海洋立管涡激振动抑制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文跟踪了国内外有关圆柱体及海洋立管涡激振动问题的最新研究动向,对本领域内的研究方法和进展进行了综述和分析。以深海立管为研究对象,介绍了涡激振动的有关理论、数值模拟方法和实验方法,对均匀流中圆柱体的涡激振动进行数值模拟,探索了动波壁方法对圆柱体涡激振动的抑制作用,对深海柔性立管在不同均匀来流速度下的横向位移响应进行了时域计算,分析了立管的模态激发过程,并将动波壁方法应用于柔性立管的涡激振动抑制研究工作。论文的具体工作和主要研究成果如下:
     1)较为全面地回顾和分析了国内外研究海洋立管涡激振动问题的动态和进展,系统介绍了涡激振动问题研究过程中所涉及的流体相关参数、结构物相关参数和耦合运动相关参数等;
     2)针对平面内两自由度弹性支撑圆柱体的涡激振动建立了圆柱体的力学模型,介绍了流场的数值求解方法和圆柱体的动力响应求解方法等,并对圆柱体与流场的耦合求解过程用流程图进行了描述。
     3)采用动波壁技术对圆柱体的涡激振动进行抑制效果研究,发现圆柱尾涡的发放与壁面波动方向相关,圆柱涡激振动位移响应受壁面波动频率影响,雷诺数固定不同约化速度弹性支撑圆柱的横向位移在适当的壁面波动频率下均能降低到0.05D以下,涡激振动抑制效果显著,壁面波动能够消除圆柱尾部流场的涡街,并使流场内涡量影响区域集中在纵向对称线附近较窄区域。
     4)详细介绍了海洋立管时域内动力响应的有限元方法并对Newmark-β方法编制了C语言程序,对其计算的精确性采用算例进行了验证。
     5)采用切片法对海洋立管因涡激振动而产生的柔性变形进行数值计算,分析了立管在均匀来流下的模态演化过程,考察了通过表面覆盖动波壁的方法控制细长立管的涡激振动,发现动波壁的设置能够极大限度地降低立管的横向位移响应,动波壁的覆盖率和覆盖方式对立管的横向位移响应产生明显影响。
In this paper, the state of the art of study on the vortex-induced vibration of pipe riser is summarized. Research methods and progress used in VIV analysis are introduced. Empirical theory total with numerical simulation methods and experimental methods about VIV is introduced in this paper. Vortex-induced vibration phenomenon of cylinder which is placed in a uniform flow is simulated by software FLUENT, explorative study about the inhibitory effect of VIV for the use of wavy wall on the right half surface of cylinder which is free in XY plane is made, transverse displacement response of deep-sea flexible pipe riser with different in-flow speed is calculated in time domain, the modal stimulation process of pipe riser is analyzed, and wavy wall is used on deep-sea flexible pipe riser to suppress the VIV. The main work and important conclusions of this paper are listed as follows:
     1) A comprehensive review and analysis about the advance of VIV research at home and abroad is performed. Correlation parameters of fluid, structure and coupling movement of fluid and structure involved in the study of VIV are systematically introduced.
     2) Mechanical modal of cylinder which is elastic supported within XY plane and free in X and Y directions is established. Methods used to calculate flow field and the dynamic response are introduced. Coupling process of VIV of the cylinder is described by flowcharts.
     3) Study about the inhibitory effect of VIV for the use of wavy wall on the right half surface of cylinder, it’s found that tail vortex of cylinder is related with the wall fluctuated direction, the displacement response of cylinder is influenced by the frequency of wall fluctuation, and it can be reduced down to 0.05D for cylinder with different reduced velocities, the wavy wall could be used to eliminate vortex in tail flow field, and vortex amassed in the narrow area that near symmetry line of X direction flow field.
     4) The finite element method used for the solution of dynamic response of deep-sea pipe riser is introduced. A code for Newmark-βmethod is programed using C language and is verified the calculation accuracy by numerical example.
     5) The flexible deformation of pipe riser caused by VIV is simulated with the method of strip technique. The process of modal evolution of pipe riser in the uniform current is analyzed . The results show that transverse displacement response of riser with wavy wall is greatly minimized and the coverage rate and arrangement of wavy wall have a great influence on the displacement response of riser.
引文
[1]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海:上海交通大学,2006.
    [2] G. Birkhoff, Zarantanello. Jets, Wakes and Cavities[M]. Academic Press, New York, 1957.
    [3] R.E.D. Bishop, A.Y. Hassan. The life and drag forces on a circular cylinder in a flowing field[A]. Proc. Roy. Soc. Ser. A, 1964,277:51-75.
    [4] R.T. Hartlen, I.G. Currie. Lift oscillation model for vortex-induced vibration[J]. Engineering Mechanics. 1970, 96:577-591.
    [5] W. Iwan, R. Blevins. A model for vortex-induced oscillations of structures[J]. Journal of Applied Mechanics, 1974, 41(3):581-586.
    [6] Vandiver.J.K, Allen.D, Li.L. The Occurrence of Lock-In Under Highly Sheared Conditions [J]. Journal of Fluids and Structures, 1996, 10:555-561.
    [7] W.D. Iwan. The vortex induced oscillation of non-uniform structure systems[J]. Journal of Sound and Vibration, 1981,79(2):291-301.
    [8] W.J. Kim, N.C. Perkins. Two-dimensional vortex induced vibration of cable suspensions[J]. Fluids Struct , 2002,16: 229–245.
    [9] M.L. Facchinetti , de Langre E , F. Biolley. Vortex shedding modeling using diffusive van der Pol oscillators[J]. Comptes Rendus Mecanique, 2002,330 (7):451-456.
    [10] M.L. Facchinetti, de Langre E, F.Biolley. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19:123-140.
    [11]郭海燕,傅强,娄敏.海洋输液立管涡激振动响应及其疲劳寿命研究[J].工程力学,2005,22(4):220-224.
    [12]宋芳,林黎明,凌国灿.采用新的结构——尾流反作用力耦合模型分析圆柱结构涡激共振[J].水动力学研究与进展,2009,24(5):596-603.
    [13]唐国强,滕斌,吕林,勾莹,张建侨,宋吉宁.深海柔性立管涡激振动经验模型建立及应用[J].中国海洋平台,2010,25(3):12-16.
    [14]秦延,王世澎.海洋立管涡激振动计算方法进展[J].中国海洋平台, 2008,23(4):14-17.
    [15]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学, 2006.
    [16]沙勇.悬跨海底关系动力相应试验与数值研究[D].大连:大连理工大学, 2007.
    [17] Minhyung Lee, Sung Yeou Lee. Vortex-Induced Vibrations of a Circular Cylinder at Low Reynolds Numbers[J]. KSME International Journal, 2003,17:1628-1637.
    [18] F.J. Huarte, P.W. Bearmana, J.R. Chaplin. On the force distribution along the axis of a ?exiblecircular cylinder undergoing multi-mode vortex-induced vibrations[J]. Journal of Fluids and Structures,2006,22:897-903.
    [19] R.Violette, E.de Lange, J.Szydlowski. Computation of vortex-induced vibrations of long structures using a wake oscillator model:Comparison with DNS and experiments[J]. Computers and Structures, 2006:1-8.
    [20] .D. Su, Y. Liu, H.J. Zhang, D.F. Zhang. Force Control of a Square Cylinder in Cross Flow [C]. Proceedings of the Fifth International Conference on Fluid Mechanics, Shanghai, 2007.
    [21]葛斐,龙旭,王雷,洪友士.大长细比圆柱体顺流向与横向耦合涡激振动的研究[J].中国科学,2009,39(5):752-759.
    [22] GE Fei, LONG Xu, WANG Lei, HONG YouShi. Flow-induced vibrations of long circular cylinders modeled by coupled nonlinear oscillators[J]. Mechanics & Astronomy, 2009,52(7):1086-1093.
    [23] Gongwei Yan, Feng Xu, Hang Zhu Jinping Ou. Dynamic Response Analysis of TLP’s Tendon in Current Loads[J].Computational Structural Engineering, 2009,569-575.
    [24]李小超,王永学,李广伟.海底悬跨管线涡激振动实验方法探讨[J].实验力学,2010,25(4):476-489.
    [25]王庆丰,谷家扬,蒋曙光.三类边界条件下隔水套管涡激非线性振动的比较分析[J].江苏科技大学学报.2009,23(4):287-292.
    [26]周巍伟,曹静,周力,宗智.深海悬链线输油立管涡激疲劳计算分析[J].江苏科技大学学报.2010,24(2):112-115.
    [27]雷松,张文首,赵岩,岳前进. FDPSO立管涡激振动响应分析[J].工程力学,2010,27增刊1:294-298.
    [28] Muhamad H Kamarudin, Krish P Thiagarajan. Investigation of fluid-structure interactions on controlled oscillations of a cylinder at moderate Reynolds number[C]. OMAE, ShangHai,2010.
    [29]郭海燕,娄敏,董晓林.海洋立管涡激振动动力海性及动力响应研究[A].中国深水油气开发工程高技术论坛论文集, 2005.
    [30]郭海燕,董文乙,娄敏.海中输流立管涡激振动试验研究及疲劳寿命分析[J].中国海洋大学学报, 2008,38(3):503-507.
    [31]孙友义,陈国明,畅元江.深水铝合金隔水管涡激振动疲劳海性[J].中国石油大学学报,2008,32(1):100-104.
    [32] G.S. Baarholm, C.M. Larsen, H. Lie. On fatigue damage accumulation from in-line and cross-?ow vortex-induced vibrations on risers[J]. Journal of Fluids and Structures, 2006,22:109-127.
    [33] Mohammad Iranpour, Farid Taheri, J.Kim Vandiver. Structural life assessment of oil and gas risers under vortex-induced vibration[J]. Marine Structures, 2008, 21:353-373.
    [34] H. Mukundan, Y. Modarres-Sadeghi, J.M. Dahl, F.S. Hover, M.S.Triantafyllou. Monitoring VIV fatigue damage on marine risers[J]. Journal of Fluids and Structures,2009,25:617-628.
    [35]玄金,黄二平,曹静.深水顶张力立管涡激振动疲劳损伤分析[J].船海工程,2009,38(4):140-143.
    [36]王志国,陈启富,李二扬.波浪流中圆柱杆的涡街发放和涡激振动[J].哈尔滨工程大学学报,1988,03.
    [37] Feng C.C. The measurements of vortex-induced effects in ?ow past a stationary and oscillating circular and D-section cylinders. Master’s thesis, University of British Columbia, Vancouver, Canada,1968.
    [38] Khalak, A., Williamson, C.H.K.. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996, 10:455-472.
    [39] Khalak A., Williamson C.H.K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999,13:813-851.
    [40] Govardhan, R., Williamson, C.H.K. Modes of vortex formation and frequency response for a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000:85-130.
    [41] Govardhan, R., Williamson, C.H.K. Resonance forever: existence of a critical mass and an I nfinite regime of synchronization in vortex-induced vibration[J]. Journal of Fluid Mechanics, 2002:147-166.
    [42] Huse.E, Kleiven.G, Nielsen.F.G. Large Scale Model Testing of Deep Sea Risers [C]. Proc. of the OTC, Houston. USA, 1998, Paper No. OTC 8701.
    [43] N.R.T. Williamson, K.S. Thethi. Stride JIP: Steel Risers in Deepwater Environments-Progress Summary [C]. Proc. of the OTC, Houston. USA, 1999, Paper No. OTC 10974.
    [44] A. Okajima, T. Nagamori, F. Matsinaga, T. Kiwata. Some experiments on flow-induced vibration of a circular cylinder with surface roughness[J]. Journal of Fluids and Structures,1999,13:853-864.
    [45] N. Jauvtis, C. H. K. Williamson. The effect of two degrees of freedom on vortex-induced vibration at low mass and dampling[J]. Journal of Fluid Mechanics, 2004:23-62.
    [46] Blackburn, H., Govardhan, R. and Williamson, C.H.K. A complementary numerical and physical investigation of vortex-induced vibration[J]. Journal of Fluids and Structures , 2001,15:481-488.
    [47] Hong, S., Choi Y.R., Park J.B., Park Y.K. ,Kim Y.K. Experimental study on the vortex-induced vibration of towed pipes[J]. Journal of Sound and Vibration, 2002,24(9):649-661.
    [48] G.R.S.Assi, J.R.Meneghini, J.A.P.Aranha, P.W.Bearman, E.Casaprima. Experimental investigation of ?ow-induced vibration interference between two circular cylinders [J]. Journal of Fluids and Structures,2006,22:819-827.
    [49] Yoshiki Nishi, Kentaroh Kokubun, Kunihiro Hoshino, Shotaro Uto. Quasisteady theory for the hydrodynamic forces on a circular cylinder undergoing vortex-induced vibration[J]. J Mar Sci Technol,2009,14:285-295.
    [50] Bing Yanga, Fu-Ping Gao, Dong-Sheng Jeng, Ying-Xiang Wu. Experimental study ofvortex-induced vibrations of a pipeline near an erodible sandy seabed[J]. Ocean Engineering,2008,35:301-309.
    [51] Bing Yang, Fuping Gao, Dong-Sheng Jeng, Yingxiang Wu. Experimental study of vortex-induced vibrations of a cylinder near a rigid plane boundary in steady ?ow[J].The Chinese Society of Theoretical and Applied Mechanics,2009,25:51-63.
    [52]沙勇,王永学,王国玉,李广伟.冲蚀地形上悬跨海底管线涡激振动试验研究[J].应用力学学报,2009,26(2):308-311.
    [53]郭海燕,王树青,刘德辅.海洋环境荷载下输液立管的静、动力海性研究[J].青岛海洋大学学报, 2001,31(4):605-611.
    [54]董晓林,郭海燕.海洋立管考虑内流的涡激振动实验研究.
    [55]李小超,王永学.基于频率响应法海底悬跨管涡激振动分析[J].海洋工程,2009,27(4):32-37.
    [56]吴浩,孙大鹏.深海立管涡激振动被动抑制主主的研究[J].中国海洋平台.2009,24(4):1-8.
    [57]任大朋.深水立管涡激振动的耦合模拟及抑制方法研究[D].大连:大连理工大学,2007.
    [58]娄敏,郭海燕,董文乙.敲击对海洋立管涡激振动抑制作用的试验研究[J].水动力学研究与进展,2007,22(4):508-511.
    [59]沙勇,王永学.稳定流与三翼圆柱的流固耦合研究[J].哈尔滨工程大学学报,2007,28(4):375-380.
    [60]沈庆龙.国外某桥风致振动的抑制主主[J].世界桥梁,2008,1:11-13.
    [61]杨烁,缪泉明,匡晓峰. Spar平台螺旋侧板绕流场的CFD分析[C].第八届全国水动力学学术会议,2008,719-725.
    [62]吴锤结,王亮.消除圆柱绕流振荡尾迹的动波浪壁流动控制[C].应用力学进展.2004,368-377.
    [63]孙友义,陈国明,畅元江,许亮斌.基于涡激抑制的隔水管浮力块分布方案优化[J].中国石油大学学报,2009,25(3):123-127.
    [64]宋吉宁,吕林,张建桥等.三根附属控制杆对海洋立管涡激振动抑制作用实验研究[J].海洋工程,2009,27(3):23-29.
    [65] Jia song Wang, Hua Liu, Fei Gu, Peng liang Zhao. Numerical Simulation of Flow Control on Marine Riser With Attached Splitter Plate[C].OMAE,2010.
    [66]徐枫.结构流固耦合振动与流动控制的数值模拟[D].哈尔滨:哈尔滨工业大学,2009.
    [67] H. Baek, G.E. Karniadakis. Suppressing vortex-induced vibrations via passive means[J]. Journal of Fluids and Structures,2009,25:848-866.
    [68]邱吉宝,向树红,张正平.计算结构动力学[M].合肥:中国科技大学出版社,2009.
    [69]姚熊亮.舰船结构振动冲击与噪声[M].北京:国防工业出版社,2007.
    [70]陈正寿.柔性管涡激振动的模型实验及数值模拟研究[D].青岛:中国海洋大学,2009.
    [71]王能超.数值分析简明教程[M].北京:高等教育出版社,2003.
    [72] Moe G, Wu Z J. The lift force on a cylinder vibrating in a current [J]. ASME Journal of OffshoreMechanics and Arctic Engineering. 1990,112:297-303.
    [73] Sanchis A, S?levik G, Grue J. Two-degree-of-freedom vortex-induced vibrations of a spring-mounted rigid cylinder with low mass ratio [J]. Journal of Fluids and Structures. 2008, 4:907-919.
    [74] XU Jun-ling, ZHU Ren-qing. Numerical simulation of VIV for an elastic cylinder mounted on the spring supports with low mass-ratio[J]. Journal of Marine Science and Application.2009, 8:237-245.
    [75] Williamson C.H.K. Vortex dynamics in the cylinder wake [J]. Annual Review of Fluid Mechanics, 1996,28:477-539.
    [76]黄智勇.柔性立管涡激振动时域响应分析[D].上海:上海交通大学,2008.
    [77] J.R.Chaplin, P.W.Bearman, Y.Cheng. Blind predictions of laboratory measurements of voetex-induced vibrations of a tension riser[J]. Journal of Fluids and Structures,2005,21:25-40.
    [78] R.H.J. Willden, J.M.R. Graham. Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile [J]. European Journal of Mechanics,2004,23:209-218.
    [79] K. W. Schulz, T.S. Meling. 2004. Multi-strip numerical analysis for flexible riser response[C]. OMAE,2004.
    [80]陈伟,宗智.立管涡激振动的离散涡数值模拟[J].中国海洋平台,2010,25(1):26-31.
    [81]刘延柱,陈文良,陈立群.振动力学[M].北京:高等教育出版社,1998.
    [82]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2005.
    [83] XUE Hong-xiang, TANG Wen-yong, ZHANG Sheng-kun.Simplified Model for Evaluation of VIV-induced Fatigue Damage of Deepwater Marine Risers[J]. Journal of Shanghai Jiaotong University, 2009,14(4):435-442.