮质骨外径(PD)、皮质骨内径(ED)和皮质骨厚度(CT)]的精密度[以变异系数均方根(RM-CV%表示)];50名健康成年志愿者进行了DXA全身扫描精密度试验,计算全身身体成分DXA测量参数[脂肪含量(FM)、瘦组织含量(LM)和骨矿物质含量(BMC)]的精密度(以RM-CV%表示)。并进一步计算出在95%的可信区间内所有测量参数误差值的最小范围(以LSC表示)。
     结果DXA单侧股骨颈测量中,HSA各参数RM-CV%在0.8~4.0%之间;双侧股骨颈测量中,HSA各参数的平均值RM-CV%在0.6~2.8%之间。双侧股骨颈测量HSA参数精密度较单侧测量提高了13~33%。身体成分测量精密度各参数RMS-CV%均在2%以下。
     结论采用DXA测量股骨颈HSA各参数和全身身体成分各参数的精密度较高,可以满足临床研究的需要。
     目的在进行了双能X线吸收法(DXA)左、右侧股骨颈骨强度(HSA)测量参数差异比较的基础上,应用HSA中的的骨强度参数和骨结构参数分析股骨颈生物力学在不同性别、不同年龄阶段以及不同骨折风险人群中的表现情况,探寻不同人群HSA参数随年龄增长而变化的结构和力学生物学基础。
     方法400名不同人群受试者的左、右侧股骨HSA测量参数分别采用配对t检验和Pearson相关分析比较两者之间的差异和相关性。分析了3855例男、女性人群代表股骨颈骨强度的HSA参数[截面面积(CSA)、截面转动惯量(CSMI)和截面模量(Z)]与年龄的相关性,比较人群不同阶段之间(中青年男性和老年男性;绝经前女性和绝经后女性)HSA参数[CSA、CSMI、Z、皮质骨外径(PD)、皮质骨内径(ED)和皮质骨厚度(CT)]的差异。对正常组、骨量减少组和骨质疏松组人群的HSA测量参数进行多样本比较的秩和检验,并应用两样本比较的秩和检验进一步分析了绝经后女性和老年男性人群HSA参数随年龄变化的趋势。
     结果双侧股骨颈HSA各参数之间均没有发现显著差异(p>0.05),且呈高度正相关(r=0.801~0.921,p<0.05)。老年男性和绝经后女性的CSA、CSMI和Z随年龄增长而显著下降(r=-0.183~-0.495,p<0.05),而中青年男性和绝经后女性未发现与年龄增长的负相关关系。绝经后女性股骨颈骨CSA、CSMI和Z、CT低于绝经前女性,PD和ED未发现两组差异;老年男性股骨颈CSA、CSMI和Z和CT低于的中、青年男性,但PD和ED高于后者(p<0.05)。老年男性和绝经后女性的CSA、CSMI和Z均随着骨折风险增加而降低,而且均随着年龄增长而降低,但是与股骨颈骨密度的下降趋势并不一致(p<0.05)。
     结论左、右侧股骨颈之间的骨强度没有显著差异。在股骨颈骨量随着年龄的增加而减少的情况下,其强度也逐渐降低,但股骨颈通过骨的重建改变其截面的结构,存在对负荷减少以及对骨强度的维持的适应现象。
     目的本研究应用双能x线吸收法(DXA)分别在不同BMI阶段的成年男、女人群中分析股骨颈骨强度(HSA)与不同身体成分之间的关系。
     方法按世界卫生组织(WHO)体重指数标准将受试者分组,低体重组(BMI≤18.5)女性329人,男性109人;正常体重组(18.5     结果低体重组的CSMI、CSA和Z较正常体重组低,而超重和肥胖组CSMI、 CSA和Z高于正常体重组(p<0.05)。在各组中LM均都与CSMI、CSA和Z呈高度正相关(r=0.310~0.616,p<0.05)。当经过LM校正后,男、女性低体重、超重、肥胖组的CSA、CSMI和Z与正常体重组无显著差异;当经过FM校正后,男、女性低体重、超重、肥胖组的CSMI、CSA和Z与正常体重组的统计学差异仍显著存在(p<0.05);当经过体重校正后,男性低体重、超重、肥胖组的CSA、 CSMI和Z与正常体重组无显著差异,女性低体重、超重、肥胖组的CSMI、CSA和Z与正常体重组的统计学差异仍显著存在(p<0.05)。多元回归分析显示:成年男、女性各组中中LM都是显著变量,且LM的标准偏回归系数均高于FM。
     结论在成人男、女性人群中LM都是一个影响骨强度的决定因素,骨强度的高低主要是对LM所代表的动态负荷适应的结果。
Objective To estimate dual energy X-ray absorptiometry(DXA) short-term variability of hip strength analysis (HSA) in femoral necks and body composition parameters and establish the least significant change (LSC) to monitor these parameters from repeat subject scans.
     Methods73health volunteers had two repeated DXA measurements of bilateral proximal femur and50health volunteers had two repeated DXA measurements of whole body. Short-term variability of HSA parameters and whole body composition parameters were expressed as the root-mean-square coefficient (RMS-CV%) of variation and LSC at95%confidence level.
     Results At the single hip, the HSA parameters RMS-CV%were observed in0.8~4.0%of cases. At the dual hips, the HSA parameters RMS-CV%were0.6~2.8%。 The HSA parameters reproducibility improved13~33%by measuring the dual femur.
     Conclusions DXA measurements have low precision errors level in HSA and whole body composition scanning.
     Objective After exanimate the difference in hip strength analysis (HSA) parameters which included bone cross-sectional area (CSA), cross-sectional moment of inertia (CSMI), section modulus (Z), Periosteal Diameter (PD), Endocortical Diameter(ED) and Cortical Thickness (CT) at bilateral femoral neck dual energy X-ray absorptiometry (DXA) measurements, the study try to investigate the bone strength and cross section structure changes with age between men and women femoral neck by DXA scanning, and try to explain these findings by Mechanobiology theory.
     Methods400subjects were selected to compare the HSA parameters in dual femora necks. The data from3855normal subjects were analyzed to investigate HSA parameters in different sex group and age group. The study also investigated the difference of HSA parameters in normal, osteopenia and osteoporosis group. Age trends of HSA parameters (CSA, CSMI and Z) were evaluated in old men and postmenopausal women.
     Results There were high positive correlations between the left and right femoral neck HSA parameters (r=0.801~0.921, p<0.05), and there was no difference between bilateral femoral neck parameters (p>0.05). The decline of bone strength (CSA, CSMI and Z) with aging occurs in old men and postmenopausal women (r=-0.183~-0.495,p<0.05). Comparing with premenopausal women, postemenopausal women have lower bone strength and cortical thickness. Comparing with young men, old men have lower bone strength and cortical thickness, but have high periosteal diameter and endocortical diameter (p<0.05). Hip strength parameters were declined with osteoporotic fracture risk increasing (p<0.05). There were some differences between BMD and HSA parameters (CSA, CSMI and Z) in relative age trends at femoral neck (p<0.05)
     Conclusions There was no difference between left and right femoral neck bone strength. Aging loss of bone mass in the femoral neck does not necessarily mean reduced bone strength directly. HSA parameters in old men and postmenopausal women showed that reduction in bone strength was not dependent on decline in BMD.
     Objective The aim of this dual energy X-ray absorptiometry (DXA) study was to compare hip strength analysis (HSA) at femoral neck in low weight, overweight or obesity adults with gender matched normal weight controls. The relationship of body weight, lean mass (LM) and fat mass (FM) was investigated to indices of femoral neck strength.
     Methods3855adults were separated by body mass index (BMI) into low weight, normal weight, overweight and obesity groups. DXA measurements of the proximal femur and total body were made in these adults groups using a DXA bone densitometer. Bone mineral density (BMD), LM, FM, and HSA parameters which included bone cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and the section modulus (Z) were measured. Data were analyzed by Student's t-test, Pearson correlation coefficients examination, and one-way analysis of covariance (ANCOVA).
     Results Overweight and obesity adults had higher body weight, LM, FM, BMI, CSA, CSMI and Z than normal weight controls, but low weight adults had lower body weight, LM, FM, BMI and HSA parameters than normal weight controls (p<0.05) LM correlated well with CSA, CSMI and Z in all BMI groups (r=0.310~0.616, p<0.05). After adjustment for LM, there were no significant differences between normal weight group with low weight, overweight or obesity groups. However, the differences remain significant after adjustment for FM between normal weight group with low weight, overweight and obesity groups (p<0.05). After adjustment for weight, the differences remain significant between normal weight group with low weight, overweight and obesity groups in women (p<0.05) but not in men.
     Conclusions This study supports the conclusion that overweight individuals have greater hip neck strength in comparison with normal weight controls, and femoral neck bone strength is adapted with "active stress" provided by muscle. Lean mass is a major determinant for femoral neck strength in all subjects.
引文
[1]徐苓.WHO推荐骨折风险评估新方法(FRAX)—临床决策的捷径.[J].中华骨质疏松和骨矿盐疾病杂志.2008,1(1):3-8.
    [2]中华医学会骨质疏松和骨矿盐疾病分会.原发性骨质疏松症诊疗指南(2011年).[J].中华骨质疏松和骨矿盐疾病杂志.2011,4(1):2-17.
    [3]谢雁鸣,宇文亚,董福慧,等.原发性骨质疏松症中医临床实践指南(摘录).[J].中华中医药杂志.2012,27(7):1886-1890.
    [4]高培君,周建烈.骨质疏松性骨折后预防再骨折的研究进展.[J].中华骨质疏松杂志.2006,12(2):210-214.
    [5]孟迅吾,周学瀛.骨质疏松症的诊断、预防和治疗.中华内分泌代谢杂志.[J].1993,9(4):246-248.
    [6]刘爱民,徐苓,赵熙和,等.北京市髋部骨折发生率流行病学研究.[J].中华流行病学杂志.1996,17(1):6-9.
    [7]郝光亮,郝永强,晏焕青,等.老年髋部骨折的住院治疗费用分析.[J].中国骨质疏松杂志.2008,14(3):200-203.
    [8]金成强,宋敏.运用“治未病”思想防治骨质疏松症的思路.[J].中医研究.2010,23(5):56-59.
    [9]Grampp S骨质疏松症影像学.[M].程晓光,白荣杰,译.北京:人民军医出版社.2011:5.
    [10]Bartl R, Frisch B骨质疏松症诊断、预防、治疗.[M].徐苓,译.北京:人民军医出版社.2012:8.
    [11]徐苓.骨质疏松症.[M].上海:上海科学技术出版社.2011:17.
    [12]邓红文,刘耀中.骨质疏松学前沿.[M].北京:高等教育出版社.2005.25.
    [13]宋守礼,朱盛修.骨膜的组织学特征和超微结构.[J].中华骨科杂志.1996,16(6):395-397.
    [14]Koshihara Y, Hirano M, Kawamura M, et al. Mineralization ability of cultured human osteoblast-like periosteal cells does not decline with aging. [J]. J Gerontol. 1991,46(5):B201-206.
    [15]张超,梁国穗,张颖恺,等.动态力学信号对人骨髓基质细胞、骨膜细胞生长和成骨表达的作用.[J].生物医学工程与临床.2006,10(1):1-5.
    [16]郑军,董福慧.骨内膜成骨的动物模型.[J].中国骨伤.2009,13(9):522-523.
    [17]Weaver CM. Calcium in Human Health. [M].New Jersey:Humana Press.2006.7.
    [18]徐苓.骨质疏松症.[M].上海:上海科学技术出版社.2011.49.
    [19]马尔蒂尼.内分泌百科全书(钙).[M].北京:科学出版社.2008.47
    [20]Fogelman I. Radionuclide and Hybrid Bone Imaging. [M].Berlin:Springer Press.2012.47.
    [21]Beck TJ. Extending DXA beyond bone mineral density:understanding hip structure analysis. [J]. Curr Osteoporos Rep.2007,5(2):49-55.
    [22]Martin RB, Burr DB. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. [J]. J Bionmech.1984, 17(3):195-201.
    [23]Bouxsein ML,Boyd SK,Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. [J]. J Bone Miner Res.2010,25(7):1468-1486.
    [24]郭宏,刘洪臣.骨重建的生物力学调控.[J].中华口腔医学研究杂志.2008,2(3):290-294
    [25]黄公怡.骨重建与骨质量.[J].中华骨科杂志.2006,26(11):787-789.
    [26]邓红文,刘耀中.骨生物学前沿.[J].北京:高度教育出版社.2006.26.
    [27]Turner CH. Three rules for bone adaptation to mechanical timuli. [J].Bone.1998, 23(5):399-407.
    [28]Mow VC, Huiskes R骨科生物力学暨力学生物学.[M].汤亭亭,裴国献,李旭,等.译.济南:山东科学技术出版社.2009.24.
    [29]刘献祥,林燕萍,苏友新.骨质疏松性骨折.[M].福州:福建科学技术出版社.2008.56.
    [30]梁雨田,唐佩福.老年髋部骨折.[M].北京:人民军医出版社.2009.13.
    [31]WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. [R]. World Health Organ Tech Rep Ser.1994.843:1-129.
    [32]Engelke K, Adams JE, Armbrecht G,et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults:the 2007 ISCD Official Positions. [J]. J Clin Densitom.2008,11(1):123-162.
    [33]Faulkner KG. The tale of the T-score:review and perspective. [J]. Osteoporos Int. 2005,16(4):347-352.
    [34]Chrischilles EA, Butler CD, Davis CS, et al. A model of lifetime osteoporosis impact. [J]. Arch Intern Med.1991,151(10):2026-2032.
    [35]Faulkner KG. Bone matters:are density increases necessary to reduce fracture risk? [J]. J Bone Miner Res.2000,15(2):183-187.
    [36]Turner CH. Toward a cure for osteoporosis:reversal of excessive bone fragility. [J]. Osteoporos Int.1991,2(1):12-19.
    [37]Bonnick SL. Bone densitometry in clinical practice. [M]. New York:Humana Press.2009,167.
    [38]Hellekson KL. NIH releases statement on osteoporosis prevention, diagnosis, and therapy. [J]. Am Fam Physician.2002,66(1):161-162.
    [39]夏维波.骨重建在维持骨强度中的意义.[J].中华医学杂志.2006.86(6):363-365.
    [40]Griffith JF, Genant HK. New advances in imaging osteoporosis and its complications. [J]. Endocrine.2012,42(1):39-51.
    [41]Chesnut CH 3rd, Majumdar S, Newitt DC, et al. Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging: results from the QUEST study. [J]. J Bone Miner Res.2005,20(9):1548-1561.
    [42]Rosen CJ, Ackert-Bicknell C, Rodriguez JP, et al. Marrow fat and the bone microenvironment:developmental, functional, and pathological implications.[J]. Crit Rev Eukaryot Gene Expr.2009,19(2):109-124.
    [43]Cao H, Nazarian A, Ackerman JL, et al. Quantitative (31)P NMR spectroscopy and (1)H MRI measurements of bone mineral and matrix density differentiate metabolic bone diseases in rat models.[J]. Bone.2010,46(6):1582-1590.
    [44]程晓光,李勉文,李娜,等.定量CT骨密度(QCT)在骨质疏松症诊治中的临床应用2007国际临床骨密度学会(ISCD)共识摘录.[J].中国骨质疏松杂志.2012.18(11):969-974.
    [45]Issever AS, Link TM, Kentenich M, et al. Assessment of trabecular bone structure using MDCT:comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. [J]. Eur Radiol.2010,20(2):458-468.
    [46]Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. [J]. Bone.2008,42(6):1203-1213.
    [47]Griffith JF, Genant HK.New imaging modalities in bone. [J]. Curr Rheumatol Rep.2011,13(3):241-250.
    [48]Jiang Y, Zhao JJ, Mitlak BH, et al. Recombinant human parathyroid hormone (1-34) [teriparatide] improves both cortical and cancellous bone structure. [J]. J Bone Miner Res.2003,18(11):1932-1941.
    [49]郑驰超,彭虎,李洪旺,等.基于AR模型的松质骨BUA参数测量的研究.[J].中国科技技术大学学报.2007,37(12):1472-1477.
    [50]他得安,黄凯,王威琪.评价骨质状况及骨质疏松症的超声方法.[J].中国医疗器械信息.2009,15(3):1-6,33.
    [51]Siddique M, Blake GM, Frost ML, et al. Estimation of regional bone metabolism from whole-body 18F-fluoride PET static images. [J]. Eur J Nucl Med Mol Imaging.2012,39(2):337-343.
    [52]Frost ML, Cook GJ, Blake GM, et al. The relationship between regional bone turnover measured using 18F-fluoride positron emission tomography and changes in BMD is equivalent to that seen for biochemical markers of bone turnover. [J]. J Clin Densitom.2007,10(1):46-54.
    [53]Uchida K, Nakajima H, Miyazaki T,et al. Effects of alendronate on bone metabolism in glucocorticoid-induced osteoporosis measured by 18F-fluoride PET:a prospective study. [J]. J Nucl Med.2009,50(11):1808-1814.
    [54]Sawyer AJ. Bachrach LK, Fung EB. Bone Densitometry in Growing Patients. [M].New Jersey:Humana Press.2007.41-45.
    [55]Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. [J]. Semin Nucl Med.2010,40(1):62-73.
    [56]王春香,张少实,哈跃.基础材料力学.[M].北京:科学出版社.2007.5-25.
    [57]Jay Newman. Physics of the Life Sciences. [M]. New York:Springer Press: 2008.62.
    [58]杨华元.生物力学.北京:人民卫生出版社.[M].2012.32-38.
    [59]Koch JC. The Laws of Bone Architecture. [J]. Am J Anat.1917,21(2):177-298.
    [60]Beck TJ, Ruff CB, Warden KE, et al. Predicting femoral neck strength from bone mineral data. [J]. A structural approach. Invest Radiol.1990,25(1):6-18.
    [61]Yoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. [J]. J Bone Miner Res. 1994,9(7):1053-1064.
    [62]高隽,谢昭.图像理解理论与方法.[M].北京:科学出版社.2009,5.
    [63]Bonnick SL. HSA:beyond BMD with DXA. [J]. Bone.2007,41(1 suppl 1):S9-S12.
    [64]Wang XF, Duan Y, Beck TJ, et al. Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. [J]. Bone.2005,36(6):978-986.
    [65]Yoshikawa T, Turner CH, Peacock M et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry. [J]. J Bone Miner Res. 1994,9(7):1053-1064.
    [66]邴强,王健.人体体成分的模型及检测方法研究进展.[J].天津体育学院学报.2001,16(1):51-55.
    [67]江崇民,张一民.身体成分测量与评价的理论和方法.[J].体育科研.2008.29(1):1-8.
    [68]Mantovani G. Cachexia and Wasting:A Modern Approach. [M].Verlag:Springer Press.2006.177.
    [69]周琦,牛军,刘欣.双能X线骨密度仪身体成份测量在运动医学中的应用.[J].体育科研.2008,29(1):12-16.
    [70]Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. [J]. PLoS One.2009,4(9):e7038.
    [71]弓健,吴秋莲,徐浩.用DXA测量大鼠骨密度和身体成分的精密度.[J].暨南大学学报.2006,27(2):272-774,283.
    [1]弓健,徐浩.DXA骨密度测量质量控制中的精密度和准确度研究.[J].中华核医学杂志.2005,25(6):333-335.
    [2]E1 Maghraoui A, Do Santos Zounon AA, Jroundi I Reproducibility of bone mineral density measurements using dual X-ray absorptiometry in daily clinical practice. [J]. Osteoporos Int.2005,16(12):1742-1748.
    [3]Gluer CC, Blake G, Lu Y, et al. Accurate assessment of precision errors:how to measure the reproducibility of bone densitometry techniques. [J]. Osteoporos Int. 1995,5(4):262-270.
    [4]Bonnick SL. Bone densitometry in clinical practice. [M]. New York:Humana Press.2009,262.
    [5]强永刚,张林.医学影像辐射防护学.[M].广州:广东世界图书出版公司.2001.99.
    [6]Bonnick SL. Lewis LA. Bone densitometry for technologists. [M]. New York: Humana Press.2006,191.
    [7]徐勇勇.医学统计学.[M].北京:高等教育出版社.2001.21.
    [8]Beck TJ, Ruff CB, Warden KE, et al. Predicting femoral neck strength from bone mineral data. A structural approach. [J]. Invest Radiol.1990,25(1):6-18.
    [9]Khoo BC, Beck TJ, Qiao QH, et al. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. [J]. Bone.2005,37(1):112-121.
    [10]Faulkner KG. Improving femoral bone density measurements. [J]. J Clin Densitom.2003,6(4):353-358.
    [11]Palchetti CZ, Patin RV, Machado DM, et al. Body composition in prepubertal, HIV-infected children:a comparison of bioelectrical impedance analysis and dual-energy X-ray absorptiometry. [J]. Nutr Clin Pract.2013,28(2):247-252.
    [12]Hind K, Oldroyd B, Truscott JG. In vivo precision of the GE Lunar iDXA densitometer for the measurement of total body composition and fat distribution in adults [J]. Eur J Clin Nutr.2011,65(1):140-142.
    [13]Baim S, Wilson CR, Lewiecki EM,et al. Precision assessment and radiation safety for dual-energy X-ray absorptiometry:position paper of the International Society for Clinical Densitometry.[J]. J Clin Densitom.2005,8(4):371-378.
    [14]陈蓉,林守清,陈艳,等.双能x线吸收法测量身体成分精确度的研究.[J].中国骨质疏松杂志.2007,13(4):272-274.
    [1]秦岭,梁国穗.骨生物力学在防治骨质疏松药物开发中的应用基础(一).[J].中国骨质疏松杂志.2000,6(1):23-25,68.
    [2]秦岭,梁国穗.骨生物力学在防治骨质疏松药物开发中的应用基础(二).[J].中国骨质疏松杂志.2000,6(2):73-78.
    [3]Blake GM, Fogelman I. An update on dual-energy x-ray absorptiometry. [J]. Semin Nucl Med.2010,40(1):62-73.
    [4]Bonnick SL. Bone densitometry in clinical practice. [M]. New York:Humana Press.2009,213.
    [5]Fogelman I, Blake GM. Different approaches to bone densitometry. [J]. J Nucl Med.2000,41(12):2015-2025.
    [6]Chun KJ. Bone densitometry. [J]. Semin Nucl Med.2011,41(3):220-228.
    [7]Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fracture. [J]. Lancet.1993,341(8837):72-75.
    [8]Prevrhal S, Shepherd JA, Faulkner KG, et al, Comparison of DXA hip structural analysis with volumetric QCT.[J]. J Clin Densitom.2008,11(2):232-236.
    [9]裴福兴,邱贵兴.骨质疏松性骨折的临床诊断及治疗.[M].北京:人民卫生出版社.2007,231.
    [10]弓健,吴秋莲,徐浩.广州地区双侧股骨近端双能X射线吸收法测量骨密度1055名的临床价值.[J].中国组织工程研究与临床康复.2007,11(2):366-371.
    [11]Xu H, Gong J, Chen JX, et al. Bilateral femoral bone mineral density measurements in Chinese women and men. [J]. J Clin Densitom.2007, 10(2):165-169.
    [12]Sawyer AJ, Bachrach LK, Fung EB. Bone Densitometry in Growing Patients. [M]. New York:Humana Press.2007,52.
    [13]Wu XP, Liao EY, Huang G, et al. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. [J]. Calcif Tissue Int.2003,73(2):122-132.
    [14]Cummings SR, Xu L, Chen X, et al. Bone mass, rates of osteoporotic fractures, and prevention of fractures:are there differences between China and Western countries? [J]. Chin Med Sci J.1994,9(3):197-200.
    [15]Duan Y, Seeman E. Bone fragility in Asian and Caucasian men. [J]. Ann Acad Med Singapore.2002,31(1):54-66.
    [16]Takada J, Beck TJ, Iba K, et al. Structural trends in the aging proximal femur in Japanese postmenopausal women. [J]. Bone.2007,41(1):97-102.
    [17]邓红文,刘耀中.骨质疏松学前沿.[M].北京:高等教育出版社.2005.25.
    [18]Duan Y, Beck TJ, Wang XF, et al. Structural and biomechanical basis of sexual dimorphism in femoral neck fragility has its origins in growth and aging. [J]. J Bone Miner Res.2003,18(10):1766-1774.
    [19]Beck TJ, Looker AC, Mourtada F, et al. Age trends in femur stresses from a simulated fall on the hip among men and women:evidence of homeostatic adaptation underlying the decline in hip BMD. [J]. J Bone Miner Res.2006, 21(9):1425-1432.
    [20]Yoshikawa T, Turner CH, Peacock M, et al. Geometric structure of the femoral neck measured using dual-energy x-ray absorptiometry.[J].J Bone Miner Res. 1994,9(7):1053-1064.
    [21]Crabtree N, Lunt M, Holt G, et al. Hip geometry, bone mineral distribution, and bone strength in European men and women:the EPOS study. [J]. Bone.2000, 27(1):151-159.
    [22]Crabtree NJ, Kroger H, Martin A, et al. Improving risk assessment:hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. [J]. European Prospective Osteoporosis Study.Osteoporos Int. 2002,13(1):48-54.
    [23]Faulkner KG, Wacker WK, Barden HS,et al. Femur strength index predicts hip fracture independent of bone density and hip axis length. [J]. Osteoporos Int. 2006,17(4):593-599.
    [24]Bonnick SL. HSA:beyond BMD with DXA. [J]. Bone.2007,41(1 Suppl 1):S9-12.
    [25]Turner CH. Toward a cure for osteoporosis:reversal of excessive bone fragility. [J]. Osteoporos Int.1991,2(1):12-19.
    [26]Looker AC, Beck TJ, Orwoll ES. Does body size account for gender differences in femur bone density and geometry? [J]. J Bone Miner Res.2001, 16(7):1291-1299.
    [27]Gilsanz V, Kovanlikaya A, Costin G, et al. Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. [J]. Clin Endocrinol Metab.1997,82(5):1603-1607.
    [28]Jarvinen TL, Kannus P, Sievanen H. Estrogen and bone--a reproductive and locomotive perspective. [J]. J Bone Miner Res.2003,18(11):1921-1931.
    [29]Wang XF, Duan Y, Beck TJ, et al. Varying contributions of growth and ageing to racial and sex differences in femoral neck structure and strength in old age. [J]. Bone.2005,36(6):978-986.
    [30]Beck TJ, Looker AC, Mourtada F, et al. Age trends in femur stresses from a simulated fall on the hip among men and women:evidence of homeostatic adaptation underlying the decline in hip BMD.[J]. J Bone Miner Res.2006, 21(9):1425-1432.
    [31]Frost HM. Skeletal structural adaptations to mechanical usage (SATMU):1. Redefining Wolffs law:the bone modeling problem. [J]. Anat Rec.1990, 226(4):403-413.
    [32]Beck TJ, Looker AC, Ruff CB. Structural trends in the aging femoral neck and proximal shaft:analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. [J]. J Bone Miner Res.2000, 15(12):2297-2304.
    [33]Beck TJ. Extending DXA beyond bone mineral density:understanding hip structure analysis. [J]. Curr Osteoporos Rep.2007,5(2):49-55.
    [34]Boivin GY, Chavassieux PM, Santora AC, et al. Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. [J]. Bone.2000,27(5):687-694.
    [35]Gong J, Xu Y, Guo B, et al. DXA femoral neck strength analysis in Chinese overweight and normal weight adolescents. [J]. J Clin Densitom.2012, 15(2):146-151.
    [36]Martin RB, Burr DB. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. [J]. J Bionmech.1984, 17(3):195-201.
    [1]Kim JH, Choi HJ, Kim MJ, et al. Fat mass is negatively associated with bone mineral content in Koreans. [J]. Osteoporos Int.2012,23(7):2009-2016.
    [2]O'Brien PE, Dixon JB. The extent of the problem of obesity. [J]. Am J Surg. 2002,184(6B):4S-8S.
    [3]Ebbeling CB, Pawlak DB, Ludwig DS.Childhood obesity:public-health crisis, common sense cure. [J]. Lancet.2002,360(9331):473-482.
    [4]Wang Y, Monteiro C, Popkin BM. Trends of obesity and underweight in older children and adolescents in the United States, Brazil, China, and Russia. [J]. Am J Clin Nutr.2002,75(6):971-977.
    [5]Wang MC, Bachrach LK, Van Loan M, et al. The relative contributions of lean tissue mass and fat mass to bone density in young women. [J]. Bone.2005,37(4):474-481.
    [6]Albala C, Yanez M, Devoto E, et al. Obesity as a protective factor for postmenopausal osteoporosis. [J]. Int J Obes Relat Metab Disord. 1996,20(11):1027-1032.
    [7]Pollock NK, Laing EM, Hamrick MW, et al.Bone and fat relationships in postadolescent black females:a pQCT study. [J]. Osteoporos Int.2011, 22(2):655-665.
    [8]Reid IR. Relationships among body mass, its components, and bone. [J]. Bone.2002, 31(5):547-555.
    [9]Leonard MB, Shults J, Wilson BA, et al. Obesity during childhood and adolescence augments bone mass and bone dimensions. [J]. Am J Clin Nutr.2004,80(2):514-523.
    [10]Goulding A, Taylor RW, Jones IE, et al. Overweight and obese children have low bone mass and area for their weight. [J]. Int J Obes Relat Metab Disord.2000, 24(5):627-632.
    [11]Goulding A, Taylor RW, Jones IE, et al. Spinal overload:a concern for obese children and adolescents? [J]. Osteoporos Int.2002,13(10):835-840.
    [12]Goulding A, Grant AM, Williams SM. Bone and body composition of children and adolescents with repeated forearm fractures. [J].J Bone Miner Res 20(12):2090-2096.
    [13]De laet C, Kanis JA, Oden A, et al. Body mass index as a predictor of fracture risk:a meta-analysis. [J]. Osteoporos Int.2005,16(11):1330-1338.
    [14]Turner CH. Three rules for bone adaptation to mechanical timuli. [J].Bone.1998, 23(5):399-407.
    [15]Prevrhal S, Shepherd JA, Faulkner KG, et al, Comparison of DXA hip structural analysis with volumetric QCT. [J].J Clin Densitom.2008,11(2):232-236.
    [16]Beck TJ, Ruff CB, Warden KE, et al. Predicting femoral neck strength from bone mineral data. A structural approach. [J]. Invest Radiol.1990,25(1):6-18.
    [17]Petit MA, Beck TJ, Shults J, et al. Proximal femur bone geometry is appropriately adapted to lean mass in overweight children and adolescents. [J]. Bone.2005, 36(3):568-576.
    [18]Beck TJ, Petit MA, Wu G, et al. Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women's health initiative-observational study. [J]. J Bone Miner Res.2009,24(8):1369-1379.
    [19]Wang J, Thornton JC, Russell M, et al. Asians have lower body mass index (BMI) but higher percent body fat than do whites:comparisons of anthropometric measurements. [J]. Am J Clin Nutr.1994,60(1):23-28.
    [20]Baxter-Jones AD, Mirwald RL, McKay HA, et al. Longitudinal analysis of sex differences in bone mineral accrual in healthy 8-19-year-old boys and girls. [J]. Ann Hum Biol.2003,30(2):160-175.
    [21]Pietrobelli A, Boner AL, Tato L.Adipose tissue and metabolic effects:new insight into measurements. [J]. Int J Obes (Lond).2005, Suppl 2:S97-100.
    [22]Shih R, Wang Z, Heo M, et al. Lower limb skeletal muscle mass:development of dual-energy X-ray absorptiometry prediction model. [J]. J Appl Physiol (1985).2000, 89(4):1380-1386.
    [23]Bamman MM, Newcomer BR, Larson-Meyer DE, et al. Evaluation of the strength-size relationship in vivo using various muscle size indices. [J]. Med Sci Sports Exerc.2000,32(7):1307-1313.
    [24]WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. [J]. Lancet.2004, 363(9403):157-163.
    [25]Heber D, Ingles S, Ashley J M, et al. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr. [J].1996,64(3 Suppl):472S-477S.
    [26]Clark EM, Ness AR, Tobias JH. Adipose tissue stimulates bone growth in prepubertal children. [J]. J Clin Endocrinol Metab.2006,91(7):2534-2541.
    [27]Crabtree NJ, Kibirige MS, Fordham JN, et al. The relationship between lean body mass and bone mineral content in paediatric health and disease. [J]. Bone.2004, 35(4):965-972.
    [28]El Hage R, Moussa E, Jacob C.Fern oral neck geometry in overweight and normal weight adolescent girls. [J]. J Bone Miner Metab.2010,28(5):595-600.
    [29]Petit MA, Beck TJ, Lin HM, et al. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids:the Penn State Young Women's Health Study. [J]. Bone.2004,35(3):750-759.
    [30]Petit MA, Beck TJ, Hughes JM,et al. Proximal femur mechanical adaptation to weight gain in late adolescence:a six-year longitudinal study. [J]. J Bone Miner Res. 2008,23(2):180-188.
    [31]Lanyon LE, Rubin CT. Static vs dynamic loads as an influence on bone remodelling. [J]. J Biomech.1984,17(12):897-905.
    [32]Travison TG, Araujo AB, Esche GR, et al.2008 Lean mass andnot fat mass is associated with male proximal femur strength. [J]. J Bone Miner Res 23(2):189-198.
    [33]Wang J, Thornton JC, Russell M, et al. Asians have lower body mass index (BMI) but higher percent body fat than do whites:comparisons of anthropometric measurements. Am J Clin Nutr. [J].1994,60(1):23-28.
    [34]Aloia JF, Vaswani A, Ma R, et al. To what extent is bone mass determined by fat-free or fat mass? [J]. Am J Clin Nutr.1995,61(5):1110-1114.
    [35]Artz E, Haqq A, Freemark M. Hormonal and metabolic consequences of childhood obesity. Endocrinol Metab Clin North Am. [J].2005,34(3):643-658.
    [36]Clark EM, Ness AR, Tobias JH. Adipose tissue stimulates bone growth in prepubertal children. [J]. J Clin Endocrinol Metab.2006,91(7):2534-2541.
    [37]Xu L, Lu A, Zhao X, et al. Very low rates of hip fracture in Beijing, People's Republic of China the Beijing Osteoporosis Project. [J]. Am J Epidemiol.1996, 144(9):901-907.
    [38]Yan L, Zhou B, Prentice A, et al. Epidemiological study of hip fracture in Shenyang, People's Republic of China. [J]. Bone.1999,24(2):151-155.
    [39]Travison TG, Araujo AB, Esche GR, et al. Lean mass and not fat mass is associated with male proximal femur strength. [J]. JBone Miner Res.2008,23(2):189-198.
    [40]He W, Zhang S, Song A, et al. Greater abdominal fat accumulation is associated with higher metabolic risk in Chinese than in white people:an ethnicity study. [J].2013, 8(3):e58688.
    [41]Goulding A, Jones IE, Taylor RW, et al. Dynamic and static tests of balance and postural sway in boys:effects of previous wrist bone fractures and high adiposity. [J]. Gait Posture.2003,17(2):136-141.