PCR法鉴别哺乳动物胚胎性别的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验建立了用聚合酶链式反应(Polymerase Chain Reaction,PCR)技术体外扩增哺乳动物SRY特异序列鉴别哺乳动物胚胎性别的方法。依据牛、山羊、兔、猪等哺乳动物Sry基因高度同源性设计一对SRY引物,两条引物均为22个碱基,对公牛的SRY特异的163bp序列进行体外扩增。从公、母牛的组织或血液提取基因组DNA,用作PCR扩增基因组DNA的模板,同时在立体显微镜下收集羊-兔异种克隆胚胎,先用0.145mol/L NaCl冲洗2次,再移入20μL胚胎处理液中(10mmol/L Tris-HCl pH8.3,50mmol/L KCl,2mmol/L MgCl_2,0.45%NP-40,0.45%Tween-20,0.1μg/μL蛋白酶K),将羊-兔异种克隆胚胎及其处理液在55℃水浴作用60min,然后将此胚胎溶解物直接作为PCR扩增胚胎DNA的模板。按照析因设计,建立最适PCR扩增牛基因组DNA和羊-兔异种克隆胚胎DNA条件:反应体系中加入无MgCl_2的缓冲液和3×2×3因子组合浓度的SRY引物(每种引物浓度分别为:0.1μmol/L,0.3μmol/L,0.5μmol/L),dNTPs(浓度分别为:0.1mmol/L,0.2mmol/L)和MgCl_2(浓度分别为:0.75mmol/L,1.5mmol/L,2.25mmol/L);模板为公牛基因组DNA(2μL约100ng)或羊-兔异种克隆胚胎溶解物20μL;2IU Taq DNA聚合酶。反应体系为50μL。反应在微机控制Flexigene型PCR仪上进行,反应参数为:95℃预变性5min后,按95℃变性1min,58℃退火1min,72℃延伸1min,进行30或35个循环后,72℃延伸9min,于4℃结束反应。扩增产物在2%琼脂糖凝胶上电泳,用PCR Marker作分子量标准,紫外灯下观察,最适PCR反应条件为扩增出最强的SRY产物带而无非特异性扩增带出现时的反应条件。结果表明:SRY引物扩增牛基因组DNA时,PCR最适条件为:0.1μmol/L SRY引物,0.1mmol/L dNTPs和1.5mmol/LMg~(2+),退火温度为58℃,循环次数30次;SRY引物扩增胚胎DNA时,PCR扩增最适条件为:0.5μmol/L SRY引物,0.1mmol/L dNTPs和1.5mmol/L Mg~(2+),退火温度为58℃,循环次数35次。
     采用PCR扩增牛基因组DNA最适条件分别扩增了黑白花奶牛9头(6,3)、皖北黄牛11头(3,8)、波尔三羊3只(2,1)、兔4只(1,3)和猪7头(3,4)的基因组DNA。所有雄性样品中均出现清晰可见的特异DNA扩增带,而雌性样品和空白对照中无扩增片段出现。同时采用PCR扩增羊-兔异种克隆胚胎DNA最适条件扩增了15个羊-兔异种克隆胚胎DNA(4个胚胎的供体为公羊,11个胚胎的供体为母羊),所有以公羊为供体的羊-兔异种克隆胚胎样品均出现清晰可见的特异DNA
    
    扩增条带,而以母羊为供体的羊-兔异种克隆胚胎样品和空白对照中无扩增片段出现。
    结果表明PCR法可以用来鉴别哺乳动物的性别以及鉴别哺乳动物胚胎的性别,而且用
    此法鉴定哺乳动物早期胚胎性别具有相对简单、快速、费用低和准确率高等优点。
     本实验还采用设计的性别鉴定引物,按照最优PCR扩增胚胎DNA条件配制了PCR
    性别鉴定试剂盒。经实验该性别鉴定试剂盒使用准确性高,可降低污染,方法简便易行,
    成本低,在生产实践中有很大的实用价值。
A Polymerase Chain Reaction(PCR)-based method for sex determination of mammals embryos by amplification of mammals SRY-specific sequence was established. A pair of primers of 22 bases in length were designed based on regions of sequence homology among cattle, goats, rabbit and pigs to amplify a 163-bp region of cattle Sry. Genomic DNA extracted from male and female cattle, were directly used as template of PCR. The goat-rabbit interspecies clone embryos were collected washed twice with 0.145 mmol/L NaCl, then were transferred to 20uL lysate buffer(10 mmol/L Tris-HCl pH8.3, 50 mmol/L KC1, 2 mmol/L MgCl2, 0.45% NP-40, 0.45% Tween-20, 0.1μg/μL Proteinase K), and incubated for 60 min at 55℃. The lysates were directly used as embryos DNA template of PCR. Optimal PCR conditions developed using the factorial protocol for SRY primers using genomic cattle DNA and goat-rabbit interspecies clone embryos DNA were as follows: 100 ng of genomic DNA from a male cattle or 20 μL goat-rabbit interspecies
     clone embryos lysate were amplified, with 2 IU Taq DNA polymerase, supplied MgCb-free buffer and a 3×2×3 factorial combination of concentrations of SRY primers (0.1 μmol/L, 0.3 μmol/L, or 0.5μmol/L), dNTPs ( 0.1 mmol/L, or 0.2 mmol/L each), and MgCl2( 0.75 mmol/L, 1.5 mmol/L, or 2.25 mmol/L). The total volumes of PCR were 50μL. All reactions were carried out in Flexigene. After initial denaturation at 95℃ for 5 min, the amplification was performed by using 30 or 35 cycles of denaturation at 95℃ for 1 min, annealing at 58℃ for 1 min, and extension at 72℃ for 1 min. A final period of extension was carried out for 9 min and final holding at 4℃. The PCR products were resolved after electrophoresis in 2% agarose gel with ethidium bromide. The PCR products were visualized while the gel was exposed to ultraviolet light. Optimal conditions were defined as those that generated the strongest PCR products (the
    
    
    
    
    brightest band) for SRY without non-specific banding. The results showed that optimal PCR condition for SRY primers using genomic cattle DNA as template were as following 0.1μmol/L SRY primers, 0.1 mmol/L dNTPs, 1.5 mmol/L MgCl2, annealing at 58℃ and 30 cycles; while optimal PCR conditions for SRY using embryo lysate as template were 0.5μmol/L SRY primers, 0.1 mmol/L dNTPs, 1.5 mmol/L MgCl2, annealing at 58℃ and 35 cycles.
    Using optimized genomic DNA PCR conditions for SRY primers, genomic DNA from nine black-white cattle, eleven Wuanbei yellow cattle, three Boer goats, four rabbit, and seven pigs were amplificated, The results showed that the sexing method was verified. All male samples had bands representing SRY-specific, whereas all female samples and control samples had no band. Using optimized embryo DNA PCR conditions for SRY primers, fifteen goat-rabbit interspecies clone embryos were amplificated, the sexing method was verified too. All male goat-rabbit interspecies clone embryos samples had bands representing SRY-specific, while female goat-rabbit interspecies clone embryos and control samples had no band. The result showed that PCR amplification of SRY-specific DNA sequences may be used to determine mammal's sex and mammal embryonic sex. The advantages of PCR-based embryo sexing are relatively simple, rapid, and inexpensive, but maintaining high degrees of accuracy.
    On basis of the optimal embryo DNA PCR conditions for SRY primers, the PCR sex determination kit was made, which could be used in practice and has adventages of convenience, less cost, more clear, and accurate.
引文
1 李馨,杨隽,郭志光.家畜性别控制研究现状与展望[J],内蒙古畜牧科学,1997,(2):15~18
    2 吕碧文.家畜胚胎性别鉴定的分子生物学方法及现状[J].浙江畜牧兽医,1998,(3):15~16
    3 王雯慧,陈怀涛.动物肿瘤病的发生与性别的关系[J],甘肃畜牧兽医,1996,(1),9~10
    4 张思仲,周荣家.大熊猫SRY基因的PCR扩增和克隆[J].遗传学报,1994,21(4):281~286
    5 杨晓娟.大熊猫与熊类动物性别的分子鉴定[J].应用与环境生物学报,1995,5(3):288~290
    6 徐艳春,马立新,白素英等.应用PCR方法通过毛发进行哺乳动物性别鉴定[J].东北林业大学学报,2000,28(6):72~77
    7 侯健,安晓荣,苟克勉等.Sry-PCR法快速鉴定体外培养兔胎儿成纤维细胞系的性别[J].农业生物技术学报,2001,9(2):191~193
    8 曾溢滔.应用PCR法扩增牛SRY序列进行奶牛胚胎性别鉴定[J].中国科学,1993,23:371~376
    9 Schmieke A S, Kind A J, Ritchie W A, et al. Human factor Ⅸ transgenic sheep produced by transfer of nuclei frim transfected fetal fibroblasts[J]. Science, 1997, 278:2130~2133
    10 王元兴,郎介金,丁家桐等.动物繁殖学[M].南京:江苏科技出版社
    11 段子渊.动物性别决定的分子机理及性别鉴定与控制新技术[J].黄牛杂志,1998,24(3):52~55
    12 葛宝生,陈永福,张忠诚.性别决定及SRY基因在胚胎发生中的表达[J].国外畜牧科技.1998,25(3):29~32
    13 马群山,高彦彬,纪维霞.SRY在动物性别中的作用机制[J].黑龙江八一农垦大学学报,1999,11(4):62~65
    14 朱晓华,赵万里,王志跃.家畜性别决定的机制及其控制的研究进展[J],动物科学与动物医学.2001,18(1):22~24
    15 Sinclair, A. H, P. Berta, M. S. Palmer, J. R. Hawkins, B. L. Griffiths, M, J. Smith, J. W. Foster, A. Frisc hauf, R. Lovell-Badge, and P. Goodfelliw. 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif[J]. Nature, 346:241~246
    16 Gubbay J, Collignon J, Koopman R, et. al. gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embyonically expressed genes[J]. Genomics, 1995,29:541~545
    17 Griffith R, The isolation of conserved DNA sequence related to the human sex-determining region Y gene from the lesser black-backed gull[J]. Proc R Soc London Biol,1991,224:123~28
    18 Peyen E. J and C. Y. Cotinot. Comparative HMG-box sequence of the SRY gene between sheep, cattle
    
    and goats[J]. Nucleic Acids Res, 1993, 21: 2772
    19 PeuraT, J. M. Hyttinen, and J.Janne. Areliable sex determination assay for bovion preimplantation embryos using the polymerase chain reaction[J].Theriogenology, 1991, 35:547
    20 Kunieda, T, M. Xian, E. Kobayashi, T. Imamichi, K.Moriwaki, and Y.Toyoda.Sexing of mouse preimplantation embryos by detection of Y chromosome specific sequences using polymerase chain reaction[J]. Biol.Reprod, 1992, 46:692
    21 Kirkpatrick, B. W. and R. L.Monson. Sensitive sex determination assay applicable to bovine embryos derived from IVM and IVF[J]. Peprod. Fertil, 1993, 98:335
    22 东庸介.利用PCR反应技术新发现的牛雄性特异性DNA片段[J].国外畜牧科技,1992,19(2):8~10
    23 瞿文学.雄牛特异的SRY同源序列的扩增和分析[J].生物工程学报,1993,9(2):107~112
    24 Hua Su, Chris Lau YF.Identificaion of the trscriptional unitstructural organization and promoter sequence of the human sex-determining region Y gene using reverse genetic approach[J]. Am J Hum Genet, 1993, 52(2): 24~30
    25 Capel B, Swain A, Nicolis, et al. Circular transcripts of the testis-determining gene Sry in adultmous testis[J]. Heredity, 1995, 75:599~611
    26 张悦,鲁晓萱,单祥年.性别决定基因的研究进展[J].遗传,2000,22(5):328~330
    27 Emmanuel J. Corinne Y. Comparative HMG-box sequences of the SRY gene between sheep, cattle and goats[J]. Nucl Acids Res, 1990, 21(11):2772~2775
    28 Lemay J P. Fain S. Gender determination of mammalian wildlife speciesfrom PCR amplified sex-linked genes[J]. Northwest Association of Forensic Scientist, 1992, 18(4):13~14
    29 Huang Xiao, Zhou Rong Jia, Cheng Han Hua, et al. The SOX genes in two species of fresh water fishes[J]. Acta Zoologica Sinica. 1998, 44(2):239~240
    30 Jan Zen J F. Enviromental sex determination in reptiles Ecology. Evolution and Experimental design[J]. The Quarterly Review Of Biology.1991,66(2):149
    31 Spotile LD, Kaufer NF, Theriot E. Sequence analysis of the ZFY and SOX genes in the turtle chelydra serpentina[J]. Molecular phylogenetic and Evolution, 1994, 3(1):1~9
    32 周荣家.SRY基因在斑马鱼和胡子鲇中的保守性分析[J].遗传,1996,18(1):1~3
    33 Denny P, Swifts, Brand N et al. A conserved family of genes related testis determining gene SRY[J]. Nucleic Acid Res, 1992, 20(2): 2887~2888
    34 Koopman P, Gubby J, Vivian N, et, al. Male development of chromosomally female mice transgenic for Sry[J]. Nature, 1991, 331:117~121
    
    
    35 王毅。SRY基因的研究进展[J].国外医学遗传学分册.2000,23(4):176~178
    36 Mcelreavey K,VilainE, Abbas N et al. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development[J]. Proc Natl Acad Sci USA. 1993,90:3368~3377
    37 Dubin R A, Oster H. SRY is a transcriptional activator.Mol Endocrinol[J].1994,8:1182~1192
    38 陈元明,蔡正华,刘殿奎等.不同授精时间对仔猪性比影响的研究[J].畜牧兽医,1996,28(2):57~59
    39 吴伟,刘润铮,王光辉.限制Y精子活力对犊牛性别的影响[J].吉林农大学报,1998,20(1):62~64
    40 王念功.精氨酸对犊牛性别控制的效果观察[J],辽宁畜牧兽医,1998(1):21
    41 赵宗胜,代江生,李大全等.精氨酸对绵羊性别控制的试验报告[J].黑龙江畜牧兽医,1998(4):10~11
    42 赵宗胜,代江生,李大全等.绵羊性别控制试验[J].中国草食动物,2000,2(3):6~9
    43 郑小波,张世华,曾秀等.弱酸对猪精子活率及产仔性别的影响[J].养猪,1999(4):16~17
    44 王志清,陈克荣,高和坤.兔性别控制技术研究[J].江苏农业科学,1997(2):60~62
    45 赵常瑞.利用生母剂控制绵山羊繁殖羔羊的试验研究[J].草食家畜,1997(3):4~5
    46 齐义信,陈元明,宋志福等.控制牛性别比率的研究[J].中国奶牛,1994(1):44~45
    47 Lone, K. P&A, J. Matty. The effect on feeding methylestosterone on the growth and body composition of common Carp[J], Gen, Comp, Endocrinol, 1980, 40:407~424
    48 吴伟,陈元明,刘润铮.奶牛的精液分离及性控试验[J],内蒙古农牧学院学报,1998,19(3):17~21
    49 Zech L. Investigation of metaphase chromosomes with DNA binding Pluorochromes[J]. ExpcellRes, 1996, 58:4635
    50 张建湘,杜延龄,许德明.牛精子F小体的检测[J].湖南医科大学学报,1995,20(2):176~178
    51 Eichward E J Silmser C R [M]. Transplant Bull, 1955, 2. 148~149
    52 田志华.家畜性别鉴定与性别控制技术在猪育种中的应用[J].畜牧兽医杂志,2000,19(2):23~25
    53 D. Rath, L A, Johnson, J R, Dobrinsky, G R, Welch and H. Niemann.Production of piglets preselected For sex Following In Vitro Fertilization with X and Y chromosome-bealling Spermatizoa Sorted By Flow cytometry[J].Theriogemology, 1997, 47:795~800
    54 华进联.家畜早期胚胎性别鉴定[J].黑龙江畜牧兽医,1999(8):9~11
    55 王达珍,郭继彤,李煜等.免疫学方法鉴定小鼠早期胚胎性别的研究[J].内蒙古大学学报,
    
    1994.25(5):561~564.
    56 门红升,陈云鹤,周星良等.间接免疫荧光法鉴定小鼠早期胚胎性别研究[J].遗传学报,1992,19(2):117~121
    57 Williams H G K. DNA Polymorphisms amplified by arbitrary primers are useful as genetic arkers[J]. Nucleic Acids Res, 1990, 18(22):6531~6535
    58 Welsh J, Fingerprinting genomes Using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990,18(24): 7213~7218
    59 惠东威,陈受宜.RAPD技术及其应用[J].生物工程进展,1992,12(6):1~5
    60 王慧.RAPD技术及其在动物遗传育种中的应用[J].山东农业大学学报,1997,28(1):79~82
    61 朱立煌.用分子标记定位一个未知的搞稻瘟病基因[J].中国科学(B辑),1994,24(10):1048~1052
    62 Amau J. The use of RAPD markers in the genetic analysis of the plant pathogenic fungus Clados porium fuliurm[J]. Curt Genet,1994, 25:438~444
    63 秦树臻.应用随机扩增多态性DNA技术对不同品种家猪的DNA差异进行快速分析.全国博士后科技成果展示及人才学术交流会论文集.北京:学苑出版社.1995,1046~1051
    64 Amornrat P. Linkage map of random amplified polymorphic DNAs(RAPD) in the silkworm. Bombyx mori[J]. Genet Resh Camb, 1995, (66): 1~7
    65 徐吉臣.遗传图谱中的分子标记[J].生物工程进展,1992,12(5):1~3
    66 李宁,畜禽基因图谱.第八次全国动物遗传育种学术讨论论文集.中国农业科技出版社.1997,78~82
    67 严华祥.DNA多态性用于畜禽标记辅助选择的初步研究.中国农业大学硕士学位论文,1993
    68 Barin M G. Use of RAPDs markers to estimate genetic variation in bovine populations[J]. Animal Genetics, 1992, 23, Suppl Ⅰ: 57
    69 Bardakel F. Application of the RAPD technique in tiapia fish:Species and subspecies identification[J]. Herdity, 1994, 73:117~123
    70 黄勇富,王琳.用RAPD技术鉴定奶牛性别.第十次全国动物遗传育种学术讨论会论文集.中国农业科技出版社.1999,85~87
    71 王慧,杜立新,岳永生.滩羊公羊特异性RAPD标记的研究.第十次全国动物遗传育种学术讨论会论文集.中国农业科技出版社.1999,93~96
    72 刘德武,杨关福,李加琪等.猪品种与性别区别的RAPD标记研究.第十次全国动物遗传育种学术讨论会论文集.中国农业科技出版社.1999,69~72
    73 卢圣栋主编.现代分子生物学实验技术[M].北京:高等教育出版社.1993,412
    74 W.迪芬巴赫,G.S.德维克斯勒著.黄培堂,俞炜源,陈添弥等译.PCR技术实验指南[M].北京:
    
    科学出版社.1999,88
    75 何忠效,静国忠,许佐良,孙万儒 编著.现代生物技术概论[M].北京:北京师范大学出版社,2000,132
    76 黄国清,潘珂,聚合酶链反应及其在动物胚胎性别鉴定中的应用[J].当代畜牧。1998(4):1~2
    77 Herr C M, Reed K C. Micromanipulation of bovine embryos for sex-determination[J]. Theriogenology, 1991,35(1): 45~54
    78 欧阳红升,张永亮,阮承迈等.牛Y染色体特异序列的体外扩增[J].中国兽医学报,1995,14(2):127~129
    79 欧阳红升,张永亮,安铁洙等.用PCR鉴定牛胚胎性别的研究[J].中国兽医学报,1995,15(2):112~115
    80 高远东,仲跻峰,王文英等.利用PCR技术体外扩增牛Y染色体特异DNA序列的研究[J].山东农业科学,1997,(6):37~38
    81 杨建民,朱苏玲,武立红等.PCR方法用于奶牛早期胚胎的性别鉴定[J].遗传,1995,17(2):14~16
    82 胡明信,吴学清,高建明等.牛胚胎性别鉴定与取样胚胎移植应用技术的研究[J].畜牧兽医学报,1995,26(6):487~495
    83 杨文胜,许罕华,朱裕鼎.利用胚胎染色体分析法验证PCR鉴定小鼠胚胎性别技术的研究[J].中国农业科学,1994,27(6):73~77
    84 葛宝生,许罕华,刘冬梅等.绵羊SRY基因的分子克隆及序列分析[J],中国兽医学报,1994,14(4),323~327
    85 黄淑帧,陈美珏,黄英等.试管牛和试管羊胚胎性别的鉴定[J].遗传,2000,22(2):65~68
    86 龚荣慈,徐亚欧,唐榕等.PCR扩增ZFY、ZFX序列鉴定奶牛性别的灵敏度研究[J].中国兽医学报,1997,17(3):234~237
    87 唐榕,马匆匆,毛裕民等.奶牛ZFY、ZFX基因片段的克隆及测序[J].生物化学与物理进展,1995,22(1):60~62
    88 徐亚欧,龚荣慈.非放射标记ZF_3、ZF_4特异性探针对奶牛DNA杂交判断奶牛性别[J].西南民族学院学报,1994,14(4):400~403
    89 D.Pomp, B. A. Good, R. D. Geisert, C. J. Corbin, and, A. J. Cornier. Sex identification in Mammals with Polymerase Chain Reaction. Its Use to Examine Sex Effects on Diameter of Day-10 or 11Pig Embryos[J]. Anim Sci, 1995, 73:1409~1415
    90 J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著.金冬雁,黎孟枫等译.1999,分子克隆实验指南[M].北京:科学出版社,463
    
    
    91 王艳秋,张培军.PCR引物设计[J].海洋科学,1995,5:9~10
    92 帅素容,巨新义,张新全等.PCR反应中镁离子最适作用浓度的筛选.第十次全国动物遗传育种学术讨论会文集
    93 Griffiths, R, and B. Tiwari. Primers for the differential amplification of the sex-determining region Y gene in a ramnge of mammal species[J]. Mol, Ecol. 1993, 2:405
    94 Han, Y. O. Yoo, and K. Lee. Sex determination in single mouse blastomeres by polymerase chain reaction[J]. Assist. Reprod. Genet. 1993, 10:151