基于SPH方法的土体大变形数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土体大变形通常表现为边坡、基坑、路堤等的失稳破坏,往往会造成构(建)筑物的严重破坏和人员的重大伤亡。土体大变形的分析对于工程设计和防灾减灾具有重要的意义,但目前还没有得到较好的解决,其中一个关键原因是数值计算并没有完全反映土体大变形的力学特征。
     针对土体大变形的变形运动特性,本论文采用光滑质点流体动力学方法(Smoothed Particle Hydrodynamics,简称SPH方法)分析了土体大变形中的典型问题,主要进行了以下几个方面的工作:
     (1)对目前土体大变形分析的研究成果进行了较为系统的总结和分析,并指出了现有土体大变形数值模拟常用方法存在的问题和不足。在此基础上,针对本文所使用的SPH方法,评析了其在土体大变形分析中的研究基础。
     (2)详细分析了SPH方法的基本原理,说明SPH方法是一种应用质点表示物质的方法(不需要预先定义质点间的联系,只需对计算对象进行质点的初始分布),同时指出其核心问题是函数的光滑近似逼近和质点近似逼近。这样,具备了无网格、质点形式和拉格朗日性质的SPH方法避免了网格变形问题,适宜处理大变形问题。同时,并基于SPH核心理论,阐述了流体动力学控制方程和弹塑性力学的SPH格式建立过程。
     (3)相对于网格化方法,分析了SPH方法中处理压力求解的办法,介绍了各种质点搜索方法和光滑核函数对计算范围和精度的影响,并从中选取了Verletneighbor list方法作为本文的质点搜索技术,同时选择了一种三次样条函数作为光滑核函数,并在此基础上,基于FORTRAN语言自主研制了适合于土体大变形分析的SPH数值计算程序;
     (4)针对本文所研制的SPH方法数值模拟模型进行了严格的验证,实现了溃坝水体自由运动的计算,和完全弹性体单剪试验的数值模拟计算,并通过相关的试验数据和理论解析解,完成了对本文所编制SPH程序的验证工作,同时体现出SPH方法在解决大变形问题上无网格、质点形式、拉格朗日性质以及自适应性等优点。
     (5)针对土体大变形的流体动力学特性和弹塑性力学特性,分别使用宾汉姆流体模型和修正剑桥模型改进了相应的SPH模型,完成了土体大变形流动模型试验和土样大变形非排水单剪试验的数值模拟分析。通过与试验实测资料和理论解析解的对比,结果表明了SPH方法在不同理论下进行土体大变形研究的有效性。
     本文基于SPH方法,针对土体大变形问题,通过建立相应的SPH方法数值模型进行了数值计算分析,并获得了较好的效果。分析中,以弹塑性力学为主的同时引入流体动力学手段,达到了促进土体变形研究方法多元化的目的,获得了对土体大变形研究的进一步认识,这为进一步指导实际工作和促进土体变形研究方法多元化奠定了一定的基础。最后针对本文研究内容及当前国内外研究现状,提出了亟待解决的问题和进一步的研究工作。
It is very important to know the behavior of soil subjected to large deformation for design of structures and prediction of geodisasters. In practical engineering, the soil usually exhibits large deformation coupled with different mechanisms: fluid dynamics and elasto-plastic dynamics. This makes it hard to exactly predict all deformation characteristics in one method, particularly for the extreme deformation. To solve the difficulty, it is necessary to capture the large deformation performance of the soil in the sense of coupled mechanics, instead of single method.
     The main study of this thesis is to apply Smoothed Particle Hydrodynamics(SPH) method in solving soil large deformation problems. As a meshfree, Lagrange, particle method, SPH has its own particular characteristics with some special advantages over the traditional grid-based numerical methods, especially in the application of large deformation analysis. The research work is completed as follows:
     (1)The state-of-art of the soil subjected to large deformation is summarized in this paper. Combined with dynamical characteristics and engineering demand of large deformation analysis in practical engineering, the problems and shortcomings of existed numerical methods are pointed out.
     (2) As SPH method is a newly emerged method for the applications in the fields relative to Geotechnical Engineering, the basic concept is introduced in detail. It has been shown out that SPH has two key steps, Fuction Approximation and Particle Approximation. In SPH method, the problem domain is represented by a set of arbitrarily distributed particles. So the SPH method is able to deal with large deformation. And the SPH formulations of fuild mechanics and elasto-plastic mechanics are presented.
     (3) Some numerical aspects such as artificial viscosity, particle searching method and smoothing kernel function are described in the aim at improving SPH calculation precision. Based on the discussion, Verlet neighbor list is selected as the particle searching method and one kind of cubic spline interpolation function as the smoothing function. Then the SPH programs for soil large deformation are developed in FORTRAN language.
     (4) In order to verify the SPH programs, the dam break and simple shear test on completely elastic body are imployed in the numerical simulation. The calculation results show good agreement with the relative test data and theoretical solution; still the results can get the moving information of every particle.
     (5) In the aim at solving the problem in soil large deformation with two different methods, the Bingham Fluid constitutive model combined with the Mohr-Coulomb failure criterion and modified Cam-clay model are introduced in SPH program respectely. The ground flow model test and soil undrained simple shear test are simulated in the programs, and the numerical result and test data are compared in detail, they show good agreement with each other.
     In this thesis, the elasto-plastic mechanics and fluid dynamics are introduced in the analysis.Based on SPH method, the fuild and elasto-plastic programs are developed for soil large deformation. The SPH programs are verified and validated through large calculation comparison with test data and theoretical solution. In the finality, based on the conclusions of the whole work, the problems requiring further studies are discussed.
引文
[1]何满潮等.工程地质数值法[M].北京:科学出版社,2006.
    [2]祁长青,施斌,吴智深.M-S法在非连续岩土体大变形数值模拟中的应用[J].岩石力学与工程学报.2002,21(S2):2443-2446.
    [3]陈祖煜.土质边坡稳定分析[M].北京:中国水利水电出版社,2003.
    [4]张锋.计算土力学[M].北京:人民交通出版社,2007.
    [5]赵锡宏,陈志明,胡中雄.高层建筑深基坑围护工程实践与分析[M].上海:同济大学出版社,1996.
    [6]唐业清,李启民.基坑工程事故分析与处理[M].北京:中国建筑工业出版社,1999.
    [7]马宗晋.唐山大地震启示录.当代文化研究网:http://www.cul-studies.com.2006.
    [8]Towhata I.Development of Geotechnical Earthquake Engineering in Japan[C].16th International Conference on Soil Mechanics and Geotechnical Engineering.Rotterdam.Millpress SciencePublishers.2005(1):251-291.
    [9]Sassa K,Wang G,Fukuoka H.Assessment of Landslide RiskUrban Areas[J].Annuals of Disas.Prey.Res.Inst.,Kyoto Univ..2004.47C.
    [10]张会荣,刘松玉.地震液化引起的地面大变形对桥梁桩基的影响研究综述[J].防灾减灾工程学报.2004,3(24):350-354.
    [11]Liu G R,Liu M B.Smoothed Particle Hydrodynamics—a meshfree particle method[M].New Jersey,London,Singapore,Shanghai,Hong Kong,Tai Pei,Bangalore.World Scientific Publishing Company,2003.
    [12]Monaghan J J.Implicit SPH Drag and Dusty Gas Dynamics[J].Journal of Computational Physics.1997,138(2):801-820.
    [13]Lee W H.Newtonian hydrodynamcis of the coalescence of black holes with neutron stars ⅱ,tidally locked binaries with a soft equation of state[J].Notices of the Royal astronomical Society.1998(308):780-794.
    [14]Senz D G,Bravo E and Woosly S E.Single and multiple detonations in white dwarfs[J].Astrophysical and Astrophysics.1999(349):177-188.
    [15]Morris J P,Fox P J,Zhu Y.Modelling Low Reynolds Number Incompressible Flows Using SPH[J].Journal of Computational Physics.1997,136(1):214-226.
    [16]Cleary P W.Modelling confined multi-material heat and mass flows using SPH[J].Applied Mathematical Modelling.1998,22(12):981-993.
    [17]Chaubal C V,Leal L G.Smoothed particle hydrodynamics techniques for the solution of kinetic theory problems:Part 2.The effect of flow perturbations on the simple shear behavior of LCPs[J].Journal of Non-Newtonian Fluid Mechanics.1999,82(1):25-55.
    [18]Colagrossi A,Landrini M.Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J].Journal of Computational Physics.2003,191(2):448-475.
    [19]Tartakovsky A M,Meakin P.A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability[J].Journal of Computational Physics.2005,207(2):610-624.
    [20]Johnson A F,Holzapfel M.Modelling soft body impact on composite structures[J].Composite Structures.2003,61(1-2):103-113.
    [21]Bastien P,Cha S H,Viau S.SPH with radiative transfer:method and applications[J].RevMexAA(Serie de conferencias).2004(22):144-147.
    [22]Morris J P,Zhu Y,Fox P J.Parallel simulations of pore-scale flow through porous media[J].Computers and Geotechnics.1999,25(4):227-246.
    [23]Monoghan J J.Smoothed particle hydrodynamics[J].Annual review of astronomy and astrophysics.1992(30):543-574.
    [24]Monaghan J J,Lattanzio J C.A refined particle method for astrophysical problems[J].Astronomy and Astrophysics.1985,149(1):135-143.
    [25]Curir A,Mazzei P.SPH simulations of galaxy evolution including chemo-photometric predictions[J].New Astronomy.1999,4(1):1-20.
    [26]Monaghan J J,Lattanzio J C.A simulation of the collapse and fragmentation of cooling molecular clouds[J].Astrophysical Journal.1991(375):177-189.
    [27]Wang Z Q,Lu Y,Hao H,Chong K.A full coupled numerical analysis approach for buried structures subjected to subsurface blast[J].Computers & Structures.2005,83(4-5):339-356.
    [28]Lu Y,Wang Z Q,Chong K.A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulation[J].Soil Dynamics and Earthquake Engineering.2005,25(4):275-288.
    [29]宋顺成,才鸿年,王富耻.关于弹体冲击和贯穿混凝土的三维数值模拟[J].爆炸与冲击.2006,26(1):1-6.
    [30]Michel Y,Chevalier J M,Durin C,Espinosa C,Malaise F.Barrau J J.Hypervelocity impacts on thin brittle targets:Experimental data and SPH simulations[J].International Journal of Impact Engineering.2006,33(1/12):441-451.
    [31]宋顺成,才鸿年.弹丸倾彻混凝士的SPH算法[J].爆炸与冲击.2003,23(1):56-60.
    [32]宋顺成,才鸿年.模拟战斗部对混凝土侵彻与爆炸耦合作用的计算[J].弹道学报.2004,16(4):23-28,47.
    [33]蔡清裕,崔伟峰,向东等.模拟刚性动能弹丸侵彻混凝土的FE-SPH方法[J].国防科技大学学报.2003,25(6):87-90.
    [34]Liu M B,Liu G R,Zong Z,Lam K Y.Computer simulation of high explosive explosion using smoothed particle hydrodynamic methodology[J].Computers & Fluids.2003,32(3):305-322.
    [35]Vaughan G L,Healy T R,Bryan K R,Sneyd A D,Gorman R M.An SPH numerical wave tank[C].Proceedings of the International Conference[A].October 20-22,2004,Baltimore,Maryland,USA.
    [36]Rabczuk T,Eibl J.Modelling dynamic failure of concrete with meshfree methods[J]. International Journal of Impact Engineering.2006,32(11):1878-1897.
    
    [37]Anghileri M,Castelletti L L,Tirelli M.Fluid-structure interaction of water filled tanks during the impact with the ground[J].International Journal of Impact Engineering.2005,31(3):235-254.
    [38]Liu M B,Liu G R,Zong Z,Lam K Y.Numerical simulation of underwater explosion by SPH[C].In Atluri SN & Brust FW:Advances in Computational Engineering & Science 2000,1475-1480.
    [39]Oger L,Savage S B.Smoothed panicle hydrodynamics for cohesive grains[J].Computer Methods in Applied Mechanics and Engineering.1999,180(1-2):169-183.
    [40]Shen H T,Su J S,Liu L W.SPH Simulation of River Ice Dynamics[J].Journal of Computational Physics.2000,165(2):752-770.
    [41]Monaghan J J,Kos A,Issa N.Fluid motion generated by Impact[J].Journal of waterway port coastal and ocean engineering.ASCE.2003,129(6):250-259.
    [42]Oger G,Doring M,Alessandrini B,Ferrant P.Two-dimensional SPH simulations of wedge water entries[J].Journal of Computational Physics.2006,213(2):803-822.
    [43]Benz W,Asphaug E.Simulations of brittle solids using smooth particle hydrodynamics[J].Computer Physics Communications.1995,87(1-2):253-265.
    [44]Bonet J,Kulasegaram S,Rodriguez-Paz M X,Profit M.Variational formulation for the smoothed particle hydrodynamics(SPH)simulation of fluid and solid problems[J].Computer Methods in Applied Mechanics and Engineering.2004,193(12-14):1245-1256.
    [45]Morris J P,Zhu Y,Fox P J.Parallel simulation of pore-scale flow through porous media[J].Computers and Geotechnics.1999,25(4):227-246.
    [46]Bui H H,Sako K,Fukagawa R.Numerical Simulation of Soil-Water Interaction Using Smoothed Particle Hydrodynamics(SPH)Method[A].Proceedings of the 15th International Conference of the ISTVS[C].Hayama,Japan.2005(9):1-15.
    [47]Bui H H,Fukagawa R.Smoothed particle hydrodynamics for soil mechanics[A].The proceedings of 6th European Conference on numerical methods in geotechnical engineering[C].London.Taylor & Francis Group.2006:275-281.
    [48]#12
    [49]#12
    [50]刘汉龙,周云东,高玉峰.砂土地震液化后大变形特性实验研究[J].岩土工程学报,2002,24(2):142-146.
    [51]Shamoto Y,ZHANG J M,Goto S.Mechanism of large post-liquefaction deformation in saturated sands[J].Soils and Foundations,1997,37(2):71-80.
    [52]张建民,王刚.砂土液化后大变形的机理[J].岩土工程学报,2006,28(7):835-840.
    [53]王刚,张建民.砂土液化大变形的弹塑性循环本构模型[J].岩土工程学报,2007,29(1): 52-59.
    
    [54]王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [55]张锐.迟世春,林皋.基于大变形理论的高土石坝坡稳定分析[J].水电能源科学.2007,25(6):54-57.
    [56]童华,祝效华,练章华等.坍塌和冲沟作用下埋地管道大变形分析[J].石油机械.2007,35(11):29-32.
    [57]李栋伟,汪仁和,胡璞等.冻土中锥形桩-土大变形有限元数值分析[J].冰川冻土.2007,29(4):640-644.
    [58]童立元,王斌,刘义怀.地震地基液化大变形对桥梁桩基危害性三维数值分析[J].交通运输上程学报.2007,7(3):91-94.
    [59]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [60]娄路亮,曾攀,方刚.无网格方法及其在体积成形中的应用[J].塑性工程学报.2001,8(3):1-5.
    [61]Askes H,Bode L and Sluys L J.ALE analyses of localization in wave propagation problems[J],Mech.Cohes.-Frict.Mater.,1998,3:105-125.
    [62]Mizuno H,Mizuyama T,Minami N,Kuraoka S.Analysis of simulating debris flow captured by permeable type dam using Distinct Element Method[J],Journal of the Japanese Society of Erosion Control Engineering,2000,52(6):4-11.
    [63]Sasaki T,Ohnishi Y,Yohinaka R.Discontinues Deformation Analysis and it's application to rock mechanics problems[J].Journal of Geotechnical Engineering,JSCE,1994,Ⅲ-27:11-20,.
    [64]Arimoto S,Murakami A.Characteristics of localized behavior of saturated soil by EFG[A].Proceedings of 1st International Workshop on New Frontiers in Computational Geomechanics[C],Banff,Alberta,Canada,2002.
    [65]Baxter G W,Behringer R P.Cellular automata models of granular flow[J].Phys.Rev.A 42,nn.1017-1020.1990.
    [66]刘鹏,刘更,刘天祥等.光滑粒子动力学方法及其应用[J].机械科学与技术.2005,24(9):1126-1130.
    [67]刘瑛琦.基于SPH方法的数值波浪水槽研究[D].南京:河海大学.2006.
    [68]王刚.中小尺度海冰动力学的粘弹-塑性本构模型及SPH数值模拟[D].大连:大连理工大学.2006.
    [69]Cleary P W,Monaghan J J.Conduction Modeling Using Smoothed Particle Hydrodynamics [J].Journal of Computational Physics.1999(148):227-264.
    [70]Sutmann G,Stegailov V.Optimization of neighbor list techniques in liquid matter simulations[J].Journal of Molecular Liquids.2006(125):197-203.
    [71]根岸秀世,姬野武洋,山西伸宏.CIP-LSM による自由表面流の数值解析(ゲム崩壤同题での検证)[A].第19回数值流体力学シンポジゥム。
    [72]Martin J C,Moyce W J.An experimental study of the collapse of liquid columns on a rigid horizontal plane[J].Philos,Trans.Soc.London,A244:312-324,1952.
    [73]曾越.BGK波尔兹曼理论在—维溃坝水流中的应用[D].武汉:武汉大学.2004.
    [74]黄国富.洪水演进积分解析模型及机理研究[D].四川:四川大学.2000.
    [75]Quecedo M,Pastor M,Herreros M I,Fernandez J A,Zhang Q.Comparison of two mathematical models for solving the dam break problem using the FEM method[J].Computer Methods in Applied Mechanics and Engineering.2005(194:136-38):3984-4005.
    [76]龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [77]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,2003.
    [78]Moriguchi S.CIP-based numerical analysis for large deformation of geomaterials[D].Gifu.Gifu University,2005.
    [79]Hwang JI,Kim CY,Chung CK,Kim MM.Viscous fluid characteristics of liquefied soils and behavior of piles subjected to flow of liquefied soils[J].Soil Dynamics and Earthquake Engineering.2006,26(2-4):313-323.
    [80]Uzuoka R,Yashima A,Kawakami T,Konrad JM.Fluid dynamics based prediction of liquefaction induced lateral spreading load[J].Computers and Geotechnics.1998,22(3-4):243-282.
    [81]Tamura S.Contribution of Viscous Force to horizontal Subgrade Reaction during Soil Liquefaction Based on Pile Top Vibration Tests[C].Proceedings of the 13th World Conference on Earthquake Engineering.Vancouver,B.C.,Canada.2004.8.Paper No.2908.
    [82]Hadush S.Fluid dynamics based large deformation analysis in geomechanics with emphasiss in liquefaction induced lateral spread.[D].Gifu:Gifu University,Japan,2002.
    [83]Hadush S,Yashima A,Uzuoka R.Importance of Viscous Fluid Characteristics in Liquefaction Induced Lateral Spreading Analysis[J].Computers and Geotechnics.2000,27(3):199-224.
    [84]Hadush S,Yashima A,Uzuoka R,Moriguchi S,Sawada K.Liquefaction induced lateral spread analysis using the CIP method[J].Computers and Geotechnics.2001,28(8):549-574.
    [85]Sawada K,Moriguchi S,Yashima A,Zhang F,Uzuoka R.Large Deformation Analysis in Geomechanics Using CIP Method[J].JSME International Journal.2004,47(4):735-743.
    [86]Sami Montassar,Patrick de Buhan.A numerical model to investigate the effects of propagating liquefied soils on structures[J].Computers and Geotechnics.2006(33):108-120.