南方鲶(Silurus meridionalis)出血性败血症的病原、病理及免疫预防研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验证明南方鲶出血性败血症是由细菌引起的。从自然患病南方鲶的肝、肾、脾等脏器分离获得3株强致病性菌株,鉴定均为嗜水气单胞菌,但3株菌药物敏感性有差异。
     患病南方鲶外周血液中红细胞和嗜中性粒细胞有较大变形,淋巴细胞个体增大。红细胞显著减少,不成熟红细胞增多。白细胞总数显著增加,白细胞分类百分比(DLC)发生变化,嗜中性粒细胞、单核细胞分类百分比明显增加,淋巴细胞和血栓细胞变化不显著。另外,红细胞脆性增加,血细胞沉降率增加。
     病鱼肝实质结构严重受损,细胞索结构模糊,界限不清;肝细胞肿大,细胞核肿胀,空泡化,肝细胞大面积坏死解体,染成浅色一片。肾单位数量显著减少,肾间质所占比例增大,淋巴细胞增多;肾小囊腔扩大;肾小管肿胀,部分肾小管上皮细胞变性,甚至坏死。脾脏淋巴组织松散,淋巴细胞减少,衰老细胞增多。
     嗜水气单胞菌灭活全菌苗免疫南方鲶,免疫后第2d免疫组实验鱼外周血白细胞数量剧增,白细胞分类百分比发生变化。单核细胞和嗜中性粒细胞分类百分比在第2~14d显著增加,以后逐渐减低,至第28d恢复到起始状态,其中在第7d均达到最大值。单核细胞的增殖幅度明显高于嗜中性粒细胞。淋巴细胞在第2~4d比对照组低,从第7d起开始增殖,第21d达到最大值47.29%;实验过程中免疫组血栓细胞分类百分比始终略低于对照组。吞噬细胞活性显著增强,吞噬百分比平均比对照组提高了17.66%,吞噬指数平均比对照组高出1.16。免疫后第4d吞噬百分比(PP)和吞噬指数(PI)均达到最高值,前者为48.40%,后者为4.82,第21d的吞噬百分比和吞噬指数开始下降,但仍高于对照组。
     嗜水气单胞菌灭活全菌苗、脂多糖(lipopolysaccharide,LPS)、胞外产物(ECP)、菌细胞苗分别进行1次免疫和加强免疫南方鲶,各种疫苗在接种后第14d血清凝集抗体效价开始上升,第21d快速上升,至第28d达到峰值,后缓慢下降,但能以较高水平维持20d左右,之后快速下降。同种疫苗的加强免疫组均比1次免疫组获得的凝集抗体效价高,高效价抗体持续的时间长,全菌苗、LPS、ECP和菌细胞加强免疫组凝集抗体滴度的峰值分
    
    理学硕l学位论文:南方鳍出l(ll.性败](ll庄的炳原、病理及免疫颅防研究
    别为1024、256、512和128,1次免疫的峰值依次为128、64、128和32。LPS组凝集抗
    体滴度峰值出现较ECP组早,但ECP组的凝集抗体滴度更为稳定,能以较高水平持续到
    第8周。
     全菌苗、脂多糖(LPS)和胞外产物(ECP)均能使鱼体获得较好的保护效果,菌细
    胞苗效果差。免疫后不同时间各疫苗对同源菌株注射攻击的保护效果不同,第2周时,各
    组的保护力均很低;第4周,各疫苗组的免疫保护率达到最高,分别如下:全菌苗一次免
    疫组保护率为50%,加强免疫组64.3%;LPS一次免疫为42.9%,加强免疫组为50%;
    ECP一次免疫64.3%,加强免疫为78.6%;第6周时,各组的保护率略低于第4周,但仍
    保持了较好的保护效果。各对照组死亡率均高于93.3%,且对照组死亡鱼表现出头部、眼
    睛、上下领充血等出血病典型症状。说明接种鱼获得了良好的免疫保护效果,能有效抵抗
    嗜水气单胞菌的攻击。
Haemorrhagic Septicemia of catfish is a threatening disease with high incidence and mortality in fish-farms . At present, no effective measure has been developed to prevent this disease.
    In this paper, we have demonstrated that Haemorrhagic Septicemia of Southern Catfish is caused by bacterials. Three strains of bacterial pathogen with high virulence have been isolated from liver, kidney and spleen of diseased Southern Catfish with typical Haemorrhagic Septicemia. The three strains of the pathogen are all capable of causing Haemorrhagic Septicemia in healthy naive Southern Catfish and have been identified to be Aeromonas hydrophila with different biological characters and sensitivities to antibiotic drugs.
    After experimental infection with the isolated pathogens, the morphology of blood cells and hematological parameters of infected fish were monitored. In infected fish, the red blood cell counts were (1.44 + 0.16) X 106mm-3, which were significantly lower than that of control[ (2.28 +0.17) X 106mm-3], indicating that hemolysis was caused. On the contrary, the white blood cell counts were increased from (6.25 + 1.67) X 104mm-3 to (8.375 + 3.25) X 104mm-3 , suggesting that immunological response was induced. At the same time , the erythrocytes and neutrophils were deformed and the lymphocytes were enlarged. The DLCs (differential leukocyte counts) of neutrophils and monocytes were higher in the infected fish, but the levels of lymphocytes and thrombocytes remained unchanged.
    Obvious pathological changes were observed in liver, kidney and spleen of diseased catfish with a light microscope. The structure of the liver was significantly changed. The arrangement of liver cells was disturbed and the borderlines between cellls were invisible. The majority of liver cells swelled and became larger than that of healthy catfish, and were even degenerated. In kidney, fewer nephrons and more lymphocytes were observed. Renal capsule space became larger. Renal corpuscle swelled and renal tubule epithelial cells had significantly larger size, and some showed necrosis. In spleen, fewer and scattered lymphocytes were observed.
    
    
    The vaccines made of detox icated bacterial were all capable of inducing immunological response in immunized fish. The naked bacterial cell vaccine has some effect, but not so good as that of others. On 2nd day of immunization, a rapid increasing level of the white blood cell counts in peripheral blood was observed. On 4th day, the white blood cell counts were elevated to levels between (79.8 + 9.5472) X103mm-3and (84.2 + 7.3521) X 103mm-3, and remained on such higher levels until 28th day. The DLCs of white blood cells were also changed after immunization. From 2nd day to 14th day, increasing DLCs of monocyte and neutrophile were observed, and on 7th day both reached to peak points(13.35% and 10.06%), which were very siginificantly higher than that of control(3.58% and 5.99%). After 14th day, the DLCs of both were decreased gradually and on 26th day, returned back to the beginning. Although no increasing lymphocyte levels were observed between 2nd and 4th day, lymphocyte level began to be increased on 7th day, and on 21s' day reached to peak point 47.29%. During the whole immunization process, the fhrombocyte level of immunized fish was slightly lower than that of control, but with no statistically significant difference.
    Phagocyte was significantly activated after immunization. The phagocytosis percentage(PP) and phagocytosis index(PI) in immunized group were 16.00%~48.40% and 1.36-4.82 respectively, which were both significantly higher than that of control(12.48%~19.57%). On 4th day of immunization, both the PP and PI reached to peak points 48.40% and 4.82 respectively. On 21st day, PP and PI began to be decreased, but both were still higher than those of control.
    Antibody levels were increased after immunization. Increasing antibody levels began to be observed on 14th day. Except the group immunized with naked cell vaccine, rapid increasing antibody levels were observed on 21st day, and reach
引文
安利国。当代动物学研究进展。济南:山东大学出版社,1993,230~244。
    陈怀青,陆承平。家养鲤科鱼暴发性传染病的病原研究。南京农业大学学报,1991a,16(4):87~91
    陈怀青。嗜水气单胞菌:黄鳝出血性败血症的病原。中国人兽共患病杂志,1991b,7(4):21~23
    陈怀青,嗜水气单胞菌外毒素研究进展。国外医学(微生物分册),1991c,15(6):256~259
    陈怀青。培养条件对嗜水气单胞菌hec毒素常量的影响。南京农业大学学报增刊。1993a,74~78
    陈怀青。点酶法检测鱼类致病性嗜水气单胞菌hec毒素。动物检疫,1993b,10(4):7~9
    陈怀青。嗜水气单胞菌表面蛋白及外膜蛋白的初步分析。南京农业大学学报,1993c,16(2):69~73
    陈怀青。鱼类免疫的理论与实践。国外水产,1995,2:6~9
    陈昌福,李静,周文豪等。翘嘴鳜细菌性败血症的免疫预防研究。华中农业大学学报,1996,15(5):475~479
    陈昌福,史维舟,李静。翘嘴鳜对柱状嗜纤维菌免疫反应的初步研究。华中农业大学学报,1995,14(4):377~380
    陈其才,严宣友,吴政星。生理学实验。北京:科学出版社,1995,61~66
    陈琼,陆承平。嗜水气单胞菌HEC毒素单克隆抗体的研究。南京农业大学学报,1993,16(增刊):81~84
    储卫华。异育银鲫细菌性败血症病原及防治研究。水利渔业,2001,20(1):40
    丁雷。水产动物传染病快速检测方法研究进展。水利渔业,1999,19(2):44~46
    范红结,黄国庆,陈怀青等。嗜水气单胞菌疫苗的检验及免疫效力试验。畜牧与兽医,1998,30:252~253
    范红结,陆承平。嗜水气单胞菌菌种的限定代次及保存条件研究。南京农业大学学报,2000,23(4):89~92
    高汉娇,陈昌福。水库暴发性鱼病及其防治技术研究2:直接荧光抗体法对白鲢病原菌的鉴定。水利渔业,1995,2:11~13。
    郭琼林,韩先朴等。鳗鲡出血性开口病的病理学研究。水生生物学报,1997,21(4):327~333
    黄琪琰。异育银鲫溶血性腹水病的组织纤维病理研究。水产学报,1991,15(3):212~218
    黄琪琰。异育银鲫溶血性腹水病的病理生理研究。水产学报,1992,16(4):316~321
    黄琪琰。暴发性鱼病防治技术。北京:农业出版社,1993
    黄琪焱,郑德崇,金丽华等。淡水鱼类细菌性败血症的组织亚显微病理及防治研究。上海水产大学学报,1995,4(1):27~34
    贺路。沙市地区暴发性传染病病原研究。淡水渔业,1992,3:13~16
    李福荣,程天印,鞠长增等。中华鳖水疱病病原病理学研究。信阳师范学院学报,1994,7(3):305~308
    李学勤。淡水鱼类主要致病菌快速诊断研究Ⅱ。鱼类病害研究,1995,17(3):46~47。
    
    
    李学勤。应用葡萄球菌A蛋白协同试验快速检测出鱼类致病菌。水产科学,1997,16(6):12~1
    刘玲仪。细菌性败血症暴发期间鱼池水化学状况研究。水产学报,1994,18(2):153~156
    刘颖。应用Dot-ELISA技术快速检测鱼类细菌性疾病病原的研究。内陆水产,1998,1:6~7
    陆承平。致病性嗜水气单胞菌及其所致鱼病综述。水产学报,1992,16(3):282~288
    马国文。鲤鱼竖鳞病病原和病理研究。水利渔业,1999,19(3):37~40
    米瑞芙。败血症中的鲢重要器官超微结构的观察。电子显微学报,1993a,12(1):21~23
    米瑞芙。鲢鱼败血症血液生理指标的改变。淡水渔业,1993b,23(4):16~19
    米瑞芙,谢宝华,陶炳春等。白鲢出血性败血症病理组织学研究。动物学杂志,1994,29(1):17~19
    齐彩霞。鳖穿孔病的病原菌及防治。淡水渔业,1995,25(4):17~19
    钱冬,陈月英。应用酶联免疫吸附实验检测暴发病病原——嗜水气单胞菌的研究。水产养殖,1993,4:14~17
    芮菊生,陈海明,李次兰。组织切片技术。高等教育出版社,1974:13
    孙建和,陈怀青,陆承平。嗜水气单胞菌疫苗的研制。畜牧与兽医,1995,27(5):202~205
    孙建和,严亚贤,陈怀青等。嗜水气单胞菌亚单位疫苗的研制。中国兽医学报,1996,16(1):11~15
    上海水产学院。组织胚胎学。北京:农业出版社,1981:84~91
    陶秉春。二、三倍体鲤鱼血液生理指标的比较研究。淡水渔业,1994,24(4):8~9
    汤伏生,朱小燕,张兴忠等。几株鱼类肠道细菌溶血毒素的葡萄糖抑制效应。淡水渔业,1993,23(6):4~7
    涂小林,陆承平。嗜水气单胞菌毒素的提纯及其特征。微生物学报,1992,32:432~438
    汤显春。沼泽绿牛蛙致病细菌的研究。水利渔业,2000,20(1):27~28
    陶林。牛蛙红腿病、烂皮病及并发症的防治。淡水渔业,1998,28(5):15
    王石泉。鳖外周血细胞显微形态及细胞化学。动物学杂志,1995,30(1):16~18
    王增福,谢红梅,张静。水产动物嗜水气单胞菌病研究进展。水利渔业,2002,22(2):18~19。
    吴淑琴,谢军。鳗鲡混合感染嗜水气单胞菌和迟缓爱德华氏菌的快速诊断。鱼类病害研究,1993,3:40~42
    夏春,马志宏。聚合酶链式反应(PCR)检测β-溶血素嗜水气单胞菌。水生生物学报,1999,3:288~289
    徐伯亥。鲢、鳙鱼流行性传染病的流行病学和细菌病因的初步研究。水产科技情报,1991,18(5):134~136
    徐伯亥。淡水养殖鱼类暴发性传染病致病菌的研究。水生生物学报,1993,17(3):259~266
    杨臣。甲鱼红脖子病研究。兽大学报,1988,3:250~254
    杨其升。动物微生物学。吉林:吉林科学技术出版社,1995:677~684
    杨先乐。鱼类免疫学研究进展。水产学报,1989,13(3):271-284
    杨正时。由气单胞菌的一个新种引起的一次暴发性鱼病的病原学研究。中国微生物学杂志,1990,2(1):46~51
    
    
    殷战,徐伯亥。鱼类细菌性疾病的研究。水生生物学报,1995,19(1):76~83
    张秋胜,陈昌福。异育银鲫对嗜水气单胞菌灭活菌苗的免疫应答。华中农业大学学报,2001,20(3):271~274
    余德海,吴淑琴。国外鱼类细菌病快速诊断方法。国外水产,1992,3:34~37
    张永安,孙宝剑,聂品。鱼类免疫组织和细胞的研究概况。水生生物学报,2000,24(6):648~654
    郑成昌。香鱼Aeromonas急性败血症。动物医学,1987,43:1~3
    中国水产科学研究院淡水渔业研究中心鱼病组。淡水养殖鱼类暴发性传染病防治初步研究。水产科技情报,1991,18(1):20~21
    朱兴国,范红结,陆承平等。嗜水气单胞菌J-1株粘附素及其受体分析。南京农业大学学报,2002,25(2):82~84
    朱越雄,曹广力。嗜水气单胞菌溶血毒素对草鱼血细胞的溶血作用。水产养殖,2000,6:27~30
    Alouf J E. Cell membrane and cytolytic bacterial toxins Cuatrexas P. The Specificity and Action of Animal, Bactrial and Plant Toxins. London: Published by Chapman and Hall, 1977, 221~270
    Asao T, Kinoshita Y, Kozaki S et al. Purification and some properties of Aeromonas hydrophila hemolysin. Immun, 1984, 46(1): 122~127
    Ascenio E Wadstrom T. Effect of Aeromonas protease on the binding of Aerornonas hydrophila strains to connective tissue proteins. Microbios, 1991, 66:27~37
    Atkinson H M, Trust T J. Hemagglutination properties and adherence ability of Aeromonas hydrophila in fish infection. Can J Mierobiol, 1980, 27:1114~1122
    Bernheimer A W, Avigad L S, Avigad G. Interactions between aerolysin, erythrocytes, and erythrocyte membranes. Infect Immun, 1975, 11: 1312~1329
    Caselita F H, Gunter R. Haemolysin studies mit Aeromonas stamnn. Zentralbi, Parasitenkol. Infekionskr. Hyg Abt Org, 1960, 180(1): 30~38.
    Cipriano R. Immunization of brook trout, salvilinrs fontinalis, against Aeromonas salmonicida: immunogenicity of virulent isolates and pretective of different antigen. Can J Fish Aquat Sci, 1982, 39: 218~221
    Daily O P, Joseph S W, Coolbaugh C C et al. Association of Aeromonas sobria with human infection. J Clin Microbiol, 1981, 13: 769~777
    Davina J H. Effect of Oral Administration of Vibrio Bacterin on the Intestine of Cyprinus Fish. Dev Comp Immunol, 1982, 2: 157-166.
    Dooley J S G, Trust T J. Surface protein composition of Aeromonas hydrophila strain virulent for fish: Identification of a surface array protein. J Bacteriology, 1988, 170(2): 499~506
    Ellis A E, Burrows A S, Stapleton K J. Lack of relationship between virulence of Aromonas salmonicida and the putative virulence factors: a-layer, extracellular proteases and extracellular haemolysins. J Fish Diseases, 1988, 11:309~323
    
    
    Evenberg D, Degraaff P, Lugtenberg B et al. Vaccinc-indreed protective immunity against Aeromonas salmonicida tested in experimental carp erythrodermatitis. J Fish Diseases, 1988, 11:337~350
    Garduno R A, Lee E J Y, Kay W W. S-layer-mediated association of Aeromonas salmonicida with murine microphages. Infect Immun, 1992, 60(10): 4373~4382
    Hastings T S, Ellis A E. The humoral immune response of rainbow trout, Salmo gairdneri Richardson, and Rabbits to Aeromonas salmonicida extracellular products. J Fish Diseases, 1988, 11: 147~160
    Hasting T S, Ellis A E. Detection of antibodies induced in rainbow trout by different Aeromonas salmonicida vaccine preparations. J Aquatie Animal Health, 1990, 2:135~140
    Hazen T C, Fliermans C B, Hirch R P et al. Prevalence and distribution of Aeromonas hydrophila in the Unite States. Applied and Enviromental Microbiology, 1978, 36:731~738
    Hokama A, Honma, Nakasone N. Pili of an Aeromonas hydrophila strain as a possible colonization factor. Microbiol Immun, 1990, 34(11): 901~915
    Honma Y, Makasone N. Pili of Aeromonas hydrophila: purification, characterization, and biological role. Microbiol Immun, 1990, 34(2): 83~98
    Janda J M, Oshiro L, Abbott S L et al. Virulence markers of Mesophilic Aeromonas: association of the auto agglugination Phenomenon with mice pathogenicity and the presence of a peripheral cell-associated layer. Infect Immun, 1987, 55(12): 3070~3077
    Kanai K, Wakabayshi H. Purification and some properties of protease from Aeromonas hydrophila. Bulletin of the Japanese Society for Scientific Fisheries, 1984, 50:1367~1374
    Kokka R P, Lindquist D, Abbott S L et al. Structure and pathogenic properties of Aeromonas schubertii. Infect Immun, 1992a, 60(5): 2057~2082
    Kokka R P, Vedros N A, Janda J M. Immunochemical analysis and possible biological role of an Aeromonas hydrophila surfure array protein in septicemia. J General Microbiology, 1992b, 138: 1229~1236
    KLLNER B, KOTTERBA G. Temperature dependent activation of leucocyte populations of rainbow trout, Oncorhynchus mykiss, after intraperitoneal immunization with Aeromonas salmonicida. Fish & Shellfish Immunology, 2002, 12: 35~48.
    Kostrzynska M, Dooley J S G, Shimojo T et al. Antigenic diversity of the S-layer protein from patheogenic strain of Aeromonas hydrophila and Aeromonas veronii biotype Sobria. J Bacteriology, 1992, 174(1): 40~47
    Kusuda R, Hamaguchi M. The efficacy of attenuated live bacterin of Pasteurella piscicida against pseudotuberculosis in yellowtail. Bull Eur Ass Fish Pathol, 1988, 8(3): 50~51
    Lamers, C H J et al. Bath vaccination and development of imminological memory in carp. In Fish Immuology, 1985: 231~237
    Lamers Ch J. The Reaction of the Immune System of Fish to Vaccination, Development of Immunological Memory in Carp, Cyprinus carpio L, Folloroiny Direct Immersion in Aeromomas hydrophilla Bacterin.
    
    J Fish Dis, 1985, 8: 253~262.
    Leung K Y, Low K W, Lam T J et aL Interation of the fish pathogen Aeromonas hydrophila with tilapia, Orecochromis ureus (Stetndachner), phagocytes. J Fish Diseases, 1995, 18:435~477
    Liunge A H, Wretlind B, Mollby R. Separation and Characterization of enterotoxin and two haemolysins from Aeromonas hydrophila. Acta Pathologica et Microbiologica Scandinavica, Section B. 1981, 89:389~397
    Lund V, Jorgensen T, Holm K O et al. Humoual immune response in Atlantic, Salmosalar, to cellular and extracellular antigens of Aeromonas salmonicida. J Fish Diseases, 1991, 14:443~452
    Macarthur J I, Thelma C, Fletcher. Fish Immunology. London: Academic Press, 1985: 29-45.
    Michel C B. Faivre B. Occurrence and significance of agglutinating antibodies in experimental furunculosis of rainbow trout, Salmo gairdneri, Richardson. J Fish Dis, 1982, 5:429~432
    Majeed K N, Macras I C. Effect of pH level on the growth and exotoxin production by Aeromonas at refrigeration temperature. Microbios, 1993, 73:281~288
    Mateos D. Influence of growth temperature on the production of extracellular virulence factors and pathogenicity of environmental and human strains of Aeromonas hydrophila. J Appl Microbiol, 1993, 74:111~118
    Murray R G E, Doolcy J S G, Whippcy P W et al. Structure of and S-layer on a pathogenic strain of Aeromonas hydrophila. J Bacteriology, 1988, 170(6): 2625~2630
    Nieto P T, Ellis A E. Characterization of Extracellular metollo and Serine proteases of Aeromonas hydrophila strain Bs1. J Gerneral Microbiology, 1986, 132:1975~1979
    Olivier G, Eaton C A, Campbell N. Interaction between Aeromonas salmonicida and peritoneal macrophage of brook trout (Salvelinus fontinalis). Vetetinary Immunology and Immunopathology, 1986, 12:223~234
    Olivier G, Evelyn T P, Lallier P. Immunogenicity of vaccine from a virulent and avirulent strains of Aeromonas salmonicida. J Fish Diseases, 1985, 8:43~45
    Olivier G, Lallier R, Lanviere S A. Toxigenic profile of Aeromonas hydrophila and Aeromonas sobria isolated from fish. Can J Microbiology, 1981, 27:330~333
    O'Neill J G. Fish Immunology. London: Academic Press, 1985:47-55
    Paula S J, Duffey P S, Abbott S L. Surface properties of autoagghutinating mesophilic aeromonads. Infect Immun, 1988, 56: 2658~2665
    Popoff, M. Genus Ⅲ Aeromonas. Krieg N R & J G Holted. Bergey's manual of systematic bacteriology(1). Williams Wikins Co. Baltimore, 1984, 545~548.
    Rigney M M, Zinlinsky J W, Roaf M A. Pathogenicity of Aeromonas hydrophila in red-leg discase of frogs. Current Microbiology, 1978, 1:175~179
    Rijkers G T. The Haemolftic Plaque Assay in Carp, Cyprinus carpio L. J Immune Meth, 1980, 33: 79-86.
    Roberson B S. Bacterial agglutination. In: J S Stolen, T C Fletcher, D P. Anderson(Editors),Techniques in Fish Immunology, SOS Publication, Fair Havan N J, 1990, 81~86
    
    
    Rodriguez L A, Ellis A F, Nieto T P. Effects of the acetylcholinesterase and Aeromonas hydrophila on the central nervous system of fish. Microbial Pathogenesis, 1992b, 13:17~24
    Rodriguez L A, Eilis A E, Nieto T P. Purification and characterization of an extracellular metalloprotease, serineprotease and haemolysin of Aeromonas hydrophila strain 32: All are lethal for fish. Microbial Pathogenesis, 1992a, 14:57~65
    Rodriguez L A, Femandez A L G, Nieto T P. Production of the lethal zcetylcholinesterase toxin by different Aeromonas hydrophila strain. J Fish Disease, 1993, 16:73~78
    Rose J M, Houston C M, Kurosky A. Bioactivity and immunological characterization of a choleratoxincross-reactive cytolytic enterotoxin from Aeromonas hydrophila. Infect Immun, 1989a, 57(4): 1170~1176
    Rose J M, Houston C M, Kurosky A. Purification and chemical characterization of a cholera toxin-reactive cytolytic enterotoxin produced by a human isolate of Aeromonas hydrophila. Infect Immun, 1989, 57(4): 1165~1169
    Sakai D K. Loss of virulence in a protease-deficient mutant of Aeromonas salmonicida. Infec Immun, 1985, 48: 146~152
    Salati F, Hamaguchi M, Kusuda R. Immune response of red breamto edwardsiella tarda antigens. Fish Pathology, 1987, 22(2): 93~98
    Santos Y, Touanzo E, Barja J L et al. Virulence properties and enterotoxin production of Aeromonas strains isolated from fish. Infect Immun, 1988, 56(12): 3285~3293
    Scholz D, Scharmann W, Blobel H. Leucocidic substance from Aeromonas hydrophila. Zentralbatt fur Bacteriologie. Microbiologie and Hygiene. 1974, 228:312~316
    Shich H S. Toxicity of Aeromonas hydrophila protease to Atlantic salmon. Microbios Letter, 1987, 36: 17~21
    Snieszko S F. History and present status of fish disease. J Wildlife Disease, 1975, 11: 446~459
    Thune R L, Graham T E, Riddle L M et al. Extracellular products and endotoxin from Aeromonas hydrophila: Effects in age-0 channel catfish. Transaction of the American Fisheries Society, 1982, 111:404~408
    Thune R L, Maureenc J. Aeromonas hydrophila β-haemolysin, purification and examination of its role in virulence in O-group channel catfish, Ictalurus punctatus(Rafinesque). J Fish Diseases, 1986, 9:55~61
    Torrs J L, Shariff M, Law A T. Identification and virulence screening of Aeromonas spp. Isolated from health and epizootic ulcerative syndrome(EUS)-infected fish. Hirand R, Hanyu L. The Second Asian Fisherise Forum. Manila: Asian fisheries Socetty, 1990, 663-666
    Westphal O, Jann K. Bacterial lipopolysaccharides: extraction with phenol-water and further application of the procedure. Methods in Carbohydrate Chemistry 5:83~96
    Yadav M, Indira G, Ansary A et al. Cytotoxin claboration by Aeromonas hydrophila isolated from fish with epizootic ulcerative syndrome. J Fish Diseases, 1992, 15:183~189