可液化地基中超长桩—土—桥梁结构抗震性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基在历次强、大地震中均出现大量破坏现象。由于破坏的隐蔽性,桩基灾后维修工作极为复杂且耗资巨大。对地震作用下超长桩-土-桥梁结构动力相互作用进行研究具有重要的学术意义和工程实用价值。
     在对桩-土-结构相互作用的理论研究现状,桩基震害及其破坏机制等进行系统总结的基础上,对目前超长桩-土-桥梁结构动力相互作用的理论研究与实际运用之间存在的问题,主要开展了以下几个方面的研究:
     ○1利用单桩-土-结构动力相互作用的模型及分析方法,探讨了动力影响深度与桩长的关系,并对有限长桩、超长桩及无限长桩在水平简谐荷载作用下的动力响应进行研究,为超长桩的简化计算提供理论依据。
     ○2以液化场地桩-土-桥梁结构振动台模型试验为基础,建立有限元数值模型。并通过调整桩土材料参数、桩土界面参数、边界条件及地震波形式等实现振动台试验的计算机模拟分析。
     ○3探讨判断有限元模型液化的判断标准。除直接引用液化估算经验公式外,可考虑采用近似孔压比来进行判断。通过设置两个工况数值分析的总应力之差来实现。
     ○4针对强震区的桥梁桩基,建立超长桩-土-桥梁结构相互作用的有限元模型,进行有限元静力分析,将分析所得的桩顶水平位移和竖向位移与试验测得的相应值进行比较,以判断有限元模型的正确性。建立考虑桥梁上部结构与不考虑桥梁上部结构时的有限元模型,分析两者的区别,提出相关结论。
Pile foundations were damaged seriously during the past major earthquakes. Large amount of cost have been paid for the remedy of pile foundations after earthquakes because they are concealed projects. So to study super-long pile-soil-bridge structure dynamic interaction under earthquake is of significant academic meaning and great practical value.
     On the basis of systematical summarization of the current state of research on pile-soil-structure interaction, the damages of pile caused by earthquake and the mechanisms of piles failure, aiming at current problems between theoretical researches and practical situation of super-long pile-soil-bridge structure dynamic interaction, the researches are made as follows:
     ○1 Making the use of models and analytic methods for single pile-soil-structure, the relationship between dynamic influence depth and pile length is discussed. The dynamic response of finite pile, super-long pile and infinitely-long pile under horizontal harmonic loads is studied and it provides theoretical evidence to the simplifying calculation for super-long pile.
     ○2 Based on the shaking table model test of the soil-pile-structure interaction in liquefied ground, finite element numerical model is modeling. After the debugging of pile and soil material references, pile-soil interface references, boundary conditions, earthquake waves, and so on, to reliaze the better simulation of numerical analysis.
     ○3 The judgment standard of liquefaction in finite element is also been discussed. Besides experienced equation, the approximate pore pressure ratio is put forward in this paper. After setting two different cases in numerical analysis, the subtracting of total stresses is applied to liquefaction judgment.
     ○4 According to piles in macro seismic area, modeling super-long pile-soil-bridge structure dynamic interaction finite element model. The comparison of the horizontal and vertical displacement of pile-cap in static numerical analysis with the corresponding value in tests can be the correction judgment of the finite element model. After that, model super-long pile-soil-bridge structure dynamic interaction models to consider the effect of the superstructure of bridge to dynamic response.
引文
[1]陈章立.我国地震科技进步的回顾与展望(一).中国地震.2001.17(3).P231~245
    [2]陈颐,彭文涛等.21 世纪地震灾害的一些新特点.地球科学进展.2004.19(3).359~363
    [3]伍小平.砂土-桩-结构相互作用振动台试验研究[学位论文].上海.同济大学.2002
    [4]范立础.桥梁抗震.上海.同济大学出版社.1997,3
    [5]姜淑珍,包峰等.交通系统中桥梁的抗震分析.世界地震工程.2006.22(4).59~62
    [6]黄雨,舒翔等.桩基础抗震研究的现状.工业建筑.2002.32(7).50~53,61
    [7]李国豪.桥梁结构稳定与振动.北京.中国铁道出版社.2003.551
    [8]Reissner E. Axisymmetric stationary vibration of a circular plate on an isotropic elastic half-space subjected to a harmonically variable mass load. Ing. Arch. 1936. 7. 838~849
    [9]Bycroft G. N. Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum.Philo. Trans. Roy, Sec. 1956. 248.327~368 .
    [10]Parmelee R A. Building-foundation interaction effects. J. Eng. Meth. Div. ASCE. 1967. 93(EM2). 550~560
    [11]Lysmer J.Richart F E. Dynamic response of footings to vertical loading. Journal of Soil Mechanical Foundation Division.ASCE.1966.2(1).65~91
    [12]E.Richart, J. R. Hall and R. D. Woods. Vibration of soils and Foundation. Englewood Cliffs.NJ.1970
    [13]Carrier W D, III &Christian J T. Rigid circular plate resting on a non-homogeneous elastic half-space. Geotechnique. 1973.23(1) .67~84
    [14]Wolf J P, Somanini. Approximate Dynamic model of embedded foundation in time domain. Earthquake Engineering and Structure Dynamic.1986.14(6) .683~703
    [15]F.Aboul-Ella, M. Novak.Dynamic response of pile-supported frame foundation.Journal of the Engineering Mechanics Division. ASCE.1980. 106(6).1215~1232
    [16]Iguchi M, Luco J E. Dynamic response of 3-D rigid surface foundations. Earthquake Engineering and Structural Dynamics.1981.10(3).239~ 249
    [17]Karabalis D L.Beskos D E. Dynamic response of 3-D rigid surface foundation by time domain BEM. Earthquake Engineering and Structural Dynamics.1984.13(2) .73~93
    [18]Karabalis D L.Beskos D E. Dynamic response of 3-D rigid embedded foundation by the BEM. Comp..Methods in App1. Mech. and Eng.1986.56 (1) .91~119
    [19]Abascal R.Dominguez J. Vibration of footings on viscoelatic soil. J. Eng. Mech. . ASCE. 1985. 111 (2).123~141
    [20]Abascal R.Dominguez J. Vibration of footings on zoned viscoelatic soil. J. Eng.Mech..ASCE.1986.112 (5).433~447
    [21]S. Gupta, J. Penzien, T. W. Lin, C. S. Yen. Three-dimension hybrid modeling of soil-structure interaction. Earthquake Engineering and Structure Dynamic.1982.10(1).69~87
    [22]J. E. Luco, H. L. Wong. Seismic response of foundations embedded in a layered half-space. Earthquake Engineering and Structure Dynamic.1987.15(3).233~247
    [23]A. Mita, J. E. Luco. Dynamic response of a square foundation embedded in a elastic half-space. Soil Dynamic and Earthquake Engineering.1989.8(2) .54~67
    [24]A. Mita, J. E. Luco.Impedance functions and input motions for embedded square foundations. Journal of Geotechnical Engineering.ASCE.1989.115(4).491~500
    [25]Ke Fan, G. Gazetas, A. Kaynia, E. Kausel, S. Ahmad.Kinematic seismic response of single piles and pile groups. Journal of Geotechnical Engineering.ASCE.1991.117(12) .1860~1879
    [26]T. Tzong, J. Penzien. Hybrid modeling of a single-layer half-space system in soil-structure interaction.Earthquake Engineering and Structure Dynamic.1986.14(5) .517~530
    [27]E. Richart, J. R. Hall and R. D. Woods.Vibration of Soils and Foundation. Englewood Cliffs. NJ.1970
    [28]M. G. Zadeh, F. Chapel.Frequency-independent impedances of soil-structure systems in horizontal and rocking modes. Earthquake Engineering and Structure Dynamic.1983.11(5).523~540
    [29]W.YJean,T. W. Lin, J.Penzien.System parameters of soil foundations for time domain dynamic analysis. Earthquake Engineering and Structure Dynamic.1990.19(5).541~553
    [30]W. H. Wu, H. A. Smith. Efficient Modal Analysis for structures with soil-structure interaction .Earthquake Engineering and Structure Dynamic.1995.24(3).283~299
    [31]J. Guin, P. K. Banerjee.Coupled soil-pile-structure interaction analysis under seismic excitation. Journal of Structural Engineering.1998.124(4) .434~444
    [32]Y.X.Cai,P. L. Gou1d, C.S.Desai·Nonlinear analysis of 3D seismic interaction of soil-pile-structure systems and application.Engineering Structures.2000.22 (2). 191~199
    [33]J.P. Stewart. G.L. Fenves. and R. B. Seed.Seismic soil-structure interaction in buildings.Ⅰ. Analytical method. Journal of Geotechnical and Geoenvironmental Engineering. ASCE.1999.125(1).26~37
    [34]J. P. Stewart,G. L. Fenves, and R.B. Seed· Seismic soil-structure interaction in buildings. Ⅱ. Empirical findings.Journal of Geotechnical and Geoenvironmental Engineering. ASCE. 1999.125 (1).38~48
    [35] K.J. Ahn, P.L. Gould. Interactive Base-isolation foundation system. I. Finite element formulation. Journal of the Engineering Mechanics. ASCE. 1992. 118(10).2048~2058
    [36] K. J. Ahn, P. L. Gould. Interactive Base-isolation foundation system. I. Finite elementformulation. Journal of the Engineering Mechanics.ASCE.1992.118 (10).2059~2071
    [37]Y. Hayashi, H. Katukura.Effective time-domain soil-structure interaction analysis based on FFT algorithm with causality condition· Earthquake Engineering and Structure Dynamic. 1990. 19(6) .693~708
    [38]G. Darbre.Seismic analysis of non-linearly base-isolated soil-structure interacting reactor building by way of the hybrid frequency-time-domain procedure. Earthquake Engineering and Structure Dynamic.1990.19(7).725~738
    [39] S. Wang, G. Schmid .Dynamic structure-soil-structure interaction by FEM and BEM. Computational Mechanics.1992·9 (5).347~357
    [40] N. Makris, D. Badoni, E. Delis, G. Gazetas.Prediction of observed bridge response with soil-pile-structure interaction.Journal of Structural Engineering.1994. 120(10)·2992~3011
    [41]T.Nakamuta, I. Takewaki. Sequential stiffness design for seismic drift ranges of a shear building-pile-soil system. Earthquake Engineering and Structure Dynamic.1996. 25(12)·1405~1420
    [42]I. Takewaki.Equivalent linear ductility design of soil-structure interaction systems.Engineering Structure. 1998. 20(8).655~662
    [43]A.M. Budek, M. J. N. Priestley, G. Benzoni.Inelastic seismic response of bridge drilled-shaft RC pile/columns.Journal of Structural Engineering.ASCE. 2000.126(4)·510~517
    [44]B. C. Lin, Y. L. Tsaur.The seismic response of structure-visoelastic foundation systems in time domain and power spectra.Engineering Structure. 1997. 19(12). 977~987
    [45]K.Toki, F.Miura.Non-Linear Seismic Response Analysis of Soil-Structure Interaction Systems. Earthquake Engineering and Structure Dynamic. 1983.11(1).77~89
    [46]Vaughan, D. K., Isenberg.Nonlinear Rocking Response of Model Containment Structures. Earthquake Engineering and Structure Dynamic. 1983. 11(3).275~296
    [47]D. B. McCallen, K. M. Romstad.Nonlinear model for building-soil systems.Journal of the Engineering Mechanics.ASCE. 1994. 120(5).1129~1152
    [48]L. EL. Hifnawy, M. Novak. Uplift in seismic response of pile supported building. Earthquake Engineering and Structure Dynamic. 1986. 14(5).573~593
    [49]Gazetas G.Simple methods for the seismic response of piles applied to soil-pile-bridge interaction[A].Proceedings of 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics[C].St.Louis,Missouri,1995.1547~1556.
    [50]Bemal D.Yousef A.A hybrid time-frequency domain formulation for nonlinear soil-structure interaction[J].Earthquake Engineering and Structural Dynamics,1998,27(6).670~685.
    [51]俞载道, 傅公康. 桩-土-高层框剪结构动力相互作用分析. 同济大学学报.1984.1. 66~79
    [52]俞载道,王荣昌,应稼年.地基土与非线性多层剪切型结构相互作用体系的动力分析.同济大学学报.1986.14(3).271~280
    [53]应稼年,王荣昌,俞载道.地基土-桩基础-核电站辅助厂房结构相互作用体系的地震响应分析.地震工程与工程振动.1995.15(1).44~52
    [54]王开顺.地基阻抗与结构地震反应.地震工程与工程振动.1985.5(2).87~102
    [55]王开顺,王有为,李林友.土与结构相互作用地震反应研究及实用计算.建筑结构学报. 1986.7(2).64~76
    [56]王有为,王开顺.建筑物-桩-土相互作用地震反应分析的研究.建筑结构学报.1985. 5(3).64~73
    [57]陈熙之,解明雨等.桩-土-结构-水体系相互作用的弹塑性地震反映分析.计算结构力学及其应用.1985.2(1).31~37
    [58]范敏,解明雨,邬瑞锋.土-桩-结构相互作用体系的非线性地震反应分析.地震工程与工程振动.1985.5(3).6~12
    [59]刘季,阎维明.土-高层建筑、高耸结构相互作用地震反应分析. 哈尔滨建筑工程学院学报.1988.21(4).11~28
    [60]王复明,林皋.粘弹性非均质地基的动力柔度系数.土木工程学报.1990.23(1).54~64
    [61]要明伦,李大成,黄黎忠.箱腿深卧式海洋平台-土的动力相互作用. 岩土工程学报. 1993. 15(2).40~45
    [62]林皋,栾茂田, 陈怀海.土-结构相互作用对高层建筑非线性地震反应的影响.土木工程学报. 1993. 26(4).1~13
    [63]赵彤,于晓黎.高层建筑-基础-土体耦合系统的动力分析.地震工程与工程振动.1991. 11(3).67~75
    [64]黄杰民,庄潮鹏.桩基高层结构体系地震响应的整体分析方法. 建筑结构学报. 1994. 15(5).68~78
    [65]姜忻良,严士超等.筒体结构-桩-土相互作用的分支模态-二步分析法.天津大学学报.1995.6.796~801
    [66]蒯行成,沈蒲生,陈军.埋置基础近似动力模型及其应用.振动工程学报.1997. 10(1).506~509
    [67]杨允表,石洞,宋启根.核心单筒式高层悬挂结构考虑土-结构相互作用的动力分析.地震工程与工程振动.1999.19(2).64~70
    [68]廖雄华,周健,张克绪,李锡燮.广义位移法在土-结构相互作用问题分析中的应用.岩土工程学报.2001.23(6).672~676
    [69]王霓,严士超.土-群桩-结构系统动力特性及相互作用地震反应分析.建筑结构学报. 1990. 11(3).61~80
    [70]陈国兴,谢君斐等.土的动模量和阻尼比的经验估计.地震工程与工程振动,1995.15(1).73~84
    [71]楼梦麟,吴京宁.桩基-结构体系的地震响应分析.土木工程学报.1999. 32(5).56~61
    [72]唐胡乐,黄穗宁.地基-基础-上部结构耦合系统的动力相互作用浅析.工程抗震.2002.(1).8~14
    [73]Artur Pais, Edardo Kausel.Approximate formulas for dynamic stiffnesses of rigid foundations. Soil Dynamics and Earthquake Engineering.1988.7 (4)
    [74]陈文化,门福录等.建筑物地基动力液化的两相介质动力有限元分析.水利学报.2002.(11).89~94
    [75]易伟建,杨随新.软土地基上的土-结构动力相互作用.建筑科学与工程学报.2005.22(2).61~65
    [76]陈跃庆,吕西林等.不同土性的地基-结构动力相互作用下桩基础的动力反应.武汉大学学报(工学版).2005.38(4).50~54
    [77]陈跃庆,吕西林.几次大地震中地基基础震害的启示.工程抗震.2001.2.8~15
    [78]叶爱君.桥梁抗震.北京.人民交通出版社.2002
    [79]RIKEN.Earthquake Disaster Mitigation Research Center.The1999TurkeyEarthquakeReport, Volume1, Report on the Kocaeli.Turkey Earthquake of August17, 1999.EDM Technical Report No16. 2000
    [80]山肩邦男.兵库县南部地震にお为建筑物基础の被害の特征と今后の对策.基础工程.1996
    [81]A Survey Report for Building Damages Due to the 1995 Hyogo-KenNanbu Earthquake. Building Research Institute.Ministry of Construction. Japan.1996
    [82]杨克己.实用桩基工程.北京.人民交通出版社.2004
    [83]肖晓春.地震作用下土-桩-结构动力相互作用的数值模拟[学位论文].大连理工大学.2003
    [84]Kawashima K.Unjoh S. Impact of Hanshin/ Awajie Earthquake on Seismic Design and Seismic Strengthening of Highway Bridges.Structural Eng./Earthquake Eng.JSCE.1996.13(2).211~240
    [85] Buckle I G, Cooper, T D. Mitigation of Seismic Damages to Lifelines: Highways and Railroads [A].Schiff A. T. Edited.Critical Issues and State Of Art in Lifeline Earthquake Engineering[C].New York.ASCE. 1995.121~126
    [86]李雨润,袁晓铭.液化场地上土体侧向变形对桩基影响研究评述.世界地震工程.2004.20(2).17~22
    [87]刘恢先.唐山大地震震害(三)[M].北京:地震出版社.1986
    [88]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展.地震工程与工程振动.2002.22(4).53~59
    [89]张会荣,刘松玉.地震液化引起的地面大变形对桥梁桩基的影响研究综述.防灾减灾工程.2004.24(2) .350~354
    [90]张建民.水平地基液化后大变形对桩基的影响.建筑结构学报.2001.22(5).75~78
    [91]Yasuhiro Shamoto, JianMin Zhang, Kohji Tokimat su. New charts for predicting large residual post-liquation ground deformation [J].Soil Dynamics and Earthquake. 1998(17).427~438
    [92]Matlock H, Foo S H, Bryant L L. Simulation of lateral pile behavior [A].Proceeding of Earthquake Engineering and Soil Dynamics, ASCE[C]. Pasadena, California.1978.7.600~619
    [93]Novak M.Dynamic stiffness and damping of piles[J].Canadian Geotechnical Journal. 1974.II.574~598.
    [94]Nogami T, Konagai K. Time-domain axial response of dynamically loaded single piles[J].Journal of the Engineering Mechanics Division, ASCE.1986.112(2) .147~160
    [95]Matlock H. and Reese L. (1960) .Generalized Solutions for Laterally Loaded Piles,J. Soil Mechanics and Foundation Div., ASCE.86 (5). 63~91
    [96]Davisson M., and Gill H. (1963) .Laterally Loaded Piles in a Layered System, J. Soil Mechanics and Foundation Div., ASCE.89(3) .63~94
    [97]中华人民共和国交通部.JTG D63-2007.公路桥涵地基与基础设计规范.北京.人民交通出版社.2007
    [98]陈新锋,金锋等.一种分析层状介质-结构相互作用的多元耦合模型.清华大学学报.1997.37(11).82~86
    [99]李耀庄,王贻荪等.粘弹性地基中桩动力反应分析.湖南大学学报(自然科学版).2000.27(1).92~96
    [100]胡安峰,谢康和等.水平荷载下单桩动力反应分析.浙江大学学报(工学版).2003.37(4).420~425
    [101]Novak, M..Dynamic Stiffness and Damping of piles.Canadian Geotechnical Journal.1974.11
    [102]Novak, M. and El Sharhouby. B. .Stiffness Constants of Single piles. ASCE.1983.109 (GT7)
    [103]雷文军,魏德敏.分层土中单桩和群桩的水平动力阻抗计算.工程力学.2004.21(5).36~40
    [104]李国豪.桥梁结构稳定与振动(修订版).中国铁道出版社.1992
    [105]王焕定,吴德伦.有限单元法及计算程序.北京.中国建筑工业出版社.1997
    [106]王瑁成,邵敏.有限单元基本原理和数值方法.北京.清华大学出版社.1997
    [107]郝文化.Ansys 土木工程应用实例.中国水利水电出版社.2005
    [108]凌贤长.液化场地桩-土-桥梁结构动力相互作用振动台试验研究.国家自然科学基金资助项目结题报告.上海.2002
    [109]中华人民共和国建设部.GB 50011-2001.建筑抗震设计规范.北京.中国建筑工业出版社.2001
    [110]杨桂通.土动力学.北京.中国建材工业出版社.2000