降钙素基因相关肽基因导入对脑死亡大鼠的肺保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑死亡是指包括脑干在内的全脑机能丧失的不可逆性病理状态,脑死亡可导致肺损伤,肺损伤引起的氧合不足将直接影响到其他器官的功能和保护,探讨脑死亡肺损伤的机制,对预防和治疗脑死亡肺损伤具有重要意义。
     降钙素基因相关肽(Calcitonin gene-related peptide, CGRP)广泛存在于神经系统、血管、肺脏等多种组织中,是一种具有血管舒张、心肌正性变力变时、肺保护、脑保护以及免疫调节作用等多种生物学功能的多肽。研究发现颅脑损伤后机体内CGRP含量发生改变,并且和颅脑损伤的严重程度相关,但脑死亡后CGRP的含量改变和脑死亡肺损伤发生发展的关系尚不明确。
     基于“脑死亡后机体CGRP含量发生改变,进而参与了脑死亡后肺损伤的发生和发展”的假设。本实验拟首先采用缓慢间断颅内加压法建立大鼠脑死亡模型,然后采用放射免疫法,RT-PCR,免疫印迹(Western blot)等实验方法观察脑死亡不同时间点大鼠血浆CGRP及内皮素-1(Endothelin-1, ET-1)含量变化及肺组织中CGRP的mRNA水平及蛋白表达,分析其与脑死亡后肺损伤的关系,探讨CGRP在脑死亡后的变化规律及其对脑死亡后肺损伤的影响与机制,为脑死亡后肺损伤的预防和治疗提供思路。
     进而在建立脑死亡模型时静脉给予外源性CGRP,采用放射免疫法,酶联免疫吸附实验(Enzyme-linked Immunosorbent Assay, ELISA), RT-PCR, Western blot,免疫组织化学等实验方法观察CGRP对脑死亡大鼠血浆肿瘤坏死因子-α(Tumor necrosis factor-α, TNF-α)、白细胞介素-1β(Interleukin-1β, IL-1β)、白细胞介素-6(Interleukine-6, IL-6)等炎症因子水平及肺组织中丙二醛(Malondialdehyde, MDA)含量和超氧化物歧化酶(Superoxide Dismutase, SOD)活性的影响及对肺组织γ-谷氨酰半胱氨酸合成酶(y-glutamylcysteine Synthetase,γ-GCS)、水通道蛋白-1 (Aquaporin Protein-1, AQP-1)、CGRP的mRNA水平及蛋白表达的影响。同时观察静脉给予外源性CGRP后对肺组织形态的影响,探讨CGRP的肺保护作用及其可能机制。
     因为外源性CGRP在体内迅速灭活,代谢快、作用时间短,而构建CGRP重组腺病毒载体气管导入具有不整合入宿主细胞基因组,安全方便,作用时间长等优点,理论上可对脑死亡肺损伤起到更好的保护作用。所以,拟在以上实验的基础上,通过气管导入带有增强型绿色荧光蛋白标记的降钙素基因相关肽重组腺病毒载体(Ad5-CGRP-EGFP),然后观察CGRP基因转染后大鼠肺组织CGRP mRNA水平和蛋白表达水平及CGRP基因治疗对肺组织γ-GCS, AQP-1等mRNA水平和蛋白表达的影响,对肺组织MDA含量、SOD活力,肺水含量、肺组织结构的影响,以及对血浆TNF-α、IL-1β、IL-6含量的影响,并探讨CGRP基因治疗在脑死亡大鼠肺保护中的作用及机制。
     本研究拟观察脑死亡后CGRP的变化规律及其和脑死亡肺损伤的关系,并通过CGRP基因导入观察CGRP基因治疗对脑死亡大鼠的肺保护作用并探讨其可能机制,为脑死亡肺损伤的预防及基因靶向治疗提供理论依据。
     本研究共分以下3个部分。
     第一部分脑死亡大鼠CGRP表达变化与脑死亡肺损伤
     1方法
     1.1健康Wistar大鼠20只,雌雄不限,体重250-300g,SPF级,将动物随机分为2组,即对照组(A组)、脑死亡组(B组),每组10只。B组麻醉后行股动脉股静脉插管、气管插管及颅骨钻孔置管,硬脑膜外导管颅内缓慢加压建立脑死亡模型;A组麻醉后操作同B组,但不行硬脑膜外导管颅内加压。分别在麻醉后15min(T0)、脑死亡即刻(T1)、脑死亡2h时点(T2)、脑死亡6h时点(T3)、脑死亡12h时点(T4)留取血液标本并于脑死亡12h时点留取肺组织标本。
     1.2采用放射免疫法分别检测不同时点血浆CGRP、ET-1含量变化。脑死亡12h时点留取肺组织,测定肺系数和肺水含量,苏木素-伊红(HE)染色观察肺脏组织结构变化。RT-PCR方法检测肺组织中CGRP mRNA; Western blot方法测肺组织CGRP蛋白。
     1.3统计学处理:所有数值变异均采用均数±标准差(X±s)表示,应用SPSS 16.0统计分析软件,采用重复测量数据的方差分析、单因素方差分析等分析方法进行统计学处理,显著性检验水准取α=0.05。
     2结果
     2.1血压和心率变化:A组在整个实验过程中血压和心率无明显变化(P>0.05);B组在颅内加压过程中血压增高,心率先慢后快,B组血压在T1及以后各时点较T0时点低,B组心率在T1及以后各时点较组内T0时点快,(P<0.05)。B组在峰值时点血压增高、心率增快,在T1及以后各时点B组血压较A组低,心率较A组快,组间比较差异有统计学意义(P<0.05)。
     2.2血浆CGRP变化:A组在T1时点CGRP含量较TO时点增高,在T2时点CGRP含量较脑死亡时点降低(P<0.05),T2时点以后CGRP含量恢复正常;B组在T1时点CGRP含量较T0时点增高,T1后各时点CGRP含量与T0时点比较均降低,T4时点较T3时点CGRP含量有所回升,组内比较差异有统计学意义(P<0.05)。B组T1时点CGRP含量较A组增高,T1后各时点CGRP含量均较A组降低,组间比较差异有统计学意义(P<0.05)。
     2.3血浆ET-1变化:A组在T1时点及T2、T3时点ET-1含量较TO时点增高(P<0.05),T4时点恢复正常;B组T1后各时点ET-1含量与T0时点比较均增高,组内比较差异有统计学意义(P<0.05)。B组T1后各时点ET-1含量均较A组增高,组间比较差异有统计学意义(P<0.05)。
     2.4肺组织CGRP mRNA水平比较B组较A组升高,肺组织CGRP蛋白表达水平B组较A组降低,组间比较差异有统计学意义(P<0.05)。
     2.5脑死亡大鼠肺组织常规结构变化:HE染色结果显示A组肺脏组织结构基本正常:B组出现损伤性改变。
     2.6肺系数及肺水含量B组均较A组增高,组间比较差异有统计学意义(P<0.05)。
     第二部分外源性CGRP对脑死亡大鼠肺损伤的影响及其机制
     1方法
     1.1健康Wistar大鼠75只,雌雄不限,体重250-300g,SPF级,将动物随机分为三组,每组25只,即对照组(A组)、脑死亡组(B组)、CGRP干预组(C组)。B、C组建立脑死亡模型;A组除不行硬脑膜外导管加压外,其余处理同脑死亡组;C组为CGRP干预的脑死亡组,于脑死亡模型建立成功后经静脉用微量输注泵给予CGRP3μg/kg,随后给与CGRP 6μg/kg持续输注维持12h。分别于麻醉后15min(TO)、脑死亡即刻(T1)、脑死亡2h时点(T2)、脑死亡6h时点(T3)、脑死亡12h时点(T4)每组随机选5只共15只大鼠抽取血液标本并取肺标本。
     1.2采用ELISA法测定各时点血浆TNF-α、IL-1β、IL-6含量;采用放射免疫法分别检测各时点血浆CGRP、ET-1含量变化;T4时点留取肺组织,硫代巴比妥钠法测定肺匀浆中MDA含量,黄嘌呤氧化酶法测定肺组织中SOD活性,分析天平测定肺系数和肺水含量,HE染色观察肺脏组织结构变化;RT-PCR方法检测T1、T3、T4时点肺组织中γ-GCS、AQP-1、CGRPmRNA; Western blot方法测T1、T3、T4时点肺组织γ-GCS、AQP-1、CGRP蛋白表达。
     1.3统计学处理:所有数值变异均采用均数±标准差(X±s)表示,应用SPSS 16.0统计分析软件,采用重复测量数据方差分析、单因素方差分析等进行统计学处理,显著性检验水准取α=0.05。
     2结果
     2.1血压和心率变化:A组在整个实验过程中血压和心率无明显变化(P<0.05);B组、C组在颅内加压过程中血压增高,心率增快,B组、C组血压在T1及以后各时点较T0时点低,B组、C组心率在T1及以后各时点较组内TO时点快,(P<0.05)。B组、C组在峰值时点血压增高、心率增快,在T1及以后各时点B组、C组血压较A组低,心率较A组快,组间比较差异有统计学意义(P<0.05)。
     2.2血浆TNF-α变化:A组各时点TNF-α水平差异无统计学意义;B组、C组TNF-α水平自T2开始逐渐升高,每后一时间点与前一时间点相比差异有统计学意义(P<0.05)。TNF-α水平自T2时点开始,C组高于A组,B组高于C组和A组,组间比较差异有统计学意义(P<0.05)。
     2.3血浆IL-1p变化:A组各时点IL-1p水平差异无统计学意义;B组、C组IL-1p水平自T2开始逐渐升高,每后一时间点与前一时间点相比差异有统计学意义(P<0.05)。IL-18水平自T2时点开始,C组高于A组,B组高于C组和A组,组间比较差异有统计学意义(P<0.05)。
     2.4血浆IL-6变化:A组IL-6水平T2、T3、T4时点升高与T0、T1时间点比较差异有统计学意义(P<0.05);B组、C组IL-6水平自T2开始逐渐升高,每后一时间点与前一时间点相比差异有统计学意义(P<0.05)。IL-6水平自T2时点开始,C组高于A组,B组高于C组和A组,组间比较差异有统计学意义(P<0.05)。
     2.5血浆CGRP变化:A组在T1时点CGRP含量较T0时点增高,在T2时点CGRP含量较T1时点降低,组内比较差异有统计学意义(P<0.05),T2时点以后CGRP含量恢复正常;B组CGRP含量在T1时点较T0时点增高,T1后各时点与TO时点比较均降低,组内比较差异有统计学意义(P<0.05);C组CGRP含量在T1后各时点与T0时点比较均增高,组内比较差异有统计学意义(P<0.05)。B组CGRP含量T1时点较A组增高,T2后各时点均较A组降低,C组CGRP含量T1以后各时点较A组增高,T2后各时点均较B组增高,组间比较差异有统计学意义(P<0.05)。
     2.6血浆ET-1变化:A组ET-1含量在T1时点及T2时点较T0时点增高(P<0.05),T3时点以后恢复正常,B组ET-1含量T1后各时点与T0时点比较均增高,C组ET-1含量T1后各时点与TO时点比较均增高,组内比较差异有统计学意义(P<0.05)。B组、C组T1后各时点ET-1含量均较A组增高, C组T2后各时点ET-1含量均较B组减低,组间比较差异有统计学意义(P<0.05)。
     2.7肺组织MDA含量及SOD活性:肺组织中MDA含量B组高于A组及C组,C组高于A组(P<0.05),肺组织SOD活性B组低于A组及C组,组间比较差异有统计学意义(P<0.05)。
     2.8肺组织γ-GCS mRNA水平B组、C组均较A组升高,C组较B组升高(P<0.05)。肺组织AQP-1 mRNA水平B组较A组降低,C组较B组、A组增高(P<0.05)。CGRP mRNA水平B组较A组升高,C组较A组降低(P<0.05)。肺组织γ-GCS、AQP-1、CGRP蛋白水平均B组较A组降低,C组较B组、A组增高,组间比较差异有统计学意义(P<0.05)。
     2.9脑死亡大鼠肺组织常规结构变化:HE染色结果显示A组肺脏组织结构基本正常;B组出现损伤性改变,C组出现损伤性改变较组B减轻。
     2.10肺系数及肺水含量B组均较A组增高,C组肺系数及肺水含量也较A组增高,但较B组降低,3组间比较差异有统计学意义(P<0.05)。
     第三部分CGRP基因导入对脑死亡大鼠肺损伤的影响
     1方法
     1.1 Wistar大鼠50只,雌雄不限,体重250-300g,SPF级,随机分为5组,每组10只,即对照组(A组)、脑死亡组(B组)、脑死亡CGRP干预组(C组)、脑死亡空载体导入组(D组)、脑死亡CGRP基因治疗组(E组)。B组、C组、D组、E组均建立脑死亡模型;A组开颅等处理均同脑死亡组,但不行硬脑膜外导管加压。C组为CGRP干预的脑死亡组,脑死亡模型建立后经静脉用微量输注泵给予CGRP3μg/kg,随后给与CGRP 6μg/kg持续输注维持12h;D组于脑死亡模型建立后微量输注泵给予CGRP3μg/kg,同时通过气管导入空载体;E组于脑死亡模型建立后微量输注泵给予CGRP3μg/kg同时通过气管导入携带增强型绿色荧光蛋白标记的降钙素基因相关肽重组腺病毒载体(Ad5-CGRP-EGFP)。分别在麻醉后15min(T0)、脑死亡12h时点(T1)抽取血液标本,在脑死亡12h或对照组12h时点取材肺组织标本。
     1.2采用ELISA方法测定各时点血浆TNF-αIL-1β, IL-6水平;采用放射免疫法分别检测各时点血浆CGRP、ET-1含量;T1时点留取肺组织,荧光显微镜下检测基因转染情况,硫代巴比妥钠法测定肺匀浆中MDA含量,黄嘌呤氧化酶法测定肺组织中SOD活性;分析天平测定肺系数和肺水含量,HE染色观察肺脏组织结构变化,免疫组化检测肺组织γ-GCS, AQP-1蛋白表达;RT-PCR方法检测肺组织中γ-GCS、AQP-1 CGRP mRNA; Western blot方法测肺组织γ-GCS、AQP-1、CGRP蛋白表达。
     1.3统计学处理:所有数值变异均采用均数±标准差(X±s)表示,应用SPSS 16.0统计分析软件,采用重复测量数据的方差分析、单因素方差分析等统计学方法进行统计学处理,显著性检验水准取a=0.05。
     2结果
     2.1 A组、B组、C组未见绿色荧光反应,D组、E组肺组织标本在荧光显微镜下呈较强的绿色荧光反应,证明基因转染成功。
     2.2血压和心率变化:A组在整个实验过程中血压和心率无明显变化(P>0.05);B组、C组、D组、E组在颅内加压过程中血压增高,心率增快,B组、C组、D组、E组血压在脑死亡时点及以后各时点较TO时点低,B组、C组、D组、E组心率在脑死亡及以后各时点较组内TO时点快,(P<0.05)。B组、C组、D组、E组在峰值时点血压增高、心率增快,在脑死亡时点及以后各时点B组、C组、D组、E组血压较A组低,心率较A组快,组间比较差异有统计学意义(P<0.05)。
     2.3血浆TNF-α、IL-1β、IL-6水平:T0时点各组TNF-α、IL-1β、IL-6水平差异无统计学意义。T1时点TNF-α、IL-1β、IL-6水平B组、D组高于E组、C组和A组,E组、C组高于A组,C组高于E组,组间比较差异有统计学意义(P<0.05)。
     2.4血浆CGRP含量:T0时点各组血浆CGRP水平差异无统计学意义。T1时点E组血浆CGRP水平高于D组、C组、B组和A组,C组高于D组、B组和A组,A组高于D组和B组,组间比较差异有统计学意义(P<0.05)。
     2.5血浆ET-1含量:T0时点各组血浆ET-1水平差异无统计学意义。T1时点E组低于D组、C组、B组和A组,C组低于D组、B组和A组,A组低于D组和B组,组间比较差异有统计学意义(P<0.05);
     2.6肺组织MDA含量及SOD活性:肺组织中MDA含量B组、D组高于A组、C组和E组,C组高于E组和A组,E组高于A组(P<0.05),肺组织SOD活性C组、E组高于A组、B组和D组,E组高于C组(P<0.05)。
     2.7肺组织γ-GCS mRNA水平B组、C组、D组、E组均较A组升高,C组较B组、D组升高,E组较C组升高(P<0.05)。肺组织AQP-1 mRNA水平B组、D组较A组低,C组、E组较A组高,E组较C组高(P<0.05)。肺组织CGRP mRNA水平B组、D组、E组较A组升高,C组较A组降低,E组较B组、D组高(P<0.05)。肺组织γ-GCS、AQP-1 CGRP蛋白表达水平均B组、D组较A组降低,C组、E组较A组高,E组较C组高,组间比较差异有统计学意义(P<0.05)。
     2.8肺组织γ-GCS、AQP-1免疫组化结果:γ-GCS、AQP-1蛋白表达B组、D组均较E组、C组和A组降低,E组、C组较A组增高,E组较C组增高,组间比较差异有统计学意义(P<0.05)。
     2.9脑死亡大鼠肺组织常规结构变化:HE染色结果显示A组肺脏组织结构基本正常;B组、D组出现损伤性改变,C组出现损伤性改变较B组、D组减轻,E组损伤性改变较C组轻。
     2.10肺系数及肺水含量:B组、D组均较E组、C组和A组高,E组、C组较A组高,E组较C组低,组间比较差异有统计学意义(P<0.05)。
     结论
     1、脑死亡大鼠血浆及肺组织CGRP含量下降,脑死亡后肺损伤和机体CGRP水平下降,TNF-α、IL-1β、IL-6等促炎因的释放增加,氧化应激增强,AQP-1表达下降等有关。
     2、外源性CGRP对脑死亡大鼠肺组织具有保护作用。
     3、CGRP基因转染脑死亡大鼠较静脉应用外源性CGRP血浆TNF-αIL-1βIL-6含量下降,肺组织MDA水平下降、SOD活力增高、AQP-1,γ-GCSmRNA和蛋白表达增加。
     4、CGRP基因转染较静脉应用CGRP对脑死亡大鼠具有更好的肺保护作用,其机制与降低炎症反应,抗氧化应激,增加AQP-1的表达有关。
Brain death is an irreversible pathological state of the whole brain functioning failure which involves the brainstem. Literally, the brain death leads to lung injury, which brings oxygenation insufficiency giving rise to the dysfunction and injury of other organs. The exploration into the mechanism of brain death-related lung injury plays a key role in the prophylaxis and treatment of brain death related lung injury.
     The calcitonin gene-related peptide (CGRP) is a multi-tasking protein, such as vasodilator, myocardial strengthener, lung protector, brain reservoir, immunomodilator, etc.Researchers have demonstrated that the amount of CGRP in human body changed after craniocerebral injury and was related to the brain injury severity.
     Based on the hypothesis that the changes amount of CGRP in human body which participates in development of the brain death-related lung injury, this experiment adopted the method of slow continuous intracranial pressure to build a brain death model. The radioimmunoassay, RT-PCR, Western blot were used to study the changes of CGRP and endothelin-1 (ET-1) in rat blood plasma and lung tissue at several time points during brain death and the relationship between those changes with brain death-related lung injury. Given the research on the CGRP change pattern after brain death and the influence of CGRP to the lung injury, it initiates a novel solution for the prophylaxis and treatment of brain death-related lung injury.
     CGRP was administered intravenously during brain death modeling. Radioimmunoassay, ELISA, RT-PCR, Western blot and immunohistochemistry are to be employed to observe the amount of brain death rat's tumor necrosis factor-a (TNF-α), interleukin-1β(IL-1β), interleukine-6 (IL-6) and other inflammatory factors in the blood plasma as well as that of malondialdehyde (MDA), superoxide dismutase (SOD) competence in the lung tissue and the influence on the AQP-1 and y-GCS mRNA and proteins' expression. The lung function and morphology are simultaneously observed in order to explore the possible mechanism of CGRP's protective effect on the lung.
     Since that the exogenous CGRP is inactivated, metabolized quickly and short-acting and that CGRP recombinant adenovirus vector if transferred into the trachea cells is characterized by host cell genome disintegration which is a safe convenient and durable, it is theoretically a better protector for the brain death-related lung injury. This project is aimed to construct the Ad5-CGRP-EGFP and transfer it into trachea cells to observe the CGRP expression change of CGRP gene transfected ran lung tissue and also the effect of CGRP gene therapy on the lung tissue's AQP-1 and y-GCS, the amount of MDA, SOD competence, pulmonary water content, lung morphology as well as the content of TNF-α, IL-1β, IL-6 in blood plasma. The mechanism of CGRP gene therapy in the lung protection of brain death is also explored.
     This study intends to clarify the in vivo CGRP change pattern after brain death and it's link with the brain death-related lung injury. The CGRP gene therapy effect and mechanism on the lung injury are both studied through the inference of CGRP gene transferring, with view of throwing a light theoretically on the prophylaxis and treatment of brain death-related lung injury.
     This study includes the following three parts.
     Part one CGRP expression in brain death rat and related lung injury
     1 Methods
     1.1 Twenty adult Wistar rats, weighted between 250 and 300g, were randomly divided into control(A) and brain-death(B) groups (n=10). Brain-death model was established in group B. The group A were placed Foley balloon catheter in intracalvarium only; no brain-death model established. Blood sample were collected at the time point of anesthesia 15 min (TO) and 0 h (T1),2 h (T2),6h (T3) and 12 h (T4) after brain-death model established. The samples of lung tissues were harvested at T4 time point.
     1.2 Radioimmunoassay was used to examine the level of CGRP and ET-1 in the serum. Histological alterations in lung tissues were examined by HE staining. And at the same time lung index and lung water content were measured. The levels of CGRP in lung tissues were examined by RT-PCR and Western blot.
     1.3 Statistical analysis:Data are expressed as means±SEM. Statistical analysis was performed using the SPSS software version 16.0. All the data were analyzed by ANOVA. P< 0.05 was considered statistically significant.
     2 Results
     2.1 Hemodynamic changes:BP and HR of group A during the whole experiment had no significant changes (P>0.05). For group B, BP increased significantly after increasing intracranial pressure and HR first decreased slowly then increased. MAP of group B were significantly lower at T1 and after T1 time points than that of TO time point, HR of group B were significantly faster at T1 and after T1 time points than that of TO time point (P<0.05). At the peak time point MAP and HR of group B were significant increase (P<0.05). Comparison of MAP at T1 and after T1 time points, MAP of group B, were significant lower than that of group A, comparison of HR at T1 and after T1 time points, HR of group B, were significant faster than that of group A (P<0.05).
     2.2 In group A, the levels of CGRP in serum was higher at T1 than that at T0, and lower at T2 than that at T1, and the difference was significant (P<0.05). In group B, the levels of CGRP was higher at than that at TO, and lower at T2-T4 than that at T0, and the difference was significant (P<0.05). The levels of CGRP in group B were higher than that in group A at T1 time points, but lower than that in group A at other time points, and the difference was significant (P<0.05).
     2.3 The levels of ET-1 was higher at other time points except T4 than that at TO in group A, and the difference were statistically significant (P<0.05). The levels of ET-1 was higher at other time points than that at TO in group B, and the difference was significant (P<0.05). The levels of ET-1 in group A was higher at same time points than that in group B, and the difference were statistically significant (P<0.05).
     2.4 The levels of mRNA of CGRP in lung tissues were significantly up-regulation in group B compared with that in group A and protein of CGRP in lung tissues were significantly down-regulation in group B compared with that in group A (P<0.05).
     2.5 Histological alterations:The lung injury was confirmed by HE examination in groupB. The lung Histological examination in group A was normal.
     2.6 In contrast to group A, lung index and lung water content were increased significantly in group B (P<0.05).
     Part two Effect of CGRP on the lung injury in brain death rats and its mechanisms
     1 Methods
     1.1 Seventy-five adult Wistar rats, weighted between 250 and 300g, and were randomly divided into control group (A), brain-death group (B) and CGRP treatment group (n=25). Brain-death model was established in group B and group C. The group A were placed Foley balloon catheter in intracalvarium only; no brain-death model established. In group C, CGRP 3μg/kg was injected intravenously immediately after establishment of brain-death model, followed by CGRP 6μg/kg continously injected for 12h. Blood sample and lung tissues of five rats in each group were collected at the time point of anesthesia 15 min (TO) and 0 h (T1),2 h (T2),6 h (T3) and 12 h (T4) after brain-death model established.
     1.2 The levels of TNF-α, IL-1βand IL-6 in the serum were measured by Enzyme-linked immunosorbent assay (ELISA). Radioimmunoassay was used to examine the level of CGRP and ET-1 in the serum. The MPO and SOD activity were evaluated in the lung tissues at T4. The lung index and lung water content were measured. Histological alterations in lung tissues were examined by HE staining. The levels ofγ-GCS、AQP-1、CGRP were measured by RT-PCR and Western blot at T4.
     1.3 Statistical analysis:Data are expressed as means±SEM. Statistical analysis was performed using the SPSS software version 16.0. All the data were analyzed by ANOVA. P value of<0.05 was considered statistically significant.
     2 Results
     2.1 Hemodynamic changes:BP and HR of group A during the whole experiment had no significant changes (P>0.05). For group B and C, BP increased significantly after increasing intracranial pressure and HR first decreased slowly then increased. MAP of group B and C were significantly lower at T1 and after T1 time points than that of TO time point, HR of group B and C were significantly faster at T1 and after T1 time points than that of TO time point (P<0.05). At the peak time point MAP and HR of group B and C were significant increase (P<0.05). Comparison of MAP at T1 and after T1 time points, MAP of group B and C, were significant lower than that of group A, comparison of HR at T1 and after T1 time points, HR of group B and C, were significant faster than that of group A (P<0.05)。
     2.2 TNF-α:There were no significant difference for the levels of TNF-a among time points in group A. The levels of TNF-a were higher at other time points than that at T2 in group B and C, and the difference was significant (P<0.05). From T2, the level of TNF-αwas higher in group C than that in group A, and higher in group B than that in group A and C (P<0.05)
     2.3 IL-1β:There were no significant difference for the levels of IL-lβamong time points in group A. The levels of IL-1βwere higher at other time points than that at T2 in group B and C (P<0.05). From T2, the level of IL-1 (3 was higher in group C than that in group A, and higher in group B than that in group A and C (P<0.05)
     2.4 IL-6:The levels of IL-6 were higher at T2, T3 and T4 than that at TO and T1 in group A (P<0.05). The levels of IL-6 were higher at other time points than that at T2 in group B and C(P<0.05).From T2, the level of IL-6 was higher in group C than that in group A, and higher in group B than that in group A and C (P<0.05)
     2.5 CGRP:The levels of CGRP in serum were higher at T1 than that of TO in group A, and lower at T2 than that at T1 (P<0.05).In group B, the levels of CGRP were higher at T1 than that at T0, but lower at other time points than that at TO (P<0.05). The levels of CGRP were higher at all the time points than that at TO in group C (P<0.05). The level of CGRP was higher in group B than that in group A at T1, but lower at other time points. The level of CGRP was higher in group C than that in group A from T1, and higher than that in group B from T2 (P<0.05)
     2.6 ET-1:The levels of ET-1 in serum were higher at T1 and T2 than that of TO in group A (P<0.05). The levels of ET-1 were higher at other time points than that of TO in group B (P<0.05). The levels of ET-1 were higher at other time points than that of TO in group C (P<0.05). The levels of ET-1 were higher in group B and C than that in group A from T1. The levels of ET-1 were lower in group C than that in group B from T2 (P<0.05)。
     2.7 MDA and SOD activity:MDA activity of lung tissues in group B was higher than that in group A and C, and group C was higher than that in group A (P<0.05) SOD activity of lung tissues in group B was lower than that in group A and C (P<0.05)
     2.8 The mRNAs levels ofγ-GCS in group B and group C were higher than that in group A, and group C were higher than that in group B (P<0.05). The mRNAs levels of AQP-1 in group B were lower than that in group A, and group C were higher than that in group B (P<0.05). The mRNAs levels of CGRP in group B were higher than that in group A, and the mRNAs levels of CGRP in group C were lower than that in group A (P<0.05).The proteins levels of AQP-1、γ-GCS、CGRP in group B were lower than that in group A, and group C were higher than that in group A and B, and the differences were statistically significant (P<0.05).
     2.9 Histological alterations:The lung injury was confirmed by HE examination in group B and C, while less pathologic alterations were shown in group C. The lung Histological examination in group A was normal.
     2.10 In contrast to group A, lung index and lung water content were increased significantly in group B and C. But in contrast to group B, lung index and lung water content were decreased significantly in group C (P<0.05).
     Part three Effect of CGRP gene on lung injury in brain death rats
     1 Methods
     1.1 Fifty adult Wistar rats, weighted between 250 and 300g, and were randomly divided into control group (A), brain-death group (B), CGRP treatment group(C), empty vector group (D) and CGRP gene transfer group (E). Brain-dead model was established in group B, C, D and E. The group A were placed Foley balloon catheter in intracalvarium only; no brain-dead model established. In group C, CGRP was injected via vein immediately after establishment of brain-dead model. In group D, empty vector was transferred after establishment of brain-dead model. In group E, CGRP with enhanced green fluorescent protein gene mediated by recombinant adenovirus (Ad) vector was transinfected via trachea after establishment of brain-dead model. Blood sample and lung tissues in each group were collected at the time point of anesthesia (TO) and 12 h (T1) after brain-dead model established.
     1.2 The levels of TNF-α, IL-1βand IL-6 were measured by ELISA. Radioimmunoassay was used to examine the level of CGRP and ET-1 in the serum. The gene transfect was accessed by fluorescence microscope. The MPO and SOD activity were evaluated in the lung tissues at T1. The lung index and lung water content were measured. Histological alterations in lung tissues were examined by HE staining. The expression of y-GCS and AQP-1 was analyzed by immunohistochemistry. The levels of y-GCS, AQP-1, CGRP were measured by RT-PCR and Western blot at T1.
     1.3 Statistical analysis:Data are expressed as means±SEM. Statistical analysis was performed using the SPSS software version 16.0. All the data were analyzed by ANOVA. a level was set at 0.05.
     2 Results
     2.1 There was no green fluorescence in group A, B and C. Enhanced green fluorescence were seen in group D and E.
     2.2 Hemodynamic changes:BP and HR of group A during the whole experiment had no significant changes (P>0.05). For group B, C, D and E, BP increased significantly after increasing intracranial pressure and HR first decreased slowly then increased. Than that of TO time point, MAP of group B, C, D and E were significantly lower at the time point of brain-death model established and after. Than that of TO time point HR of group B, C, D and E were significantly faster at the time point of brain-death model established and after (P<0.05). At the peak time point MAP and HR of group B, C, D and E were significant increase (P<0.05). Comparison of MAP at the time point of brain-death model established and after, MAP of group B, C, D and E, were significant lower than that of group A, comparison of HR at the time point of brain-death model established and after, HR of group B, C, D and E, were significant faster than that of group A (P<0.05)。
     2.3 TNF-α, IL-1βand IL-6:The levels of TNF-α, IL-1βand IL-6 in group B and D were higher than those in group E, C and A, and group E and C were higher than those in group A, group C were higher than those in group E (P<0.05)。
     2.4 CGRP:There were no significant differences among groups at TO. The levels of CGRP were higher in group E than those in group D, C, B and A at T1. The levels of CGRP were higher in group C than those in group D, B and A. The levels of CGRP were higher in group A than those in group D and B (P<0.05)
     2.5 ET-1:There were no significant differences among groups at T0. The levels of ET-1 were lower in group E than those in group D, C, B and A at T1. The levels of ET-1 were lower in group C than those in group D, B and A. The levels of ET-1 were lower in group A than those in group D and B (P<0.05)
     2.6 MDA and SOD activity:In the lung tissues, the MDA activity in group B and D was higher than that in group A, C and E, while group C was higher than that in group A and E, and group E was higher than that in group A (P<0.05).The SOD activity in group C and E was higher than that in group A, B and D, while group E was higher than that in group C (P<0.05)
     2.7 The mRNAs levels of y-GCS in group B and group C and group D and group E were higher than that in group A, and group C were higher than that in group B and D, while group E were higher than that in group C (P<0.05). The mRNAs levels of AQP-1 in group B and group D were lower than that in group A, The mRNAs levels of AQP-1 were higher in group C and E than that in group A, while group E were higher than that in group C (P<0.05). The mRNAs levels of CGRP in group B and D were higher than that in group A, and group C were lower than that in group A, while group E were higher than those in group B and D, and the differences were statistically significant (P<0.05) The protein levels of y-GCS, AQP-1 and CGRP were lower in group B and in group D than those in group A. The protein levels of y-GCS, AQP-1 and CGRP were higher in group C and E than those in group A, while group E were higher than those in group C, and the differences were statistically significant (P<0.05)
     2.8γ-GCS and AQP-1 immunohistochemistry:The levels ofγ-GCS and AQP-1 in group B and D were lower than those in group E, C and A, while group E and C were higher than those in group B and D, and group E were higher than those in group C (P<0.05)
     2.9 Histological alterations:The lung injury was confirmed by HE examination in group B and D, while less pathologic alterations were shown in group C and E. The lung Histological examination in group A was normal.
     2.10 Lung index and lung water:Lung index and lung water content in group B and D was higher than that in group E, C and A, while group E and C was higher than that in group A, and group E was lower than that in group C (P<0.05)
     Conclusion
     1. The CGRP level changes after brain death in rats. Lung injury after brain death has a relationship with the decreased level of CGRP, the release of TNF-a, IL-1βand IL-6, the enhanced of oxidative stress and the expression down-regulated of AQP-1.
     2. Exogenous CGRP has protective effect on lung injury after brain death in rats.
     3. CGRP gene transfection can up-regulated the expression of CGRP in lung tissues after brain death in rats. The levels of TNF-α, IL-1βand IL-6 in serum are decreased after CGRP gene transfection in brain death rats, while the expression ofy-GCS and AQP-1 in lung tissues are increased.
     4. CGRP gene transfection attenuates lung injury and lung water content after brain death in rats. The mechanism may have relation with its effect of anti-inflammation, anti-oxidative stress and AQP-1 up-regulation.
引文
[1]Mertes PM, el AK, Jaboin Y, et al. Changes in hemodynamic and metabolic parameters following induced brain death in the pig [J]. Transplantation,1994,58(4):414-418.
    [2]Chen EP, Bittner HB, Kendall SW, et al. Hormonal and hemodynamic changes in a validated animal model of brain death[J]. Crit Care Med,1996,24(8):1352-1359.
    [3]Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs inthe rat [J]. Transplantation,1998,65(12):1533-1542.
    [4]Avlonitis VS, Fisher AJ, Kirby JA, et al. Pulmonary transplantation:the role of brain death in donor lung injury [J]. Transplantation,2003,75(12):1928-1933.
    [5]Sammani S, Park KS, Zaidi SR, et al. A sphingosine 1-phosphate 1 receptor agonist modulates brain death-inducedneurogenic pulmonary injury [J]. Am J Respir Cell Mol Biol, 2011,45(5):1022-1027?
    [6]Sedy J, Zicha J, Kunes J, et al. Mechanisms of neurogenic pulmonary edema development [J]. Physiol Res,2008,57(4):499-506.
    [7]Chen HI. Hemodynamic mechanisms of neurogenic pulmonary edema [J]. Biol Signals, 1995,4(3):186-192.
    [8]Malik AB. Mechanisms of neurogenic pulmonary edema [J]. Circ Res,1985,57(1):1-18.
    [9]Avlonitis VS, Wigfield CH, Kirby JA, et al. The hemodynamic mechanisms of lung injury and systemic inflammatory responsefollowing brain death in the transplant donor [J]. Am J Transplant,2005,5(4 Pt 1):684-693.
    [10]Hirabayashi A, Nishiwaki K, Shimada Y, et al. Role of neuropeptide Y and its receptor subtypes in neurogenic pulmonary edema [J]. Eur J Pharmacol,1996,296(3):297-305.
    [11]Hamdy O, Nishiwaki K, Yajima M, et al. Presence and quantification of neuropeptide Y in pulmonary edema fluids in rats[J]. Exp Lung Res,2000,26(3):137-147.
    [12]Sakakibara H, Hashiba Y, Taki K, et al. Effect of sympathetic nerve stimulation on lung vascular permeability in the rat[J]. Am Rev Respir Dis,1992,145(3):685-692.
    [13]Barklin A. Systemic inflammation in the brain-dead organ donor[J]. Acta Anaesthesiol Scand,2009,53(4):425-435.
    [14]Faropoulos K, Apostolakis E. Brain death and its influence on the lungs of the donor:how is it prevented?[J]. Transplant Proc,2009,41(10):4114-4119.
    [15]Fisher AJ, Donnelly SC, Hirani N, et al. Enhanced pulmonary inflammation in organ donors following fatal non-traumaticbrain injury[J]. Lancet,1999,353(9162):1412-1413.
    [16]Fisher AJ, Donnelly SC, Hirani N, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graftfailure after lung transplantation[J]. Am J Respir Crit Care Med, 2001,163(1):259-265.
    [17]van DHJA, Ter HGJ, Molema G, et al. Effects of brain death and hemodynamic status on function and immunologicactivation of the potential donor liver in the rat[J]. Ann Surg, 2000,232(6):804-813.
    [18]Lentsch AB, Ward PA. Regulation of experimental lung inflammation[J]. Respir Physiol, 2001,128(1):17-22.
    [19]Ishii H, Ishibashi M, Takayama M, et al. The role of cytokine-induced neutrophil chemoattractant-1 in neutrophil-mediated remote lung injury after intestinal ischaemia/reperfusion in rats[J]. Respirology,2000,5(4):325-331.
    [20]Mitsuhashi H, Hata J, Asano S, et al. Appearance of cytokine-induced neutrophil chemoattractant isoforms andimmunolocalization of them in lipopolysaccharide-induced acute lung inflammation in rats[J]. Inflamm Res,1999,48(11):588-593.
    [21]Mascia L, Mastromauro I, Viberti S, et al. Management to optimize organ procurement in brain dead donors[J]. Minerva Anestesiol,2009,75(3):125-133.
    [1]于涛,方以群,刘长云,等.高压氧对颅脑损伤鼠内皮素及降钙素基因相关肽的影响[J].实用医药杂志,2008,25(4):471-473.
    [2]王学蛟,刘跃亭,段虎斌,等.不同程度创伤性脑损伤大鼠降钙素基因相关肽表达变化及其意义[J].中国药物与临床,2008,8(08):600-603.
    [3]王学蛟,刘跃亭,段虎斌,等.创伤性脑损伤大鼠P物质和降钙素基因相关肽变化及其意义[J].中国药物与临床,2008,8(7):522-525.
    [4]闫宏伟,王泽洋.重型颅脑损伤后内皮素、降钙素基因相关肽的动态变化及其意义[J].中国初级卫生保健,2009,23(08):129-130.
    [5]张春银,蔡亮,郭佳,等.依达拉奉对外伤性脑内出血患者血浆ET-1和CGRP影响的临床探讨[J].放射免疫学杂志,2009,22(4):324-326.
    [6]张毅民,彭军,李元建.降钙素基因相关肽合成与释放调节[J].国际病理科学与临床杂志,2010,8(02):153-157.
    [7]孙飞,秦旭平.降钙素基因相关肽(CGRP)受体[J].生命的化学,2009,(05):731-734.
    [8]孙振涛,韩雪萍,张水军,等.乙酰半胱氨酸对脑死亡状态下巴马小型猪支气管肺泡灌洗液蛋白含量及肺超微结构的影响[J].郑州大学学报(医学版),2007,42(3):480-482.
    [9]孙振涛,韩雪萍,张卫,等.巴马小型猪脑死亡模型建立的麻醉管理[J].中华麻醉学杂志,2007,27(5):471-472.
    [10]陆海盛,马毅,朱晓峰.改良大鼠渐进性脑死亡模型的制作[J].中华实验外科杂志,2010,27(9):1341-1343.
    [11]朱毅,明英姿,方达明,等.大鼠脑死亡模型的建立及相关实验研究[J].现代医药卫生,2011,27(15):2241-2243.
    [12]Kolkert JL,'t HNA, van DA, et al. The gradual onset brain death model:a relevant model to study organ donation and its consequences on the outcome after transplantation[J]. Lab Anim,2007,41(3):363-371.
    [13]Arbour R. Cardiogenic oscillation and ventilator autotriggering in brain-dead patients: acase series[J]. Am J Crit Care,2009,18(5):496,488-495.
    [14]卫生部脑死亡判定标准起草小组.脑死亡判定标准(成人)(修订稿)[J].中国脑血管病杂志,2009,6(4):220-224.
    [15]Rostron AJ, Avlonitis VS, Cork DM, et al. Hemodynamic resuscitation with arginine vasopressin reduces lung injury afterbrain death in the transplant donor [J]. Transplantation, 2008,85(4):597-606.
    [16]Rostron AJ, Cork DM, Avlonitis VS, et al. Contribution of Toll-like receptor activation to lung damage after donor braindeath[J]. Transplantation,2010,90(7):732-739.
    [17]Avlonitis VS, Wigfield CH, Kirby JA, et al. Treatment of the brain-dead lung donor with aprotinin and nitric oxide[J]. J Heart Lung Transplant,2010,29(10):1177-1184.
    [18]Chen EP, Bittner HB, Kendall SW, et al. Hormonal and hemodynamic changes in a validated animal model of brain death[J]. Crit Care Med,1996,24(8):1352-1359.Mertes
    [19]PM, el AK, Jaboin Y, et al. Changes in hemodynamic and metabolic parameters following induced brain death in the pig[J]. Transplantation,1994,58(4):414-418.
    [20]Avlonitis VS, Fisher AJ, Kirby JA, et al. Pulmonary transplantation:the role of brain death in donor lung injury[J]. Transplantation,2003,75(12):1928-1933.
    [21]Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs inthe rat[J]. Transplantation,1998,65(12):1533-1542.
    [22]Sammani S, Park KS, Zaidi SR, et al. A sphingosine 1-phosphate 1 receptor agonist modulates brain death-inducedneurogenic pulmonary injury[J]. Am J Respir Cell Mol Biol, 2011,45(5):1022-1027.
    [23]Malik AB. Mechanisms of neurogenic pulmonary edema [J]. Circ Res,1985,57(1):1-18.
    [24]Chen HI. Hemodynamic mechanisms of neurogenic pulmonary edema [J]. Biol Signals, 1995,4(3):186-192.
    [25]Sedy J, Zicha J, Kunes J, et al. Mechanisms of neurogenic pulmonary edema development [J]. Physiol Res,2008,57(4):499-506.
    [26]Hirabayashi A, Nishiwaki K, Shimada Y, et al. Role of neuropeptide Y and its receptor subtypes in neurogenic pulmonary edema[J]. Eur J Pharmacol,1996,296(3):297-305.
    [27]Hamdy O, Nishiwaki K, Yajima M, et al. Presence and quantification of neuropeptide Y in pulmonary edema fluids in rats[J]. Exp Lung Res,2000,26(3):137-147.
    [28]Sakakibara H, Hashiba Y, Taki K, et al. Effect of sympathetic nerve stimulation on lung vascular permeability in the rat[J]. Am Rev Respir Dis,1992,145(3):685-692.
    [29]Avlonitis VS, Wigfield CH, Kirby JA, et al. The hemodynamic mechanisms of lung injury and systemic inflammatory responsefollowing brain death in the transplant donor[J]. Am J Transplant,2005,5(4 Pt 1):684-693.
    [30]王珍珍,谢新立,阮翘.慢性肺源性心脏病患者血浆CGRP和SP水平的测定[J].中国实用医刊,2010,37(12):16-17,20.
    [31]阮翘,何予工,谢新立,等.慢性肺源性心脏病患者血浆CGRP和SP水平变化及临床意义[J].山东医药,2007,47(5):36-38.
    [32]Zhang YM, Peng J, Hu CP, et al. Clonidine induces calcitonin gene-related peptide expression via nitric oxide pathway in endothelial cells[J]. Peptides, 2009,30(9):1746-1752.
    [33]张毅民,彭军,李元建.降钙素基因相关肽合成与释放调节[J].国际病理科学与临床杂志,2010,30(02):153-157.
    [34]张春银,官明,蔡亮,等.纳洛酮对外伤性脑损伤患者血浆ET-1和CGRP影响的临床研究[J].标记免疫分析与临床,2009,16(3):139-141.
    [35]戴红.益气复脉汤对脑缺血再灌注损伤大鼠ET及CGRP影响的实验研究[J].山西中医,2009,25(4):54-55.
    [36]郝彬,赵红果.蛛网膜下腔出血血清与脑脊液NO、CGRP、脑微区血流量及CRP水平变化研究[J].现代预防医学,2011,38(13):2592-2593.
    [37]彭旭,吴曙粤,刘海涛.脑梗死患者血浆内皮素和降钙素基因相关肽含量的动态变化研究[J].广西医学,2009,31(3):346-347.
    [38]侯倩.急性脑血管病患者血浆多种神经肽的含量变化及临床意义[J].陕西医学杂志,2008,37(8):1028-1030.
    [39]刘海涛,彭旭.缺血性脑血管病患者血浆内皮素及降钙素基因相关肽测定的分析[J].右江民族医学院学报,2008,30(5):745-746.
    [40]王学蛟,Yue-ting L,段虎斌,等.不同程度创伤性脑损伤大鼠降钙素基因相关肽表达变化及其意义[J].中国药物与临床,2008,8(8):600-603.
    [41]麻琳,江文静,郭洪志,等.大鼠局灶性脑缺血致多器官功能障碍大鼠模型的建立及内皮素、降钙素相关基因肽病理机制的研究[J].中国老年学杂志 2007,27(11):1031-1033.
    [42]Gourine AV, Molosh AI, Poputnikov D, et al. Endothelin-1 exerts a preconditioning-like cardioprotective effect against ischaemia/reperfusion injury via the ET(A) receptor and the mitochondrial K(ATP) channel in the rat in vivo[J]. Br J Pharmacol, 2005,144(3):331-337.
    [43]Gonon AT, Bulhak A, Broijersen A, et al. Cardioprotective effect of an endothelin receptor antagonist during ischaemia/reperfusion in the severely atherosclerotic mouse heart[J]. Br J Pharmacol,2005,144(6):860-866.
    [44]李铁志,张晓刚,潘丽丽,等.血浆脑钠肽和内皮素1在心力衰竭患者中的浓度变化及相关性[J].中国医科大学学报,2008,37(1):105-106.
    [45]董化江,徐鹏霄.血管内皮素的研究进展[J].武警医学院学报,2009,18(6):557-560.
    [46]Ramirez R, Chong T, Victorino GP. Angiotensin Ⅱ effect on hydraulic permeability: interaction with endothelin-1, nitric oxide, and platelet activating factor[J]. J Surg Res, 2006,134(2):259-264.
    [47]Langleben D, Dupuis J, Langleben I, et al. Etiology-specific endothelin-1 clearance in human precapillary pulmonary hypertension[J]. Chest,2006,129(3):689-695.
    [48]Puneet P, Moochhala S, Bhatia M. Chemokines in acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol,2005,288(1):L3-15.
    [49]Brahmbhatt S, Gupta A, Sharma AC. Bigendothelin-1 (1-21) fragment during early sepsis modulates tau, p38-MAPK phosphorylation and nitric oxide synthase activation[J]. Mol Cell Biochem,2005,271(1-2):225-237.
    [50]Kmiec Z. Cooperation of liver cells in health and disease[J]. Adv Anat Embryol Cell Biol, 2001,161:III-XIII,1-151.
    [51]杨明会,张海燕,王文明,等.益气活血中药对急性肺损伤模型大鼠血浆和肺组织匀浆中CGRP、ET-1的影响[J].现代中西医结合杂志,2011,20(31):3924-3925+3964.
    [52]陈克正,王卫,吕回.新生鼠出血肺组织中内皮素、降钙素基因相关肽与氧自由基的关系[J].广东医学,2003,24(1):8-10.
    [53]陶莉,陈克正.低温缺氧后复温供氧新生大鼠出血肺组织缺氧诱导因子-1α及其受控蛋白的动态变化[J].中华围产医学杂志,2007,10(1):33-36.
    [54]蔡闯,徐军,钟南山.[1]封珊,王智勇.内皮素1在急性呼吸窘迫综合征炎症反应中的作用[J].国际呼吸杂志,2008,28(23):1468-1472[J].解放军医学杂志2010,35(5):595-597.
    [55]封珊,王智勇.内皮素1在急性呼吸窘迫综合征炎症反应中的作用[J].国际呼吸杂志,2008,28(23):1468-1472.
    [56]Kuzkov VV, Kirov MY, Sovershaev MA, et al. Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury[J]. Crit Care Med,2006,34(6):1647-1653.
    [57]Kuklin VN, Kirov MY, Evgenov OV, et al. Novel endothelin receptor antagonist attenuates endotoxin-induced lung injury in sheep[J]. Crit Care Med,2004,32(3):766-773.
    [58]Nakano Y, Tasaka S, Saito F, et al. Endothelin-1 level in epithelial lining fluid of patients with acute respiratory distress syndrome[J]. Respirology,2007,12(5):740-743.
    [59]Bhattacharya J. Pressure-induced capillary stress failure:is it regulated?[J]. Am J Physiol Lung Cell Mol Physiol,2003,284(5):L701-702.
    [1]Mascia L, Mastromauro I, Viberti S, et al. Management to optimize organ procurement in brain dead donors[J]. Minerva Anestesiol,2009,75(3):125-133.
    [2]Faropoulos K, Apostolakis E. Brain death and its influence on the lungs of the donor:how is it prevented?[J]. Transplant Proc,2009,41 (10):4114-4119.
    [3]张正洪,曲鹏,方秀斌.降钙素基因相关肽对局灶性脑缺血再灌注大鼠海马CREB和磷酸化CREB的上调作用[J].解剖学杂志,2007,30(2):174-177.
    [4]Tsunoda SP, Wiesner B, Lorenz D, et al. Aquaporin-1, nothing but a water channel[J]. J Biol Chem,2004,279(12):11364-11367.
    [5]Matsuzaki T, Hata H, Ozawa H, et al. Immunohistochemical localization of the aquaporins AQP1, AQP3, AQP4, and AQP5 in the mouse respiratory system[J]. Acta Histochem Cytochem,2009,42(6):159-169.
    [6]Gao C, Tang J, Li R, et al. Specific inhibition of AQP1 water channels in human pulmonary microvascular endothelial cells by small interfering RNAs[J]. J Trauma Acute Care Surg,2012,72(1):150-161.
    [7]谢艳萍,陈才平,王建春,等.急性肺损伤大鼠肺水通道蛋白1和5的表达及功能的实验研究[J].中华结核和呼吸杂志,2005,28(6):385-389.
    [8]Dong C, Wang G, Li B, et al. Anti-asthmatic agents alleviate pulmonary edema by upregulating AQP1 and AQP5 expression in the lungs of mice with OVA-induced asthma[J]. Respir Physiol Neurobiol,2012,181(1):21-28.
    [9]La Porta C. AQP1 is not only a water channel:It contributes to cell migration through Lin7/beta-catenin[J]. Cell Adh Migr,2010,4(2):204-206.
    [10]Monzani E, Bazzotti R, Perego C, et al. AQP1 is not only a water channel:it contributes to cell migration through Lin7/beta-catenin[J]. PLOS ONE,2009,4(7):e6167.
    [11]孙振涛,韩雪萍,苗丽君,等.脑死亡状态巴马小型猪肺水含量及肺超微结构变化[J].中国组织工程研究与临床康复,2007,11(8):1428-1430.
    [12]Limon-Pacheco J, Gonsebatt ME. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress[J]. Mutat Res,2009,674(1-2):137-147.
    [13]Reuter S, Gupta SC, Chaturvedi MM, et al. Oxidative stress, inflammation, and cancer: how are they linked?[J]. Free Radic Biol Med,2010,49(11):1603-1616.
    [14]Ma Q. Transcriptional responses to oxidative stress:pathological and toxicological implications[J]. Pharmacol Ther,2010,125(3):376-393.
    [15]Barklin A. Systemic inflammation in the brain-dead organ donor[J]. Acta Anaesthesiol Scand,2009,53(4):425-435.
    [16]Fisher AJ, Donnelly SC, Hirani N, et al. Enhanced pulmonary inflammation in organ donors following fatal non-traumaticbrain injury[J]. Lancet,1999,353(9162):1412-1413.
    [17]Fisher AJ, Donnelly SC, Hirani N, et al. Elevated levels of interleukin-8 in donor lungs is associated with early graftfailure after lung transplantation[J]. Am J Respir Crit Care Med, 2001,163(1):259-265.
    [18]Takada M, Nadeau KC, Hancock WW, et al. Effects of explosive brain death on cytokine activation of peripheral organs inthe rat[J]. Transplantation,1998,65(12):1533-1542.
    [19]van DHJA, Ter HGJ, Molema G, et al. Effects of brain death and hemodynamic status on function and immunologicactivation of the potential donor liver in the rat[J]. Ann Surg, 2000,232(6):804-813.
    [20]Lentsch AB, Ward PA. Regulation of experimental lung inflammation[J]. Respir Physiol, 2001,128(1):17-22.
    [21]Ishii H, Ishibashi M, Takayama M, et al. The role of cytokine-induced neutrophil chemoattractant-1 in neutrophil-mediated remote lung injury after intestinal ischaemia/reperfusion in rats[J]. Respirology,2000,5(4):325-331.
    [22]Mitsuhashi H, Hata J, Asano S, et al. Appearance of cytokine-induced neutrophil chemoattractant isoforms andimmunolocalization of them in lipopolysaccharide-induced acute lung inflammation in rats[J]. Inflamm Res,1999,48(11):588-593.
    [23]Avlonitis VS, Fisher AJ, Kirby JA, et al. Pulmonary transplantation:the role of brain death in donor lung injury[J]. Transplantation,2003,75(12):1928-1933.
    [24]Dominguez-Roldan JM, Garcia-Alfaro C, Jimenez-Gonzalez PI, et al. [Brain death: repercussion on the organs and tissues][J]. Med Intensiva,2009,33(9):434-441.
    [25]Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress:the p38 MAPK pathway[J]. Crit Care Med,2000,28(4 Suppl):N67-77.
    [26]刘辉,姚咏明.细胞内炎症信号通路交汇作用研究进展[J].中国病理生理杂志,2005,21(8):1607-1613,1627.
    [27]Tominaga K, Higuchi K, Tsuno M, et al. Induction of signal transduction pathways in rat gastric epithelial cells stimulated with interleukin-lbeta[J]. Aliment Pharmacol Ther, 2000,14 Suppl 1:101-108.
    [28]Mihara M, Hashizume M, Yoshida H, et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions [J]. Clin Sci (Lond),2012,122(4):143-159.
    [29]Shimada M, Andoh A, Hata K, et al. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators[J]. J Immunol, 2002,168(2):861-868.
    [30]Meltzer AJ, Veillette GR, Aoyama A, et al. Donor Brain Death Inhibits Tolerance Induction in Miniature Swine Recipients of Fully MHC-Disparate Pulmonary Allografts.LID 10.1111/j.1600-6143.2011.03949.x [doi][J]. Am J Transplant,2012.
    [31]张水军,李建华,李震,等.巴马小型猪脑死亡状态下的肺脏形态变化及其机制[J].中华器官移植杂志,2006,27(9):528-531.
    [32]陈洁,曾耀英,曾慧兰,等.补阳还五汤预先干预对大鼠脑死亡后心肺炎症细胞因子表达的抑制作用[J].中草药,2010,41(5):757-761.
    [33]周孝钱,许俊,唐江琼,等CGRP对氧化损伤人脐静脉内皮细胞的保护作用及Caveolin-1表达的影响[J].中南医学科学杂志,2011,(02):131-134.
    [34]Schaeffer C, Vandroux D, Thomassin L, et al. Calcitonin gene-related peptide partly protects cultured smooth muscle cells from apoptosis induced by an oxidative stress via activation of ERK1/2 MAPK[J]. Biochim Biophys Acta,2003,1643(1-3):65-73.
    [35]Harzenetter MD, Novotny AR, Gais P, et al. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER[J]. J Immunol, 2007,179(1):607-615.
    [36]Altmayr F, Jusek G, Holzmann B. The neuropeptide calcitonin gene-related peptide causes repression of tumor necrosis factor-alpha transcription and suppression of ATF-2 promoter recruitment in Toll-like receptor-stimulated dendritic cells[J]. J Biol Chem, 2010,285(6):3525-3531.
    [37]Wang X, Fiscus RR, Tang Z, et al. CGRP in the serum of endotoxin-treated rats suppresses lymphoproliferation[J]. Brain Behav Immun,1994,8(4):282-292.
    [38]Wang X, Fiscus RR, Yang L, et al. Suppression of the functional activity of IL-2-activated lymphocytes by CGRP[J]. Cell Immunol,1995,162(1):105-113.
    [39]Wang X, Fiscus RR. Lactic acid potentiates bradykinin-and low-pH-induced release of CGRP from rat spinal cord slices[J]. Am J Physiol,1997,273(1 Pt 1):E92-98.
    [40]Feng Y, Tang Y, Guo J, et al. Inhibition of LPS-induced TNF-alpha production by calcitonin gene-related peptide (CGRP) in cultured mouse peritoneal macrophages[J]. Life Sci,1997,61(20):PL 281-287.
    [41]Tang Y, Han C, Wang X. Role of nitric oxide and prostaglandins in the potentiating effects of calcitonin gene-related peptide on lipopolysaccharide-induced interleukin-6 release from mouse peritoneal macrophages[J]. Immunology,1999,96(2):171-175.
    [42]Tang Y, Feng Y, Wang X. Calcitonin gene-related peptide potentiates LPS-induced IL-6 release from mouse peritoneal macrophages[J]. J Neuroimmunol,1998,84(2):207-212.
    [43]Rostron AJ, Cork DM, Avlonitis VS, et al. Contribution of Toll-like receptor activation to lung damage after donor braindeath[J]. Transplantation,2010,90(7):732-739.
    [44]Holzmann B. Modulation of immune responses by the neuropeptide CGRP[J]. Amino Acids,2011.
    [45]王学蛟,Yue-ting L,段虎斌,等.不同程度创伤性脑损伤大鼠降钙素基因相关肽表达变化及其意义[J].中国药物与临床,2008,8(8):600-603.
    [46]成兰云,门秀丽,张连元,等.内质网应激诱导的细胞凋亡在大鼠肢体缺血再灌注后肺损伤中的作用及牛磺酸的影响[J].中国病理生理杂志,2010,26(9):1776-1780.
    [47]Woo KJ, Lee TJ, Lee SH, et al. Elevated gadd153/chop expression during resveratrol-induced apoptosis in humancolon cancer cells [J]. Biochem Pharmacol, 2007,73(l):68-76.
    [48]曲鹏,张鸿,张正洪,等.NGF和CGRP对局灶性脑缺血再灌注后大鼠皮质CHOP蛋白表达的影响[J].解剖科学进展,2006,12(3):215-218,插4.
    [49]关丽英,许彩民,潘华珍.内质网应激介导的细胞凋亡[J].生物化学与生物物理进展,2007,34(11):1136-1141.
    [50]李煌元,吴思英,石年.溴氰菊酯及6-羟基多巴胺对PC 12细胞Nrf2/ARE通路影响[J].中国公共卫生,2010,26(7):911-913.
    [51]李航,张连珊,刘青娟,等.叔丁基对苯二酚对早期糖尿病小鼠肾脏氧化应激损伤影响的实验研究[J].中国危重病急救医学,2011,23(3):191-192,后插2.
    [52]张灵敏,张明鑫,景桂霞.Nrf2在多器官保护中的作用研究进展[J].成都医学院学报,2010,5(1):75-78.
    [53]Cho HY, Kleeberger SR. Genetic mechanisms of susceptibility to oxidative lung injury in mice[J]. Free Radic Biol Med,2007,42(4):433-445.
    [54]Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation[J]. Eur Respir J,2000,16(3):534-554.
    [55]沈立新,魏东芝,赵哲峰,等.谷胱甘肽合成酶系的克隆、测序及表达[J].生物工程学报,2001,17(1):98-100.
    [56]吴佳,张新日.不同潮气量机械通气对大鼠肺组织γ-谷氨酰半胱氨酸合成酶和转化生 长因子β1的影响[J].中华急诊医学杂志,2010,19(2):172-175.
    [57]赖荣德,梁子敬.急性肺损伤的氧化作用与抗氧化研究进展[J].国际呼吸杂志,2006,26(12):924-927,931.
    [58]Zhou H, Qian H, Liu J, et al. Protection against lung graft injury from brain-dead donors with carbon monoxide,biliverdin, or both[J]. J Heart Lung Transplant,2011,30(4):460-466.
    [59]Wang J, Zhou HC, Pan P, et al. Exogenous biliverdin improves the function of lung grafts from brain dead donors in rats[J]. Transplant Proc,2010,42(5):1602-1609.
    [60]Dupuis J, Tardif JC, Cernacek P, et al. Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial[J]. Circulation,1999,99(25):3227-3233.
    [61]Ye F, Deng PY, Li D, et al. Involvement of endothelial cell-derived CGRP in heat stress-induced protection of endothelial function[J]. Vascul Pharmacol, 2007,46(4):238-246.
    [62]张宝林,王小兵,卢颖洁,等.严重创伤时降钙素基因相关肽对心血管系统的影响[J].实用医技杂志,2010,17(3):197-198.
    [1]Sato M, Keshavjee S. Gene therapy in lung transplantation[J]. Curr Gene Ther, 2006,6(4):439-458.
    [2]张毅民,彭军,李元建.降钙素基因相关肽合成与释放调节[J].国际病理科学与临床杂志,2010,8(02):153-157.
    [3]孙飞,秦旭平.降钙素基因相关肽(CGRP)受体[J].生命的化学,2009,(05):731-734.
    [4]张小宁,陈道中.降钙素基因相关肽与基因治疗[J].中国心血管病研究杂志,2007,5(5):391-393.
    [5]梅广林,林众治,横山逸男,等.利用腺病毒载体导入CTLA4Ig基因对大鼠同种心脏移植免疫抑制作用的研究[J].中华器官移植杂志,2000,21(4):207-209.
    [6]张丽娜,艾宇航,龚华,等.经中心静脉途径注入腺病毒转载的核转录因子-κB抑制因子基因治疗大鼠感染性急性肺损伤[J].中国危重病急救医学,2011,23(9):559-562.
    [7]刘斌剑,王建民,陈林.急性肺损伤的基因治疗[J].中国急救医学,2003,23(6):401-403.
    [8]雷道雄,王波涌,艾中立.基因治疗在器官移植研究中的应用及其评价[J].中华器官移植杂志,2004,25(1):56-59.
    [9]Zhang C, Wang QT, Liu H, et al. Advancement and prospects of tumor gene therapy[J]. Chin J Cancer,2011,30(3):182-188.
    [10]Geiger J, Aneja MK, Rudolph C. Vectors for pulmonary gene therapy [J]. Int J Pharm, 2010,390(1):84-88.
    [11]Haisma HJ, Bellu AR. Pharmacological interventions for improving adenovirus usage in gene therapy[J]. Mol Pharm,2011,8(1):50-55.
    [12]王素华.以腺病毒为载体的基因疗法[J].检验检疫学刊,2009,19(2):68-70.
    [13]胡奇婵,陈玥,王丽,等.腺病毒载体用于基因治疗的研究进展[J].解放军医药杂志,2011,23(5):76-80.
    [14]Katayama K, Furuki R, Yokoyama H, et al. Enhanced in vivo gene transfer into the placenta using RGD fiber-mutant adenovirus vector[J]. Biomaterials, 2011,32(17):4185-4193.
    [15]Johnson M, Huyn S, Burton J, et al. Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction[J]. Hum Gene Ther,2006,17(12):1262-1269.
    [16]Wickham TJ, Mathias P, Cheresh DA, et al. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment[J]. Cell,1993,73(2):309-319.
    [17]Vorburger SA, Hunt KK. Adenoviral gene therapy[J]. Oncologist,2002,7(1):46-59.
    [18]王振发,王烈,卫立辛.基因治疗病毒载体的研究进展[J].医学综述,2007,13(7):490-492.
    [19]Okada Y, Zuo XJ, Toyoda M, et al. Adenovirus mediated IL-10 gene transfer to the airway of the rat lung for prevention of lung allograft rejection[J]. Transpl Immunol, 2006,16(2):95-98.
    [20]Vermaelen K, Pauwels R. Pulmonary dendritic cells[J]. Am J Respir Crit Care Med, 2005,172(5):530-551.
    [21]Liu H, Liu L, Visner GA. Nonviral gene delivery with indoleamine 2,3-dioxygenase targeting pulmonary endothelium protects against ischemia-reperfusion injury[J]. Am J Transplant,2007,7 (10):2291-2300.
    [22]Liu H, Liu L, Fletcher BS, et al. Sleeping Beauty-based gene therapy with indoleamine 2,3-dioxygenase inhibits lung allograft fibrosis[J]. FASEB J,2006,20(13):2384-2386.
    [23]Morse D, Lin L, Choi AM, et al. Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease[J]. Free Radic Biol Med,2009,47(1):1-12.
    [24]Ishiyama T, Dharmarajan S, Hayama M, et al. Inhibition of nuclear factor kappaB by IkappaB superrepressor gene transfer ameliorates ischemia-reperfusion injury after experimental lung transplantation[J]. J Thorac Cardiovasc Surg,2005,130(1):194-201.
    [25]Jackson RM, Garcia-Rojas R. Kinase activity, heat shock protein 27 phosphorylation, and lung epithelial cell glutathione[J]. Exp Lung Res,2008,34(5):245-262.
    [26]Wood KL, Nunley DR, Moffatt-Bruce S, et al. The role of heat shock protein 27 in bronchiolitis obliterans syndrome after lung transplantation[J]. J Heart Lung Transplant, 2010,29(7):786-791.
    [27]Zhang YX, Fan H, Shi Y, et al. Prevention of lung ischemia-reperfusion injury by short hairpin RNA-mediated caspase-3 gene silencing[J]. J Thorac Cardiovasc Surg, 2010,139(3):758-764.
    [28]金晓峰,徐成斌,张彤,等.降钙素基因相关肽基因转导对内皮损伤兔髂动脉血管环舒缩反应的影响[J].中国病理生理杂志,1999,15(12):1074-1077.
    [29]Wang W, Sun W, Wang X. Intramuscular gene transfer of CGRP inhibits neointimal hyperplasia after balloon injury in the rat abdominal aorta[J]. Am J Physiol Heart Circ Physiol,2004,287(4):H 1582-1589.
    [30]张小宁,陈道中,郑宇辉,等.降钙素基因相关肽转基因对同种异体移植血管病变的防治作用[J].中华医学杂志,2008,88(45):3217-3221.
    [31]Bivalacqua TJ, Champion HC, Abdel-Mageed AB, et al. Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat[J]. Biol Reprod, 2001,65(5):1371-1377.
    [32]Champion HC, Bivalacqua TJ, Toyoda K, et al. In vivo gene transfer of prepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse[J]. Circulation,2000,101(8):923-930.
    [33]Bivalacqua TJ, Hyman AL, Kadowitz PJ, et al. Role of calcitonin gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary hypertension in the mouse. Influence of gene transfer in vivo[J]. Regul Pept,2002,108(2-3):129-133.
    [34]王燕,陆权,滕国良,等.以腺病毒为载体的基因治疗对急性肺损伤治疗效果的影响及其意义[J].中华医学杂志,2008,88(26):1841-1845.
    [35]刘红梅,欧阳昌汉.重组IL-12腺病毒载体对肺炎小鼠NK细胞功能的影响[J].细胞与分子免疫学杂志,2009,25(12):1179-1180,1182.
    [36]陈吉泉,曹雪涛,修清玉,等.气管内应用IL-18重组腺病毒对实验性肺转移癌的治疗作用[J].第二军医大学学报,2000,21(6):547-550.
    [37]车广华,高航,王建伟,等.含鼠白细胞介素12基因腺病毒载体对小鼠支气管哮喘模型肺组织GATA-3表达的影响[J].吉林大学学报(医学版),2007,33(6):974-977,封2.
    [38]王伟,吴树明,张中明,等.经气管/静脉途径行肺脏腺病毒载体基因转染的效率和毒性分析[J].中国病理生理杂志,2008,24(12):2493-2496.
    [39]Merkel OM, Zheng M, Debus H, et al. Pulmonary gene delivery using polymeric nonviral vectors[J]. Bioconjug Chem,2012,23(1):3-20.
    [40]李煌元,吴思英,石年.溴氰菊酯及6-羟基多巴胺对PC12细胞Nrf2/ARE通路影响[J].中国公共卫生,2010,26(7):911-913.
    [41]李航,张连珊,刘青娟,等.叔丁基对苯二酚对早期糖尿病小鼠肾脏氧化应激损伤影响的实验研究[J].中国危重病急救医学,2011,23(3):191-192,后插2.
    [42]Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation[J]. Eur Respir J,2000,16(3):534-554.
    [43]沈立新,魏东芝,赵哲峰,等.谷胱甘肽合成酶系的克隆、测序及表达[J].生物工程学报,2001,17(1):98-100.
    [44]吴佳,张新日.不同潮气量机械通气对大鼠肺组织γ-谷氨酰半胱氨酸合成酶和转化生长因子p1的影响[J].中华急诊医学杂志,2010,19(2):172-175.
    [45]赖荣德,梁子敬.急性肺损伤的氧化作用与抗氧化研究进展[J].国际呼吸杂志,2006,26(12):924-927,931.
    [46]胡琼.水通道蛋白与肺水肿[J].临床军医杂志,2006,34(6):733-735.
    [47]李玉梅,戴春来,李恒,等.水通道蛋白与肺水肿关系的研究进展[J].中国实验诊断学,2010,14(10):1675-1676.
    [48]安宇,张剑钊,李学军.水通道蛋白的表达及其调节[J].国际药学研究杂志,2008,35(05):355-359.
    [49]朱彤莹,顾勇,黄国英,等.充血性心力衰竭大鼠肺脏通道蛋白的表达[J].复旦学报(医学版),2004,31(3):239-242.
    [50]Towne JE, Harrod KS, Krane CM, et al. Decreased expression of aquaporin (AQP) 1 and AQP5 in mouse lung after acute viral infection [J]. Am J Respir Cell Mol Biol,2000, 22(1):34-44.
    [51]Jiao G, Li E, Yu R. Decreased expression of AQP1 and AQP5 in acute injured lungs in rats [J]. Chin Med J (Engl),2002,115 (7):963-967.
    [52]Belkacemi L, Beall MH, Magee TR, et al. AQP1 gene expression is upregulated by arginine vasopressin and cyclic AMP agonists in trophoblast cells[J]. Life Sci,2008, 82(25-26):1272-1280.
    [53]Han Z, Patil RV. Protein kinase A-dependent phosphorylation of aquaporin-1 [J]. Biochem Biophys Res Commun,2000,273(1):328-332.
    [54]Wang S, Amidi F, Yin S, et al. Cyclic adenosine monophosphate regulation of aquaporin gene expression in human amnion epithelia[J]. Reprod Sci,2007,14(3):234-240.
    [55]唐江琼,秦旭平.降钙素基因相关肽受体组分蛋白[J].生命的化学,2011,31(02):277-280.
    [1]Brain SD, Cox HM. Neuropeptides and their receptors:innovative science providing novel therapeutic targets[J]. Br J Pharmacol.2006.147 Suppl 1:S202-211.
    [2]Miranda LP, Holder JR., Shi L, et al. Identification of potent, selective, and metabolically stable peptide antagonists to the calcitonin gene-related peptide (CGRP) receptor[J]. J Med Chem,2008,51(24):7889-7897.
    [3]张毅民,彭军,李元建.降钙素基因相关肽合成与释放调节[J].国际病理科学与临床杂志,2010,8(02):153-157.
    [4]Csati A, Tajti J, Tuka B, et al. Calcitonin gene-related peptide and its receptor components in the human sphenopalatine ganglion-Interaction with the sensory system[J]. Brain Res, 2012,1435:29-39.
    [5]Kajekar R, Myers AC. Calcitonin gene-related peptide affects synaptic and membrane properties of bronchial parasympathetic neurons[J]. Respir Physiol Neurobiol, 2008,160(1):28-36.
    [6]Edvinsson L, Chan KY, Eftekhari S, et al. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries[J]. Cephalalgia, 2010,30(10):1233-1240.
    [7]El HF, Stroobant V, Vergnon I, et al. Preprocalcitonin signal peptide generates a cytotoxic T lymphocyte-defined tumor epitope processed by a proteasome-independent pathway [J]. Proc Natl Acad Sci U S A,2008,105(29):10119-10124.
    [8]张学敏,马文辉,时述山,等.成骨细胞表面不同神经肽受体的表达[J].中国组织工程研究与临床康复,2011,15(33):6107-6110.
    [9]Salvatore CA, Hershey JC, Corcoran HA, et al. Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3-yl]-4-(2-oxo-2,3-dihydro-lH-imidazo[4,5-b]pyridin-1-yl)piperidine-l-carbox amide], a potent and orally active calcitonin gene-related peptide receptor antagonist for the treatment of migraine[J]. J Pharmacol Exp Ther,2008,324(2):416-421.
    [10]Notoya M, Arai R, Katafuchi T, et al. A novel member of the calcitonin gene-related peptide family, calcitonin receptor-stimulating peptide, inhibits the formation and activity of osteoclasts[J]. Eur J Pharmacol,2007,560(2-3):234-239.
    [11]Osaki T, Katafuchi T, Minamino N. Genomic and expression analysis of canine calcitonin receptor-stimulating peptides and calcitonin/calcitonin gene-related peptide[J], J Biochem, 2008,144(4):419-430.
    [12]Katafuchi T, Yasue H, Osaki T, et al. Calcitonin receptor-stimulating peptide:Its evolutionary and functional relationship with calcitonin/calcitonin gene-related peptide based on gene structure[J]. Peptides,2009,30(9):1753-1762.
    [13]Koth CM, Abdul-Manan N, Lepre CA, et al. Refolding and characterization of a soluble ectodomain complex of the calcitonin gene-related peptide receptor[J]. Biochemistry, 2010,49(9):1862-1872.
    [14]孙飞,秦旭平.降钙素基因相关肽(CGRP)受体[J].生命的化学,2009,29(05):731-734.
    [15]Barwell J, Miller PS, Donnelly D, et al. Mapping interaction sites within the N-terminus of the calcitonin gene-related peptide receptor; the role of residues 23-60 of the calcitonin receptor-like receptor[J]. Peptides,2010,31(1):170-176.
    [16]唐江琼,秦旭平.降钙素基因相关肽受体组分蛋白[J].生命的化学,2011,31(02):277-280.
    [17]Heroux M, Hogue M, Lemieux S, et al. Functional calcitonin gene-related peptide receptors are formed by the asymmetric assembly of a calcitonin receptor-like receptor homo-oligomer and a monomer of receptor activity-modifying protein-1[J]. J Biol Chem, 2007,282(43):31610-31620.
    [18]Goharkhay N, Lu J, Felix JC, et al. Expression of calcitonin gene-related peptide-receptor component protein (CGRP-RCP) in human myometrium in differing physiological states and following misoprostol administration[J]. Am J Perinatol,2007,24(8):497-500.
    [19]Chrissobolis S, Zhang Z, Kinzenbaw DA, et al. Receptor activity-modifying protein-1 augments cerebrovascular responses to calcitonin gene-related peptide and inhibits angiotensin Ⅱ-induced vascular dysfunction[J]. Stroke,2010,41(10):2329-2334.
    [20]Robinson SD, Aitken JF, Bailey RJ, et al. Novel peptide antagonists of adrenomedullin and calcitonin gene-related peptide receptors:identification, pharmacological characterization, and interactions with position 74 in receptor activity-modifying protein 1/3[J]. J Pharmacol Exp Ther,2009,331(2):513-521.
    [21]Qi T, Christopoulos G, Bailey RJ, et al. Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function[J]. Mol Pharmacol,2008,74(4):1059-1071.
    [22]Kunz TH, Scott M, Ittner LM, et al. Calcitonin gene-related peptide-evoked sustained tachycardia in calcitonin receptor-like receptor transgenic mice is mediated by sympathetic activity[J]. Am J Physiol Heart Circ Physiol,2007,293(4):H2155-2160.
    [23]Edvinsson L, Eftekhari S, Salvatore CA, et al. Cerebellar distribution of calcitonin gene-related peptide (CGRP) and its receptor components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) in rat[J]. Mol Cell Neurosci, 2011,46(1):333-339.
    [24]Hay DL. What makes a CGRP2 receptor?[J]. Clin Exp Pharmacol Physiol, 2007,34(10):963-971.
    [25]Hay DL, Poyner DR, Quirion R. International Union of Pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor[J]. Pharmacol Rev,2008,60(2):143-145.
    [26]Chan KY, Edvinsson L, Eftekhari S, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries[J]. J Pharmacol Exp Ther,2010,334(3):746-752.
    [27]Wunder F, Rebmann A, Geerts A, et al. Pharmacological and kinetic characterization of adrenomedullin 1 and calcitonin gene-related peptide 1 receptor reporter cell lines[J]. Mol Pharmacol,2008,73(4):1235-1243.
    [28]Ren JY, Song JX, Lu MY, et al. Cardioprotection by ischemic postconditioning is lost in isolated perfused heart from diabetic rats:Involvement of transient receptor potential vanilloid 1, calcitonin gene-related peptide and substance P[J]. Regul Pept, 2011,169(1-3):49-57.
    [29]Xie C, Sachs JR, Wang DH. Interdependent regulation of afferent renal nerve activity and renal function:role of transient receptor potential vanilloid type 1, neurokinin 1, and calcitonin gene-related peptide receptors [J]. J Pharmacol Exp Ther,2008,325(3):751-757.
    [30]Boeglin D, Hamdan FF, Melendez RE, et al. Calcitonin gene-related peptide analogues with aza and indolizidinone amino acid residues reveal conformational requirements for antagonist activity at the human calcitonin gene-related peptide 1 receptor[J]. J Med Chem. 2007,50(6):1401-1408.
    [31]Eftekhari S, Salvatore CA, Calamari A, et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion[J]. Neuroscience,2010,169(2):683-696.
    [32]Paone DV, Nguyen DN, Shaw AW, et al. Orally bioavailable imidazoazepanes as calcitonin gene-related peptide (CGRP) receptor antagonists:discovery of MK-2918[J]. Bioorg Med Chem Lett,2011,21(9):2683-2686.
    [33]Eftekhari S, Edvinsson L. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists[J]. Ther Adv Neurol Disord,2010,3(6):369-378.
    [34]Durham PL, Vause CV. Calcitonin gene-related peptide (CGRP) receptor antagonists in the treatment of migraine[J], CNS Drugs,2010,24(7):539-548.
    [35]Ganea D, Delgado M. Inhibitory neuropeptide receptors on macrophages[J]. Microbes Infect,2001,3(2):141-147.
    [36]周孝钱,许俊,唐江琼,等CGRP对氧化损伤人脐静脉内皮细胞的保护作用及Caveolin-1表达的影响[J].中南医学科学杂志,2011,39(02):131-134.
    [37]张宝林,王小兵,卢颖洁,等.严重创伤时降钙素基因相关肽对心血管系统的影响[J].实用医技杂志,2010,17(3):197-198.
    [38]Edvinsson L. Calcitonin gene-related peptide (CGRP) in cerebrovascular disease[J]. ScientificWorldJournal,2002,2:1484-1490.
    [39]杨小立,吴明远,秦潮.辣椒素受体-1、一氧化氮和降钙素基因相关肽在大鼠上颈段脊髓刺激诱导脑血流增加中的作用[J].中国康复医学杂志,2010,25(6):491-496.
    [40]Wolfrum S, Nienstedt J, Heidbreder M, et al. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning[J]. Regul Pept,2005,127(1-3):217-224.
    [41]李忠新,阎明,刘克敬,等.降钙素基因相关肽对急性肝损伤小鼠肝脏微循环的干预[J].中国现代普通外科进展,2010,13(3):177-179,205.
    [42]王志忠.原发性高血压患者ET, CGRP, NO和NOS联合检测的临床意义[J].中国热带医学,2011,11(9):1149-1150.
    [43]Marquez-Rodas I, Longo F, Rothlin RP, et al. Pathophysiology and therapeutic possibilities of calcitonin gene-related peptide in hypertension[J]. J Physiol Biochem, 2006,62(1):45-56.
    [44]张小宁,陈道中.降钙素基因相关肽与基因治疗[J].中国心血管病研究杂志,2007,5(5):391-393.
    [45]邢明媚,韦知樱,许俊.降钙素基因相关肽与动脉粥样硬化[J].现代生物医学进展,201 1,11(12):2398-2400.
    [46]邓水秀,曾泗宇,任俊芳,等.降钙素基因相关肽对大鼠血管平滑肌细胞CDK2和Cyclin E的影响[J].中国临床药理学与治疗学,2011,16(3):249-253.
    [47]苏晓灵,周白丽,王嵘.不同海拔地区藏、汉族高血压患者血CGRP、ADM含量[J].青海医学院学报,2011,32(2):121-123,127.
    [48]王钊,金丹,陀泳华,等.降钙素基因相关肽促进大鼠BMSCs迁移及VEGF的表达[J].中国修复重建外科杂志,2011,(11):86-91.
    [49]金晓峰,徐成斌,张彤,等.降钙素基因相关肽基因转导对内皮损伤兔髂动脉血管环 舒缩反应的影响[J].中国病理生理杂志,1999,15(12):1074-1077.
    [50]张小宁,陈道中,郑宇辉,等.降钙素基因相关肽转基因对同种异体移植血管病变的防治作用[J].中华医学杂志,2008,88(45):3217-3221.
    [51]Smillie SJ, Brain SD. Calcitonin gene-related peptide (CGRP) and its role in hypertension[J]. Neuropeptides,2011,45(2):93-104.
    [52]Haug T, Storm JF. Protein kinase A mediates the modulation of the slow Ca(2+)-dependent K(+) current, I(sAHP), by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons[J]. J Neurophysiol,2000,83(4):2071-2079.
    [53]Zheng LF, Wang R, Xu YZ, et al. Calcitonin gene-related peptide dynamics in rat dorsal root ganglia and spinal cord following different sciatic nerve injuries[J]. Brain Res, 2008,1187:20-32.
    [54]余倩,贺纯静,楚兰.星状神经节阻滞对急性脑梗塞患者血浆相关血管舒缩因子和氧自由基的影响[J].贵州医药,2011,35(6):491-494.
    [55]潘珊珊,孙晓娟.运动预适应对大鼠背根神经节降钙素基因相关肽表达的影响[J].中国运动医学杂志,2010,29(1):30-33.
    [56]盛红.缺氧缺血性脑病患儿血内皮素、胰岛素和降钙素基因相关肽水平检测的临床意义[J].江苏医药,2011,37(19):2329-2331.
    [57]王绪玲,廖培元,张恩胜.血CGRP、ET-1和NSE在新生儿HIE的变化及其临床意义[J].标记免疫分析与临床,2011,18(1):28-32.
    [58]俸军林,蒋静子,李浩,等.癫痫大鼠血清和脑脊液的CGRP水平及其在海马组织的表达[J].中国现代医学杂志,2011,(12):1457-1461.
    [59]成兰云,门秀丽,张连元,等.内质网应激诱导的细胞凋亡在大鼠肢体缺血再灌注后肺损伤中的作用及牛磺酸的影响[J].中国病理生理杂志,2010,26(9):1776-1780.
    [60]Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress[J]. Cell Death Differ,2004,11(4):381-389.
    [61]Fels DR, Koumenis C. The PERK/eIF2alpha/ATF4 module of the UPR in hypoxia resistance and tumor growth[J]. Cancer Biol Ther,2006,5(7):723-728.
    [62]关丽英,许彩民,潘华珍.内质网应激介导的细胞凋亡[J].生物化学与生物物理进展,2007,34(11):1136-1141.
    [63]Woo KJ, Lee TJ, Lee SH, et al. Elevated gadd153/chop expression during resveratrol-induced apoptosis in humancolon cancer cells[J]. Biochem Pharmacol, 2007,73(1):68-76.
    [64]曲鹏,张鸿,张正洪,等.NGF和CGRP对局灶性脑缺血再灌注后大鼠皮质CHOP蛋白表达的影响[J].解剖科学进展,2006,12(3):215-218,插4.
    [65]Aoki-Nagase T, Nagase T, Oh-Hashi Y, et al. Calcitonin gene-related peptide mediates acid-induced lung injury in mice[J]. Respirology,2007,12(6):807-813.
    [66]张丙芳,林允信,戚好文,等.降钙素基因相关肽对油酸型急性肺损伤家兔细胞因子的影响[J].第四军医大学学报,2002,23(14):1265-1267.
    [67]范风云,张丙芳,林允信,等.ANP和CGRP对油酸型急性肺损伤家兔细胞因子的影响[J].中国误诊学杂志,2005,5(5):819-821.
    [68]刘慧琳,魏敏,刘涛.降钙素基因相关肽对肺泡Ⅱ型上皮细胞的保护作用[J].实用医学杂志,2011,27(4):587-589.
    [69]苗新芳,戚好文.降钙素基因相关肽对急性肺损伤大鼠AQP1表达的影响[J].解放军医学杂志,2006,31(11):1076.
    [70]Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation:dual anti-inflammatory and pro-resolution lipidmediators[J]. Nat Rev Immunol,2008,8(5):349-361.
    [71]Serhan CN. Systems approach to inflammation resolution:identification of novelanti-inflammatory and pro-resolving mediators[J]. J Thromb Haemost,2009,7 Suppl 1:44-48.
    [72]Zimmerman GA, Albertine KH, Carveth HJ, et al. Endothelial activation in ARDS[J]. Chest,1999,116(1 Suppl):18S-24S.
    [73]Round table conference. Acute lung injury[J]. Am J Respir Crit Care Med, 1998,158(2):675-679.
    [74]Ware LB, Matthay MA. The acute respiratory distress syndrome[J]. N Engl J Med, 2000,342(18):1334-1349.
    [75]Toya SP, Malik AB. Role of endothelial injury in disease mechanisms and contribution of progenitorcells in mediating endothelial repair[J]. Immunobiology,2011.
    [76]Ohle SJ, Anandaiah A, Fabian AJ, et al. Maintenance and Repair of the Lung Endothelium does not Involve Contributionsfrom Marrow-Derived Endothelial Precursor Cells[J]. Am J Respir Cell Mol Biol,2012.
    [77]Singhal S, Achary S, Mahajan S, et al. Stem cells and lung diseases[J]. J Assoc Physicians India,2011,59:433-436.
    [78]Lam CF, Liu YC, Hsu JK, et al. Autologous transplantation of endothelial progenitor cells attenuates acute lung injury in rabbits[J]. Anesthesiology,2008,108(3):392-401.
    [79]Teisanu RM, Chen H, Matsumoto K, et al. Functional analysis of two distinct bronchiolar progenitors during lung injuryand repair[J]. Am J Respir Cell Mol Biol, 2011,44(6):794-803.
    [80]Polak DJ. The use of stem cells to repair the injured lung[J]. Br Med Bull, 2011,99:189-197.
    [81]Luo D, Zhang YW, Peng WJ, et al. Transient receptor potential vanilloid 1-mediated expression and secretion of endothelial cell-derived calcitonin gene-related peptide[J]. Regul Pept,2008,150(1-3):66-72.
    [82]Wang M, Ji P, Wang R, et al. TRPV1 Agonist Capsaicin Attenuates Lung Ischemia-Reperfusion Injury in Rabbits[J]. J Surg Res,2012,173(1):153-160.
    [83]Oslund KL, Hyde DM, Putney LF, et al. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair[J]. Toxicol Pathol,2009,37(6):805-813.
    [84]Crosby LM, Waters CM. Epithelial repair mechanisms in the lung[J]. Am J Physiol Lung Cell Mol Physiol,2010,298(6):L715-731.
    [85]黄栋,许峰,方芳.降钙素基因相关肽在高氧致幼年鼠肺损伤中的动态变化及意义[J].第四军医大学学报,2009,30(18):1647-1650.
    [86]Sorhaug S, Steinshamn S, Munkvold B, et al. Release of neuroendocrine products in the pulmonary circulation duringintermittent hypoxia in isolated rat lung[J]. Respir Physiol Neurobiol,2008,162(1):1-7.
    [87]Bivalacqua TJ, Hyman AL, Kadowitz PJ, et al. Role of calcitonin gene-related peptide (CGRP) in chronic hypoxia-induced pulmonary hypertension in the mouse. Influence of gene transfer in vivo[J]. Regul Pept,2002,108(2-3):129-133.
    [88]Champion HC, Bivalacqua TJ, Toyoda K, et al. In vivo gene transfer of prepro-calcitonin gene-related peptide to the lung attenuates chronic hypoxia-induced pulmonary hypertension in the mouse[J]. Circulation,2000,101(8):923-930.
    [89]Bivalacqua TJ, Champion HC, Abdel-Mageed AB, et al. Gene transfer of prepro-calcitonin gene-related peptide restores erectile function in the aged rat[J]. Biol Reprod, 2001,65(5):1371-1377.
    [90]陈椿,陈道中,陈春美,等.降钙素基因相关肽体外转染对大鼠同种异体肺移植物缺血再灌注损伤的影响[J].中华实验外科杂志,2008,25(11):1469-1471.
    [91]Li YJ, Song QJ, Xiao J. Calcitonin gene-related peptide:an endogenous mediator of preconditioning[J]. Acta Pharmacol Sin,2000,21(10):865-869.
    [92]Sueur S, Pesant M, Rochette L, et al. Antiapoptotic effect of calcitonin gene-related peptide on oxidative stress-induced injury in H9c2 cardiomyocytes via the RAMP1/CRLR complex[J]. J Mol Cell Cardiol,2005,39(6):955-963.
    [93]杨晶,李元建,胡长平.缺血预适应通过抑制TLR4/NF-KB信号通路保护大鼠心肌缺血再灌注损伤[J].中南大学学报(医学版),2011,36(10):972-978.
    [94]Li D, Zhang XJ, Chen L, et al. Calcitonin gene-related peptide mediates the cardioprotective effects of rutaecarpine against ischaemia-reperfusion injury in spontaneously hypertensive rats[J]. Clin Exp Pharmacol Physiol,2009,36(7):662-667.
    [95]金丽艳,贺志飚,彭再梅.无创肢体缺血预处理对心脏换瓣术患者心肌的保护作用[J].中南大学学报(医学版),2011,36(8):768-775.
    [96]Li D, Li NS, Chen QQ, et al. Calcitonin gene-related peptide-mediated cardioprotection of postconditioning in isolated rat hearts[J]. Regul Pept,2008,147(1-3):4-8.
    [97]陆姚,张野,王苑,等CGRP. KATP通道和脊神经在鞘内注射吗啡预处理减轻大鼠心肌缺血后损伤中的作用[J].中国药理学通报,2010,26(7):886-890.
    [98]Peng J, Lu R, Ye F, et al. The heme oxygenase-1 pathway is involved in calcitonin gene-related peptide-mediated delayed cardioprotection induced by monophosphoryl lipid A in rats[J]. Regul Pept,2002,103(1):1-7.
    [99]Li Y, Tan Y, Zhang G, et al. Effects of calcitonin gene-related peptide on the expression and activity of nitric oxide synthase during mandibular bone healing in rabbits:an experimental study[J]. J Oral Maxillofac Surg,2009,67(2):273-279.
    [100]潘孝贵.降钙素基因相关肽参与运动诱导的心脏保护作用[J].中国应用生理学杂志,2011,27(02):172-174.
    [101]李健哲,彭军,王晨静,等.降钙素基因相关肽通过调节microRNA-1和microRNA-133a的表达抑制异丙肾上腺素诱导的心肌细胞凋亡[J].中南大学学报(医学版),2011,36(10):964-971.
    [102]徐燕,朱娟霞,刘晓华,等.糖尿病大鼠心脏伤害性感受与VRl及CGRP表达的变化[J].西安交通大学学报(医学版),2011,32(5):576-579.
    [103]吴克芹,牟艳玲,李杰,等.甲胺鸢尾素对异丙肾上腺素致大鼠心肌损伤的影响[J].中药药理与临床,2011,27(03):20-22.
    [104]Regan CP, Stump GL, Kane SA, et al. Calcitonin gene-related peptide receptor antagonism does not affect the severity of myocardial ischemia during atrial pacing in dogs with coronary artery stenosis[J]. J Pharmacol Exp Ther,2009,328(2):571-578.
    [105]Gupta P, Harte AL, da SNF, et al. Expression of calcitonin gene-related peptide, adrenomedullin, and receptor modifying proteins in human adipose tissue and alteration in their expression with menopause status[J]. Menopause,2007,14(6):1031-1038.
    [106]Wang X, Fiscus RR, Tang Z, et al. CGRP in the serum of endotoxin-treated rats suppresses lymphoproliferation[J]. Brain Behav Immun,1994,8(4):282-292.
    [107]Wang X, Fiscus RR, Yang L, et al. Suppression of the functional activity of IL-2-activated lymphocytes by CGRP[J]. Cell Immunol,1995.162(1):105-113.
    [108]Wang X, Fiscus RR. Lactic acid potentiates bradykinin-and low-pH-induced release of CGRP from rat spinal cord slices[J]. Am J Physiol,1997,273(1 Pt 1):E92-98.
    [109]Feng Y, Tang Y, Guo J, et al. Inhibition of LPS-induced TNF-alpha production by calcitonin gene-related peptide (CGRP) in cultured mouse peritoneal macrophages[J]. Life Sci,1997,61(20):PL 281-287.
    [110]Tang Y, Feng Y, Wang X. Calcitonin gene-related peptide potentiates LPS-induced IL-6 release from mouse peritoneal macrophages[J]. J Neuroimmunol,1998,84(2):207-212.
    [111]Tang Y, Han C, Wang X. Role of nitric oxide and prostaglandins in the potentiating effects of calcitonin gene-related peptide on lipopolysaccharide-induced interleukin-6 release from mouse peritoneal macrophages[J]. Immunology,1999,96(2):171-175.
    [112]Xing L, Guo J, Tang J, et al. Morphological evidence for the location of calcitonin gene-related peptide (CGRP) immunoreactivity in rat lymphocytes[J]. Cell Vis, 1998,5(1):8-12.
    [113]Wang X, Xing L, Xing Y, et al. Identification and characterization of immunoreactive calcitonin gene-related peptide from lymphocytes of the rat[J]. J Neuroimmunol, 1999,94(1-2):95-102.
    [114]Fernandez S, Knopf MA, McGillis JP. Calcitonin-gene related peptide (CGRP) inhibits interleukin-7-induced pre-B cell colony formation[J]. J Leukoc Biol, 2000,67(5):669-676.
    [115]Fernandez S, Knopf MA, Bjork SK, et al. Bone marrow-derived macrophages express functional CGRP receptors and respond to CGRP by increasing transcription of c-fos and IL-6 mRNA[J]. Cell Immunol,2001,209(2):140-148.
    [116]Holzmann B. Modulation of immune responses by the neuropeptide CGRP[J]. Amino Acids,2011.
    [117]Kroeger I, Erhardt A, Abt D, et al. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatory liver injury in mice[J]. J Hepatol,2009,51(2):342-353.
    [118]Harzenetter MD, Novotny AR, Gais P, et al. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER[J]. J Immunol, 2007,179(1):607-615.
    [119]Li Y, Guan C, Zhou Y, et al. Effect of calcitonin gene-related peptide on the expression of triggering receptor expressed on myeloid cells-1 in lipopolysaccharide-induced macrophages[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2010,35(2):100-106.
    [120]Caviedes-Bucheli J, Moreno GC, Lopez MP, et al. Calcitonin gene-related peptide receptor expression in alternatively activated monocytes/macrophages during irreversible pulpitis[J]. J Endod,2008,34(8):945-949.
    [121]Kroeger I, Erhardt A, Abt D, et al. The neuropeptide calcitonin gene-related peptide (CGRP) prevents inflammatoryliver injury in mice[J]. J Hepatol,2009,51(2):342-353.
    [122]Bracci-Laudiero L, Aloe L, Caroleo MC, et al. Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production[J]. Blood,2005,106(10):3507-3514.
    [123]Harzenetter MD, Novotny AR, Gais P, et al. Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER[J]. J Immunol, 2007,179(1):607-615.
    [124]Cuesta MC, Quintero L, Pons H, et al. Substance P and calcitonin gene-related peptide increase IL-1 beta, IL-6 and TNF alpha secretion from human peripheral blood mononuclear cells[J]. Neurochem Int,2002,40(4):301-306.
    [125]Altmayr F, Jusek G, Holzmann B. The neuropeptide calcitonin gene-related peptide causes repression of tumor necrosis factor-alpha transcription and suppression of ATF-2 promoter recruitment in Toll-like receptor-stimulated dendritic cells[J]. J Biol Chem, 2010,285(6):3525-3531.
    [126]Rochlitzer S, Veres TZ, Kuhne K, et al. The neuropeptide calcitonin gene-related peptide affects allergic airway inflammation by modulating dendritic cell function[J]. Clin Exp Allergy,2011,41(11):1609-1621.
    [127]Kobayashi S, Yoshizawa H, Yamada S. Pathology of lumbar nerve root compression. Part 2:morphological and immunohistochemical changes of dorsal root ganglion[J], J Orthop Res,2004,22(1):180-188.
    [128]Ceruti S, Villa G, Fumagalli M, et al. Calcitonin gene-related peptide-mediated enhancement of purinergic neuron/glia communication by the algogenic factor bradykinin in mouse trigeminal ganglia from wild-type and R192Q Cav2.1 Knock-in mice: implications for basic mechanisms of migraine pain[J]. J Neurosci, 2011,31(10):3638-3649.
    [129]Zhang Z, Winborn CS, de Prado B M, et al. Sensitization of calcitonin gene-related peptide receptors by receptor activity-modifying protein-1 in the trigeminal ganglion[J], J Neurosci, 2007,27(10):2693-2703.
    [130]Lynch JJ Jr, Regan CP, Edvinsson L, et al. Comparison of the vasoconstrictor effects of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) and zolmitriptan in human isolated coronary arteries[J]. J Cardiovasc Pharmacol, 2010,55(5):518-521.
    [131]孟蒂,刘丹,房春燕,等.大鼠PAG内Nogo-A和CGRP参与痛觉调制的研究[J].神经解剖学杂志,2011,27(1):67-71.
    [132]孟蒂,刘丹,房春燕,等.大鼠PAG内Nogo-A在痛觉调制过程中角色的探索[J].中国疼痛医学杂志,2011,17(9):554-557,562.
    [133]Takeuchi H, Kawaguchi S, Ohwada O, et al. Plasma neuropeptides in patients undergoing lumbar discectomy[J]. Spine (Phila Pa 1976),2007,32(2):E79-84.
    [134]陈瑾歆,李云祥,王安果,等.慢性前列腺炎模型大鼠脊髓背角降钙素基因相关肽表达的测定[J].中国疼痛医学杂志,2011,17(8):498-500.
    [135]Greenwell TN, Martin-Schild S, Inglis FM, et al. Colocalization and shared distribution of endomorphins with substance P, calcitonin gene-related peptide, gamma-aminobutyric acid, and the mu opioid receptor[J]. J Comp Neurol,2007,503(2):319-333.
    [136]林希,吴斌,杨燕珍,等.幼鼠内脏痛觉高敏感性与脊髓降钙素基因相关肽表达的关系[J].临床儿科杂志,2011,29(5):482-486.
    [137]陈丹,张在峰,王昭金.PAR4在背根神经节感觉神经元的表达及与TRPV1和CGRP的共存[J].神经解剖学杂志,2011,27(5):493-496.