草鱼肠道菌群的变化和免疫机能的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要以中草药作为一种手段,在饲料中分别添加2%的大黄、板蓝根用于草鱼的饲养,在投喂药饲前和投药后的1、4、7、14、21、28天取样,分别对其肠内各段(前、中、后肠)细菌数量和组成的变化、血液中白细胞的吞噬活性和血清中溶菌酶活性的变化进行了测定,并相应的对各肠段作了组织切片以观测其肠壁淋巴细胞的变化,以探讨草鱼肠道菌群的变化和其免疫机能的关系。
     其结果如下:
     1) 草鱼肠内细菌数量变化范围为:10~5-10~8cfu/g,其中优势菌群为Aeromonas和Enterobacteriaceae,并且Aeromonas和Enterobacteriaceae的百分含量在肠道中表现出一种此消彼长的关系。
     2) 随着肠道内Aeromonas百分含量的下降,Enterobacteriaceae百分含量的上升,草鱼白细胞的吞噬百分比和吞噬指数明显上升,这说明草鱼肠道优势菌群Aeromonas、Enterobacteriaceae的变化可能与白细胞吞噬活性增强有关。
     3) 肠道菌群数量、组成的变化和血清溶菌活性的变化之间没有明显的相关性——在投喂中草药后,肠道菌群数量的增加或减少以及优势菌群Aeromonas或Enterobacteriaceae组成百分比的上升或下降,在血清溶菌酶活性并没有同样出现这种一致的较对照组而言活性增强或减弱的变化趋势。
     4) 投喂大黄、板蓝根后草鱼肠壁组织中淋巴细胞的数量显著增加,尽管肠道菌群的变化和淋巴细胞的变化未表现出明显的对应关系,但可能肠道菌群的变化对肠壁淋巴细胞的变化有一定的影响;另一方面,这也可能是由于大黄、板蓝根药物作用促进草鱼免疫力增强的缘故。
Grass carp (Cteropharyngodon idellns) were fed medicated feed containing 2% rhubarb (Rheum officinale) or isatis root (Isatis tinctorid) respectively in this study. Then on the days(0d, 1d, 4d, 7d, 14d, 21d, 28d) before and after fed medicated feed were samples carried out respectively by surveying changes of number and composition of intestinal microflora including fore-gut, mid-gut and hind-gut> phagocytic activity of leukocytes in the blood and lysozyme activity in the serum of grass carp, at the same time responding intestine tissue were fixed, embedded by paraffin and sliced up to observe changes of lymphocytes in intestine tract of grass carp, in order to find the relation between changes of intestinal microflora and immune funciton of grass carp. The results were as follows:
    1) The number of bacteria in the intestine tract of grass carp ranged from 105-108cfu/g, and the intestinal predominant flora was Aeromonas and Enterobacteriaceae, composition percentage of whose put up a relation of ebb and flow.
    2) The composition percentage of Aeromonas in intestine tract declined and the composition percentage of Enterobacteriaceae rose with the days, while phagocytic percentage and phagocytic index of leukocytes of grass carp were raised significantly. This showed that there may be some relation between changes of predominant flora Aeromonas^ Enterobacteriaceae and promotion of phagocytic activity of leukocytes in the blood.
    3) There was no obvious relation between changes of number and compositon of intestinal microflora and changes of lysozyme activity in the serum of grass carp. That is to say, there weren't the same compounding changes on lysozyme activity in the serum as changes of number and of intestinal predominant flora Aeromonas and Enterobacteriaceae after fed with rumbarb and isatis root.
    4) Numbers of lymphocytes in intestine tract of grass carp were obviously increased after fed medicated feed containing rhubarb and isatis root, and composition percent of the predominant flora Aeromonas in the intestine tract increased and composition percent of Enterobacteriaceae declined with days. Although their changes have no obvious relation with the growth of lymphocytes number, changes of the intestinal predominant flora Aeromonas and Enterobacteriaceae have some effect on the growth of lymphocytes number in intestine tract. On the other hand, that may be owing to the immune promotion of rhubarb and isatis root.
引文
1 丁燏.罗非鱼溶菌酶活力的研究.湛江海洋大学学报,2002,22(3):3-7
    2 中国科学院微生物研究所细菌分类组编著.一般细菌用鉴定方法.北京:科学出版社,1978
    3 方定一.仔猪白痢大肠杆菌及其特异防治研究.畜牧兽医学报,1964,1:12
    4 王世荣.生态制剂与“扶正祛邪”.中国微生态学杂志,1995,7(1):58-59
    5 王宇,黄立峰.谈谈鱼类免疫.动物学杂志,1992,27(5):54-56
    6 王红宁,何明清,柳苹,胡延秀,陈孝跃.鲤肠道正常菌群的研究.水生生物学报,1994,18(4):354-359
    7 于克恭.粘膜免疫系统极其免疫功能.中国兽医科技,24(6):19-20
    8 吉水守,木村乔久,板井稔.科鱼类肠内细菌丛关节研究-Ⅰ,饲育鱼肠内细菌数细菌丛.日本水产学会志,1976,42(1):91~99
    9 朱晓燕,汤伏生.健康家鱼肠道细菌中的嗜水气单胞菌及胞外酶分布.湖北农学院学报,1994,14(1):35-39
    10 江萍.夏先林,周碧君,王忠.两种微生态调节剂对网箱鲤鱼生产效果的影响.中国微生态学杂志,1997,9(3):26-28
    11 汤伏生,朱晓燕,张兴忠.鲤鱼肠道细菌及淀粉酶对宿主消化的影响.水产学报,1994,18(3):177-182
    12 何明清等.“8701”、“8801”活菌剂对猪、禽和鱼的抗病及增产试验初报.中国微生态学杂志,1989,1(1)
    13 余贺.医学微生物.北京:人民卫生出版社,1983
    14 吴敏毓,刘恭植主编.医学免疫学(第三版).合肥:中国科学技术大学出版社,1999
    15 尾崎久雄.鱼类消化生理,李爱杰,沈宗武译.上海:科技出版社,1985
    16 张日俊.动物胃肠道菌群与其免疫功能和健康的关系.饲料广角,2002,(21):17-26
    17 张永安,孙宝剑,聂品.鱼类免疫组织和细胞的研究概况.水生生物学报,2000,24(6):648-654
    18 张兆华.中草药添加剂有效成分及免疫机理的研究.中国饲料,1997,13:20-22
    19 李丽秋,马淑霞,杨景云,吕密凯,高艳华,车世伟.树舌中药复方煎剂对小鼠肠道菌群及体液免疫的调节作用.中国微生态学杂志,1997,9(6):24
    20 李静.陈昌福.低温季节草鱼离体白细胞吞噬活性的研究.水生生物学学报,1998,22(增刊):132~139
    21 陈向东.二龄草鱼肠炎病的研究.鱼病简讯,1985,3:5-9
    22 陈昌福,纪国良.鱼类的某些“自然抗体(非特异性免疫物质)”的特性及其功能.鱼类病害研究,1990,12(2):42-48
    23 陈昌福,纪国良.草鱼血清、体表和肠粘液中溶菌物质活性及特征.华中农业大学学报,1992,11(3):276-279
    24 周华,王培训,刘良,周联.环磷酰胺对小鼠Peyer's结和肠道粘膜相关淋巴细胞的影响.中国免疫学杂志,2001,17(4):186-187
    
    
    25 林清华.免疫学实验.武汉:武汉大学出版社.1999.64-67
    26 苑惠清.胃肠道微生态的生理与病理.中国临床医生,1999,27(5):6-7
    27 郑永标.罗非鱼肠道有益菌的分离及其作饵料添加剂的效果观察初报.福建农业科技,1997,(6):6
    28 唐由凯,向武良.医学微生态学知识系列讲座—微生态学和肠道菌群.湖北民族学院学报(医学版),1999,16(2):56-57
    29 徐伯亥,葛蕊芳,熊木林.二龄草鱼肠炎病发病机理.鱼病简讯,1986,2:17-22
    30 桂远明,何幽峰,毛连菊,吴垠,王斌,康白,孔庆友,蔡之宣,文姝,孙文平.生态制品(JY10、JY31复合生态制剂)饲料添加剂对提高鲤抗病力的研究.中国微生态学杂志,1994,6(6):27—33
    31 桂远明,吴垠,祝国芹,康白,蒋寒青,孔庆友.复方回春生对鲤爆发性肝炎治疗效果的初步研究报告.中国微生态学杂志,1992,4(2):47-50
    32 浜口昌巳,楠田理一.养殖分离Photobacterium phosphoreum 病原性关研究.南西水研研报,1992,25:59-92
    33 聂品.鱼类非特异性免疫研究的新进展.水产学报,1997,21(1):69-73
    34 高汉娇,林永康,陈昌福,李明政.21种中草药对嗜水气单胞菌的试管内抑菌作用.水利渔业,1996,4:16-17
    35 康白主编.微生态学.大连:大连出版社,1988
    36 梁小威.几种淡水养殖鱼类血清溶菌酶活性的初步观察.水产科学,1993,12(2):15-17
    37 黄彩虹.微生物寄生虫及免疫.北京:人民卫生出版社,1984
    38 龚珞军,高志慧.大黄防治病的药理学分析.湖北渔业,1991,3:30-32
    39 葛凤霞,袁小林,张朝,张成鸿,蒋寒青.乳酸杆菌对小鼠腹腔巨噬细胞活化作用及细胞毒作用的初步研究.中国微生态学杂志,1998,10(1):45-46
    40 蒋长苗,鲍传和,马元山.草鱼肠道正常菌群与肠炎病原菌关系的初步研究.吉林业大学学报,1992,14(1):55~58
    41 濑良洋,木俣正夫.海产鱼消化管细菌相-Ⅰ.细菌相饵料成分的影响.日本水产学会志,1972,38(1):50-55
    42 薛恒平.薛彦青.水产养殖同微生态与微生物生态之间关系初探.饲料工业,1997,18(2):23-26
    43 Abelli L, Picchietti S, Romano N, et al. Immunohistochemistry of gut-associated lymphoid tissue of the sea bass Dicentrarchus labrax (L.). Fish Shellfish Immunol, 1996, 6:235-245
    44 Ainsworth A J. Fish granulocytes: morphology, distribution and function. Annu Rev Fish Dis, 2: 123~148
    45 Berg R D et al. Arch Surg, 1988, 123(10): 1359-1364
    46 Bergh Φ. Shift in the intestinal microflora of Atlantic halibut (Hippogolssus hippoglossus) larvae during first feeding. Can J Fish Aqual Sci, 1994, 51 : 1899-1903
    47 Bogut I, Milakovic Z, Bukvic Z, Brkic S, Zimmer R. Influence of probiotic (Streptococcus
    
    faecium M74) on growth and content of intestinal microflora in carp (Cyprinus carpio). Zivocisna Vyroba, 1998, 43(5): 231-235
    48 Cahill M M. Bacterial flora of fishes: A review. Microbial ecology, New York, 1990, 19(1): 21-41
    49 Carl J et al. Rev Infect Dis, 1988, 10(5): 958-979
    50 Clem L W, et al. Evolution of lymphocyte subpopulations, their interactions and temperature sensitivities. In: Warr G W, Cohen N, ed., Phylogenesis of Immune Functions. Florida: Boca Raton, CRC Press, 1991. 191-214
    51 Clem L W, McLEAN W E. Phylogeny of immunoglobulin structure and function Ⅶ. Monomeric and tetramerie immunoglobulins of the margate, a marine teleost fish. Immunology, 1995, 39: 791-799
    52 Clemnets K D. Fermentation and gastrointestinal microorganisms in fishes. In Mackie R I, Isaacson R E. (Eds), Gastrointestinal microbiology, Vol.1, Gastrointestinal Ecosystems and Fermentations. New York: Chapman and Hall Microbiology Series, International Thomson Publishing, 1997. 156-1998
    53 Das K M, Tripathi S D. Studies on the digestive enzymes of grass carp, Ctenopharyngodon idellus (Val.). Aquaculture, 1991, 92:21-32
    54 Fnge R, Lundblad G, Lind J. Lysozyme and chitinase in blood and lymphomyeloid tissues of marine fish. Mar boil, 36:277-182
    55 Fletcher T C, White A. Lysozyme activity in the plaice (Pleuronectes platessa L.), Experientia, 1973, 29:1283-1285
    56 Fletcher T C, White A. The lysozyme of the plaice, Pleuronectes platessa L. Comp Biochem Physiol, 1976, 55:207-210
    57 Flethcher T C, White A, Baldo B. C-reactive protein-like precipitin and lysozyme in the lumpsucker Cyclopterus lumpus L. during the breeding season. Comp biochem Physiol, 1977, 57b: 353-357
    58 Fournier-Betz V, Quentel C, Lamour F, et al. Immunocytochemical detection of lg-positive cells in blood, lymphoid organs and the gut associated lymphoid tissue of the turbot (Scophthalmus maximus). Fish Shellfish Immunol, 2000, 10:187-202
    59 Gatesoupe F J, Lesel R. An environmental approach to intestinal microflora in fish. Cahiera Agricultures, 1998, 7(1): 29-35
    60 Gildberg A, Mikkelsen H, Sandaker E, Ringo E. Probiotic effect of lactic acid bacteria in the feed on growth and survival offry of Atlantic cod (Gadus morhua). Hydrobiologia, 1997, 352(1-3): 279-285
    61 Graham S, Secombes C J. Cellular require ments for lymphokine secretion by rainbow trout Salmo gairdneri leucocytes. Dev Comp Immunol, 1990, 14:59-68
    62 Grinde B, Lie, Poppe T and Salte R. Species and individual variation in lysozyme activity in fish of interest in aquaculture. Aquaculture, 1988, 168(4): 299-304
    
    
    63 Hart S, et al. Gut immunology in fish: a review. Dev Comp Immunol, 1988, 12:453-480
    64 Hjelmeland K, Christie M, Raa J. Skin mucus protease from rainbow trout, Salmo gairdneri Richardson, and its biological significance. J Fish Biol, 1983, 23:13-22
    65 Holt J G, Krieg N R, Sneath P H A, et al. Bergy's manual of deteminative bacteriology, 9th ed, Baltimore: Williams and Willkins, 1994:175-255
    66 Hooper L, Falk P, Gordon J. Analyzing the molecular foundations of commensalisms in the mouse intestine. Curr Opin Microbiol, 2000, 3:79-85
    67 Hume I D. Fermentation in the hindgut of mammals. In: Mackie R I, With B A. (Eds), Gatrointesrinal microbiology, Vol.1, Gastrointestinal Ecosystems and Fermentations. New York: Chapman and Hall Microbiology Series, International Thomson Publishing, 1997.84-115
    68 Kashiwada K et al. Studies on the production of B vitamins by intestinal bacteria of fish. V. Evidence of the production of vitamin B by microorganisms in the intestinal cannal of carp, Cyprinus carpio. Bull Japan Soc Sci Fish, 1970, 36(4): 421-424
    69 Kawahara I, Kusuda R. Properties of lysozyme activities in cultured eel. Nippon Suisan Gakkaishi, 1988, 54:965-968
    70 Kusuda R, Hamaguchi M. The efficacy of attenuated live bacterin of Pasteurella piscicida against pseudotuber-culosis in yellowtail. Bull Eur Ass Fish Pathol, 1988, 8(3): 50-51
    71 Lindsay G J H. The significance of chitinolytic enzymes and lysozyme in rainbow trout (Salmo gairdneri) defence. Aquaculture, 1986, 51:169-173
    72 Macarthur J I, Fletcher T C. Phagocytosis in Fish. In: Manning M J, Tatner M F ed., Fish Immunologv. Academic Press, 1985.29~46
    73 Mackowiak P A. Normal bacteria flora. New Engl J Med, 1982. 307:83
    74 Manning M J. Fishes. In: Turner R J, ed. Immunology A Comparative Approach. John Wiley & Sons Ltd, Britain, 1994:69-100
    75 Mar M A, Quntel C. The Variation in immune parameters and associations to survival in Atlantic salmon. J Fish Bio, 1995, 40:748~758
    76 Margolis L. The effect of fasting on the bacterial flora of the intestine of fish. J Fish Res Bd Can, 1953, 10(2): 62~63
    77 Mattheis T, Okologie der bakterien im von siiwassernutzfischen, Z. Fisheries, 1964, 12:507-600
    78 Miller N W, et al. Phylogeny of lymphocyte heterogeneity: identification and separation of functionally distinct subpopulations of channel catfish lymphocyte with monoclonal antibodies. Dev Comp Immunol, 1987,14:49-58
    79 Miyazaki T. Influences of pH and temperature on lysozyme activity in the plasma of Japanese flounder and Japanese Char. Fish Pathol, 1998, 33(1): 7-10
    80 Mock A, Peters G. Lysozyme activity in rainbow trout, Oncorhynchus mykiss (Walbaum), stressed by handing, transport and pollution. J Fish Bio, 1990, 37:873~885
    81 Muona M, Soivio A. Changes in plasma lysozyme and blood leucocyto levels of hatchery~reared Alantic Salmon and Sea trout during parr~smolt transformation. Aquactdture, 1992, 106:75~87
    
    
    82 Navarro V, Quesada J A, Abad M E, et al. Immuno(cyto)chemical characterization of monoclonal antibodies to gilthead seabream (Sparus aurata) immunoglobulin. Fish Shellfish Immunol, 1993, 3:167-177
    83 Powell M D, et al. Rainbow trout (Oncorhynchus mykiss Walbaum) intestinal eosinophilic granule cell (EGC) response to Aeromonas salmonicida and Vibrio anguilarum extracellular products. Fish Shellfish Immunol, 3:279-289
    84 Ring Φ E, Gatesoupe F J. Lactic acid bacteria in fish: a view. Aquaculture, 1998,160:177-203
    85 Roed K H, Fjalestad K T, Stromsheim A. Genetic variation in lysozyme activity and spontaneous haemolytic activity in Atlantic salmon. Aquaculture, 1993, 114:19-31
    86 Romano N, Taveme-Thiele J J, Van Maanen J C. Leucocyte subpopulations in developing carp (Cyprinus carpio L.): immunocytochemical studies. Fish Shellfish Immunol, 1997, 7:439-453
    87 Rowley A F, et al. Fish. In: Rowley A F, Ratc N A, ed. Liffe Vertebrate Blood Cells. Cambridge University Press, Cambridge, 1988, 19-127
    88 Sakata T, Sugita H, Mitsuoka T, et al. Characteristics of obligate anaerobic bacteria in the intestines of freshwater fish. Bull Japan Soc Sci Fish, 1981,47(3): 421-427
    89 Sakata T, Sugita H, Mitsuoka T, et al. Isolation and distribution of obligate anaerobic bacteria from the intestines of freshwater fish. Bull Japan Soc Sci Fish, 1980, 46(10): 1249-1255
    90 Salati F, Ikeda Y, Kusuda R. Effect of Edwardsiella tarda lipopolysaccharide immunization on phagocytosis in the eel. Nippon Suisan Gakkaishi, 1987, 53(2): 201-204
    91 Secombes C J. Cellular defences of fish: an update. In: Pike A W, Lewis J W, ed., Parasitic Diseases of Fish Samara Publishing Limited, Dyfed, Breat Britain, 1994. 209-224
    92 Sera H, Ishida Y. Bacterial flora in the digestive tracts of marine fish-Ⅱ: Changes of bacterial flora with time lapse after ingestion of diet. Bull Jap Soc Sci Fish, 1972, 38(6): 633-637
    93 Sugita H, Fushino T, Oshima K, et al. Microflora in the water and sediment of freshwater culture ponds. Bull Japan Soc Sci Fish, 1985, 51 (1): 91-97
    94 Sugita H, Kawasaki J, Kumazawa J, Deguchi Y. Production of amylase by the intestinal bacterial of Japanese coastal animal. Letters in Applied Microbiology, 1996, 23(3): 174-178
    95 Sugita H, Oshima K, Tamura M. Bacterial flora in the gastrointestine of freshwater fishes in the river. Bull Japan Soc Sci Fish, 1983, 49(9): 1387-1395
    96 Sugita H, Shibuya K, Shimooka H, Deguchi Y. Antibacterial abilities of intestinal bacteria in freshwater cultured fish. Aquaculture, 1996, 145 (1-4): 195-203
    97 Sugita H, Tokuyama K, Deguchi Y. The intestinal microflora of carp Cyprinus carpio, grass carp Ctenopharyngodon idella and Tilapia Sarotheron noloticus. Bull Japan Soc Sci Fish, 1985, 51(8): 1325-1329
    98 Sweetman J W, Aguilera Jimenez C, Tordoella J J, Swings J G, Ollevier F, Sorgellos P. Hygiene management and disease prevention in marine fish larviculture, by the adjustment and control of the microbiological environment. Third European marine science and technology conference (MAST conference), Lisbon, Fisheries and Aquaculture (AIR: 1990-94)- Selected projects from the research programmer for Agriculture and Agro-industry including Fisheries, 1998.97-100
    99 Syvokien J, Micknien L. Micro-organisms in the digestive tract of fish as indicators of feeding
    
    condition and pollution. J Mar Sci, 1999, 56:147-149
    100 Tanaasomwang V, Maroga K. Intestinal microflora of rockfish Sebastes schlegeli, tiger puffer Takifugu rubripes and red grouper Epinephelus akaara at their larve and juvenile stages. Bull Jap Soc Sci Fish, 1989, 55(8): 1371-1377
    101 Thuvander A, Fossum C, Lorenzen N. Monoclonal antibodies to salmonid immunoglobulin, characterization, and applicability in immuno-assays. Dev Comp Immunol, 1990, 14:415-423
    102 Trust T J, Sparrow R A H. The bacterial flora in the alimentary tract of freshwater Salmonoid fishes. Can J Microbiol, 1974(20): 1219-1228
    103 Weintraub A. Characterization of B fragilis strains based on antigen-species. J Infect Dis, 1983, 147(4): 780-781
    104 Wostmann B. Immunology, including radiobiology and transplantation. In: Wostmann B S ed. Germfree and gnotobiotic animal models. Boca Raton. F L: CRC Press, 1996. 101-125
    105 Yoshimizu M, Kimura T. Study on the intestinal microflora of sahnonide. Fish Pathology, 1976, 10(2): 243-259